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Prediction of Promiscuity Cliffs Using Machine Learning
Thomas Blaschke,[a] Christian Feldmann,[a] and Jürgen Bajorath*[a]

Abstract: Compounds with the ability to interact with
multiple targets, also called promiscuous compounds,
provide the basis for polypharmacological drug discovery.
In recent years, a plethora of structural analogs with
different promiscuity has been identified. Nevertheless, the
molecular origins of promiscuity remain to be elucidated. In
this study, we systematically extracted different structural
analogs with varying promiscuity using the matched
molecular pair (MMP) formalism from public biological
screening and medicinal chemistry data. Care was taken to
eliminate all compounds with potential false-positive
activity annotations from the analysis. Promiscuity predic-
tions were then attempted at the level of compound pairs

representing promiscuity cliffs (PCs; formed by analogs with
large promiscuity differences) and corresponding non-PC
MMPs (analog pairs without significant promiscuity differ-
ences). To address this prediction task, different machine
learning models were generated and the results were
compared with single compound predictions. PCs encoding
promiscuity differences were found to contain more
structure-promiscuity relationship information than sets of
individual promiscuous compounds. In addition, feature
analysis was carried out revealing key contributions to the
correct prediction of PCs and non-PC MMPs via machine
learning.
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1 Introduction

The observation that many drugs bind to multiple bio-
logical targets has gained increased attention over the past
two decades. These multitarget interactions, also known as
compound promiscuity,[1] are the basis of polypharmacol-
ogy, and major determinants of the efficacy of promiscuous
drugs, but also responsible for undesired side effects.[2–6] An
increasing number of polypharmacology studies has trig-
gered a shift from the long dominant drug discovery
paradigm of single target compound specificity to multi-
target activity,[7,8] leading to coexistence of both principles.
However, the exploration of promiscuity is challenging from
an experimental and a computational perspective. Apparent
promiscuity can also be caused by experimental artifacts
leading to false positive activity annotations such as assay
interference effects. Such unwanted effects include a
tendency of liable compounds to aggregate, form non-
specific interactions with target proteins, or react in various
ways under assay conditions.[9–11] Additionally, when com-
paring the promiscuity of multiple compounds, apparent
differences might be influenced by limited assay overlap or
significantly different test frequencies. For example, if two
close structural analogs are considered and one has been
tested in 100 assays against 90 targets and the other in
10 assays against two targets, observed differences in
promiscuity might be largely due to the much higher test
frequency and target coverage of one of the analogs.
Compound inactivity and test frequencies are typically not
reported in the medicinal chemistry literature and are thus
not available in ChEMBL,[12] the major public repository of
compounds from medicinal chemistry.

Despite these challenges, rationalizing molecular origins
of true multitarget activity continues to be of high interest
for compound design. Molecular determinants of promiscu-
ity remain to be fully understood. For example, it is largely
unclear at present if specific structural characteristics might
trigger defined multitarget activity of compounds. Different
binding mechanisms of promiscuous compounds are just
beginning to be elucidated on the basis of X-ray structures
of relevant complexes.[13] Some studies have suggested that
promiscuous compounds might often interact with similar
binding sites in proteins.[14] These also include correlation
analysis of binding site similarity and compound
promiscuity.[15,16] However, promiscuous binding events are
not restricted to similar binding sites. Other studies have
identified a large number of promiscuous compounds
interacting with proteins from different families and func-
tional classes.[17] The multiclass compounds displayed a
variety of binding modes with often only little shape
similarity.[17] Hence, compound promiscuity cannot be
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rationalized by assuming the presence of canonical binding
modes.

For the systematic analysis of compounds with different
levels of multitarget activity, the promiscuity cliff (PC)
concept was introduced.[18] A PC is defined as a pair of
structural analogs having a large difference in the number
of proteins they are active against. Computationally, analog
relationships can be established in different ways, for
example, by applying the matched molecular pair (MMP)
formalism,[19] which has become a preferred way of analog
identification and representation. The number of targets a
compound is active against is also referred to as the
promiscuity degree (PD).[20] In different studies, large
numbers of MMP-based PCs have been identified also
including PCs formed by extensively tested compounds,
thus providing experimental support for the PC
concept.[20,21]

PCs can be organized in networks in which nodes
represent compounds and edges indicate the formation of
pairwise PC relationships.[22] These PC networks are rich in
structure-promiscuity relationship information and provide
additional target hypotheses for non-promiscuous analogs
that can be experimentally assessed. A previous investiga-
tion made use of PC networks to assemble data sets of
structural analogs that were either promiscuous or non-
promiscuous.[23] The resulting data sets consisted of individ-
ual compounds with structural relationships across training
and test sets. They were then used to train machine
learning models to distinguish between promiscuous and
non-promiscuous compounds. These models were found to
be predictive and provided indirect evidence for the
presence of structure-promiscuity relationships. However,
the different models did not achieve classification accuracy
of more than 75%, indicating that other factors such as
data incompleteness or promiscuity pattern-insensitive
molecular representations might also influence the
calculations.[23]

In this work, we re-focus machine learning analysis and
promiscuity prediction from single compounds to PCs
capturing promiscuity differences, hence adding another
layer of information, but also complexity to the prediction
tasks. Correct prediction of MMP-based PCs requires
distinguishing between PCs and other MMPs not encoding
promiscuity differences. Thus, successful machine learning
analysis at the level of compound pairs might provide
further evidence for the existence of structure-promiscuity
patterns. Therefore, PCs and corresponding non-PC MMPs
were systematically assembled from different sources and
multiple machine learning and control models were derived
to systematically distinguish between them. Feature elimi-
nation analysis was carried out to rationalize these
predictions. In the following, our analysis and findings are
presented and discussed.

2 Materials and Methods

2.1 Compound Selection

For our analysis, two data sources have been used including
a comprehensive collection of publicly available human
kinase inhibitors from different databases[22] and a large set
of intensely assayed compounds extracted from PubChem
screening data.[21] For the kinase inhibitor data sets, most
activity information originated from ChEMBL. The data set
contained 112,624 compounds that were active against a
total of 426 human kinases. The composition of the kinase-
inhibitor matrix and the kinase distribution over promiscu-
ous inhibitors have been reported previously.[22] Only ~1%
of these inhibitors were known to be active against at least
10 kinases. For the PubChem screening data set, unambig-
uous compound activity annotations were extracted from
PubChem biological screening assays.[24] Only consistent
qualitative compound assay results designated as ‘active’ or
‘inactive’ for human targets were considered. Because
promiscuity analysis is particularly vulnerable to false
positive assay outcomes,[20] compounds potentially causing
assay artifacts were excluded. To detect potential pan-assay
interference compounds (PAINS),[25] publicly available filters
from ChEMBL,[12] RDKit,[26] and ZINC[27] were used. Addition-
ally, the Aggregator Advisor[11] was used as a filter to
exclude compounds that were likely to aggregate under
assay conditions.

Furthermore, only PubChem compounds tested in at
least 100 screening assays against at least 10 distinct target
proteins were selected. To remove redundancies in Pub-
Chem target annotations, PubChem GenInfo Identifiers (GI)
were mapped to UniProt identifiers (IDs).[28] If a single GI
corresponded to multiple UniProt IDs, only a single
‘reviewed’ UniProt ID was selected. Applying these criteria,
a total of 327,898 extensively assayed compounds were
obtained that were tested in 1994 assays against 818
unique targets, yielding a total of ~94 million interactions.

For each compound, its PD was obtained by counting
the number of targets it was active against. If multiple
assays were available for a given target, a compound was
required to have a consistent target annotation (e.g., active
or inactive in all assays); otherwise, the compound-target
annotations were discarded.

Kinase inhibitors and screening compounds were ini-
tially classified as promiscuous if they were active against at
least 10 different targets. By contrast, compounds with one
or no activity annotation were classified as non-promiscu-
ous. All kinase inhibitors were – by definition – active
against at least one kinase, while consistently inactive
compounds (PD=0) exclusively originated from screening
data. From promiscuous and non-promiscuous compounds,
PCs and non-PC MMPs were extracted, as further detailed
below.
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2.2 Training and Test Sets

From both compound data sources, MMPs were systemati-
cally extracted. Single-, dual-, and triple-cut fragmentation
of exocyclic single-bonds was carried out using an in-house
implementation of the Hussain and Rea algorithm.[19] In
MMP fragmentation, only exocyclic bonds are cleaved to
ensure integrity of ring structures. In addition, transforma-
tion size restrictions were applied to facilitate a meaningful
distinction between core structures and substituents.[29] For
the assembly of training and test sets, MMP-based PCs, as
defined above, and non-PC MMPs were identified with the
aid of network representations. Therefore, compounds
selected for our analysis were initially organized in MMP
networks (nodes: compounds; edges: pairwise MMP rela-
tionships). MMP networks were then converted into PC
networks (edges: pairwise PC formation) by labeling
compounds as promiscuous (PD�10) or non-promiscuous
(PD=1 or 0) and applying ΔPD criteria. In the case of the
PubChem data set, the ΔPD for two analogs was calculated
exclusively considering shared targets, thereby ensuring
highest possible experimental confidence for ΔPD assign-
ments on the basis of screening data. In addition, for the
PubChem data set, multiple PC networks were generated
on the basis of varying ΔPD criteria to further refine
compound pair-based promiscuity analysis.

Specifically, for the PubChem data set, we constructed
five PC networks applying different thresholds of ΔPD�10,
[9–8], [7–6], [5–4], and [3–2]. Hence, ΔPD criteria for PC
formation were gradually relaxed to increase the prediction
challenge (distinguishing between PCs and non-PC MMPs).
From the resulting PC networks, 900 MMPs were randomly
selected. However, no selected compound was permitted
to participate in multiple MMPs, hence ascertaining unique-
ness of all pairs. Selected MMPs were randomly divided into
equally sized training and test sets. In addition, from the
MMP network, 900 non-PC MMPs formed by non-promiscu-
ous compounds were selected and also divided into equally
sized training and test sets. Thus, for the PubChem data set,
a total of five training/test set combinations were obtained.
Each combination consisted of 1800 MMPs comprising 3600
unique compounds. For control experiments using single
compounds, in each case, 900 promiscuous compounds
were randomly sampled from PCs and 900 non-promiscu-
ous compounds from non-PC MMPs and divided into
equally sized training and test sets. Hence, the number of
pairs and individual compounds used as training and test
instances was consistently the same. Single compound
predictions served as a reference for pair-based promiscuity
predictions.

For the kinase inhibitor data set, the same selection
strategy was applied. However, due to the limited amount
of available promiscuous inhibitors, only 500 PCs with
ΔPD�10 were extracted and 500 non-PC, resulting in a
total of 1000 pairs comprising 2000 unique compounds for
training and testing.

For hyperparameter optimization of machine learning
models, a random 80% vs. 20% training data split was
carried out to obtain an additional validation set (20%).

2.3 Molecular Representations

Individual compounds were represented using the ex-
tended connectivity fingerprint with bond diameter 4
(ECFP4)[30] and MMPs were represented using an especially
designed MMP fingerprint (MMPFP). ECFP4 is a feature set
fingerprint that enumerates layered atom environments
and encodes them as integers using a hashing function. It
produces molecule-dependent feature sets of variable size.
Each generated atom environment feature was mapped to
a new position, yielding a fingerprint with a constant
number of bits. An “unfolded” version of ECFP4 in which
each unique feature was mapped to a specific position was
obtained by calculating all features occurring in the
PubChem data set. This version consisted of a total of
128,742 bits.

MMPFP was generated from the unfolded ECFP4 finger-
print of compounds forming an MMP. Bits shared by the
two fingerprints constituted the fingerprint of the common
core fragment, termed core fingerprint (CFP). Bits present
only in the fingerprint of the individual MMP partners
represented the chemical transformation (substitution) and
formed substituent 1 fingerprint (S1FP) and substituent 2
fingerprint (S2FP), respectively. For each MMP, the CFP,
S1FP, and S2FP components were concatenated, thereby
providing a fingerprint representation of an analog pair.
The similarity of two MMPFPs was determined as follows:

Tc MMPFP1;MMPFP2ð Þ

¼ Tcð½CFP1; S1FP1; S2FP1 �; ½CFP2; S1FP2; S2FP2 �Þ
(1)

Tc MMPFP1;MMPFP2ð Þ

¼ Tc CFP1;CFP2ð Þ � Tc S1FP1; S1FP2ð Þ �

TcðS2FP1; S2FP2Þ

(2)

Here, Tc represents the Tanimoto or Jaccard
coefficient.[31] The RDKit toolkit[26] and in-house Python
scripts were used to generate all fingerprints.

2.4 Machine Learning Models

Nearest neighbor (k-NN) classification, support vector
machine (SVM), random forest (RF), and a deep neural
network (DNN) were used as classification methods. For
pair-based models, training pairs were represented as a
feature vector x2X and associated with a class label y2{0,1}
distinguishing PCs and non-PC MMPs. For single compound
models, the class label y2{0,1} was used to distinguish
promiscuous and non-promiscuous compounds.
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2.4.1 Nearest Neighbor Classification

The k-NN classifier was used as a control for machine
learning models. It stores the feature vectors and class
labels of the training set. A test pair is classified by
calculating similarity values for all training instances and
returning the majority class label of the k nearest neighbors
with the highest similarity. As a hyperparameter, k was
optimized using values of 1, 3, and 5. In addition, if not
selected, a 1-NN classifier was also used as a reference.

2.4.2 Random Forest

RF represents an ensemble of decision trees, each of which
is built from distinct subsets of the training data with
replacement (bootstrapping).[32,33] Each tree is constructed
from a random subset of features during node splitting.[34]

Class label prediction is facilitated on the basis of the
majority of ensemble votes. The number of randomly
selected features available at each split was set to the
square root of the number of ECFP4 features, and the
minimum number of samples required to reach a leaf node
was set to 1. During hyperparameter optimization, the
maximum depth of individual trees was optimized using
values of 10, 100, and ‘unlimited’. In addition, the number
of trees per ensemble was optimized by 5-fold cross-fold
validation using values of 1, 10, 100, 500, and 1000. RF
models were built using scikit-learn.[35]

2.4.3 Support Vector Machine

SVM is a machine learning algorithm aiming to construct a
hyperplane H to separate two classes of training data by
maximizing the distance between the classes in feature
space.[36] The training data is projected into feature space X
to determine a hyperplane H by a weight vector w and a
bias b such that H ¼ fxj w; xh i þ b ¼ 0g. To generalize the
model, slack variables are added permitting a limited
number of classification errors of training instances falling
within the margin or on the incorrect side of H. The training
error and margin size result from hyperparameter C, which
was optimized by 5-fold cross-validation using values of 2i,
with i representing all natural numbers between � 10 and
10. Usually, linear separation of the training instances in a
given feature space X is not possible. Therefore, as a central
part of SVM modeling, training data are projected into a
higher-dimensional space H. The projection is facilitated
through the use of kernel functions replacing the standard
scalar product, the so-called ‘kernel trick’,[36] which circum-
vents explicit mapping of X into H. To compute the
similarity between compounds, the Tanimoto kernel[37] was
used. For the comparison of compound pairs, the MMP
kernel, which is an extension of the Tanimoto kernel, was
used. The similarity between two MMPs using the MMP

kernel equals the MMP fingerprint similarity as defined in
section 2.3 by equations (1) and (2). SVM models were
implemented using scikit-learn.

2.4.4 Feedforward Deep Neural Network

A feedforward DNN derives a function y= f(x;w) that maps
an input value x to a class y and learns the value of
parameters w to achieve the best approximation. The DNN
architecture is composed of different layers of neurons
including an input layer, multiple hidden layers, and an
output layer.[38] Each neuron in a DNN accepts an n-
dimensional input x and produces an m-dimensional output
vector y using a linear transformation y=WT×x, where W is
a parameter of dimensions (n, m). Usually, neurons are
associated with an additional m-dimensional parameter b,
which is added after the linear transformation. In the next
step, the output of the neuron is passed through a non-
linear activation function. During training, parameters W
and b are modified to yield the correct output y on the
basis of a gradient descent cost function using
backpropagation.[38] For training, data subsets (batches) are
used, and the parameters W and b are updated accordingly.
Implementations were based on PyTorch version 1.3.1.[39]

DNN hyperparameters were optimized as follows. For
the drop-out rate, values of 0%, 25%, and 50% were
evaluated, the learning rate was set to 0.0005, and the
number of epochs was set to 5. A set of different network
architectures (values of output features in hidden layers)
was investigated including [250,250], [250,500], [500,250],
[500,250,100], [100,250,500], and [250,100,250]. To these
ends, pyramidal, rectangular, and autoencoder architectures
were considered during hyper-parameter optimization. The
Adam optimization algorithm[40] was chosen as the optimi-
zation function, the rectified linear unit[41] was selected as
the activation function, and the batch size was set to 10.

2.5 Performance Measures

To assess model performance, four different measures were
applied including balanced accuracy (ACC), Matthew’s
correlation coefficient (MCC), F1 values, and Area Under the
Receiver Operating Characteristic Curve (ROC AUC). ACC,
MCC, F1, and ROC AUC are defined as:

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p (3)

ACC ¼
TPþ TN

TPþ TNþ FPþ FN (4)

F1 ¼ 2�
TP

2 TPþ FPþ FN (5)

Full Paper www.molinf.com

© 2020 The Authors. Molecular Informatics published by Wiley-VCH GmbH Mol. Inf. 2021, 40, 2000196 (4 of 11) 2000196

Wiley VCH Dienstag, 19.01.2021

2101 - closed* / 179234 [S. 22/29] 1

www.molinf.com


ROC AUC ¼
1
2 �

1
2

FP
FPþ TNþ

1
2

TP
TPþ FN (6)

Abbreviations: TP, true positives; TN, true negatives; FP,
false positives; FN, false negatives.

3 Results and Discussion

3.1 Compound Pair-Based Promiscuity Predictions

To further investigate compound promiscuity with the aid
of machine learning, we devised an analysis involving five
different approaches and two distinct data sources includ-
ing a large set of extensively assayed screening compounds
with experimentally confirmed (non-)promiscuity and an-
other manually curated set of human kinase inhibitors from
the medicinal chemistry literature. The two intrinsically
different data sets were intentionally selected to enable
independent assessments of promiscuity via machine
learning in the presence or absence of experimental test
frequency information. This also assigned different levels of
confidence to PCs and non-PC MMPs, directly addressing
the data incompleteness issue. The primary task of our
analysis has been promiscuity prediction at the level of
compound pairs. Compound pair-based predictions were
previously only attempted for activity cliffs.[42]

Therefore, MMPs were systematically calculated for both
data sets and PCs as well as non-PC MMPs were assembled
as detailed above and reported in Table 1. In addition,

training and test sets for single compound promiscuity
predictions were also extracted from both data sources.

On the basis of PubChem data, a total of 170,606 com-
pounds formed 362,362 PCs with a ΔPD of 2 or larger.
Among these, there were 5750 PC with ΔPD�10.

For the formation of kinase inhibitor PCs, which
exclusively consisted of active compounds, the ΔPD�10
criterion was consistently applied. This also ensured that

kinase inhibitors PCs exclusively consisted of compounds
with large differences in the number of kinase targets they
were active against.

3.2 Selection of Training and Test Set

Machine learning models were trained on the basis of
carefully assembled balanced training and test sets to
distinguish between PCs and non-PC MMPs. To aid in the
selection of unique pairs, each of the six sets of PCs
described above was organized in a PC network. Figure 1
shows a schematic representation of the PC network and
PC selection. In addition, non-PC MMPs were obtained by
randomly sampling an MMP network built from all non-
promiscuous compounds.

In addition, we compared pair-based promiscuity differ-
ence predictions with promiscuity predictions of individual
compounds taken from PCs, which served as a reference for
PC predictions. Therefore, promiscuous and non-promiscu-
ous compounds were taken from PCs and non-PC MMPs,
respectively, and the same number of the training and test
instances was selected in each case.

3.3 Molecular Representation for Machine Learning

Each compound was encoded using the ECFP4 format. For
each training and test PCs, the ΔPD was assigned in a
direction-dependent manner such that the promiscuous
compound was presented preceding the non-promiscuous

Table 1. Reported are the numbers of PCs for different ΔPD
thresholds.

Data source ΔPD PCs Cpds[a] Non-
prom.[b]

Prom.[c]

PubChem screening
compounds

2–3 273,862 152,971 111,399 41,572
4–5 57,608 46,302 35,751 10,551
6–7 18,759 17,268 13,640 3628
8–9 6403 6762 5364 1398
�10 5750 5694 4706 998

Kinase inhibitors �10 5615 4187 3588 599
[a] Number of compounds
[b] Number of non-promiscuous compounds
[c] Number of promiscuous compounds

Figure 1. The network-based selection strategy is schematically
illustrated. Red nodes represent promiscuous compounds in PCs
with ΔPD�10, gray nodes non-promiscuous PC partners (PD< =

1), and edges the formation of pairwise PCs.
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analog. This ordering provided the basis for the generation
of the MMPFP, as shown in Figure 2a. Here, separate
fingerprint components representing the common core and
distinguishing substituents were combined. MMPFP similar-
ity was calculated as the product of pairwise Tanimoto
similarity comparisons of the three components, as sche-
matically illustrated in Figure 2b. This similarity assessment
was inspired by the design of MMP-based kernel functions
that were successfully used for the prediction of activity
cliffs.[42] For prospective applications predicting PCs among
new MMPs, ordering is not essential for test instances.

3.4 Prediction of Promiscuity Cliffs

For systematically distinguishing between PCs and non-PC
MMPs, 1-NN, k-NN, SVM, DF, and DNN classification models
were generated. The predictive performance of each model
was assessed using ACC, MCC, F1, and ROC AUC values (as
defined in Materials and Methods).

First, the models were used to predict PCs with ΔPD�
10 from the screening compound and kinase inhibitor data
sets. These PCs encoded largest differences in analog
promiscuity compared to non-PC MMPs. The results are
summarized in Table 2.

For pairs of screening compounds, all models were
found to be predictive with an accuracy of at least 70%.
The accuracy of SVM and RF approached 80%, indicating a
clear tendency to distinguish between substitutions in the
context of specific core structures leading to a large change
in the promiscuity of structural analogs. Given the consis-
tently high MCC (max. 0.56), F1 (0.77), and ROC AUC (0.86)
values, there was no significant difference in prediction
accuracy between the SVM, RF, and DNN machine learning
models.

For kinase inhibitors, the models displayed similar
trends. Although global model performance decreased
relative to screening compounds, the machine learning

models were comparably predictive, with max. ACC and F1
values of 0.71 and max. MCC value of 0.42. For all machine
learning models, MCC values were ~0.10 lower than for
screening compounds. The overall lower predictive per-
formance on the kinase inhibitor set might be due to two
factors including the general structural similarity of many
(ATP site-directed) kinase inhibitors and the uncertainties
associated with unknown test frequencies, potentially
resulting in underestimated PDs for a number of inhibitors,
due to data incompleteness.

For comparison, the results of promiscuity predictions
based upon single compounds are reported in Table 3.

While these models were also predictive, their accuracy was
generally lower than for pair-based predictions. For exam-
ple, for single compounds, MCC values only reached 0.42
and 0.25 for the screening compounds and kinase inhib-
itors, respectively. These findings indicated that PCs and
non-PC MMPs captured more structure-promiscuity rela-
tionship information than individual compounds. For
single-compound and PC predictions, results for PubChem
compounds were slightly or moderately superior to kinase
inhibitors. This was likely due to the fact that most kinase
inhibitors target the ATP binding site and are often
structurally similar. PubChem targets are diverse and the
screening hits cover a variety of chemical classes.

Interestingly, the difference in predictive performance
between simple nearest neighbor classifiers and machine
learning models was only small across all prediction tasks,
consistent with observations made when first attempting to
predict individual promiscuous compounds.[23] Notably, for
individual kinase inhibitors, prediction accuracy of the 1-NN
and k-NN classifiers exceeded the accuracy achieved with
the complex DNN. Hence, predictions of individual promis-
cuous compounds were mostly determined by nearest
neighbor effects. On the other hand, for pair-based
predictions, the accuracy of machine learning models was
overall higher than for the k-NN classifiers, indicating that
nearest neighbor effects alone could not fully explain

Table 2. Reported are the ACC, MCC, F1, and ROC AUC values
using 1-NN, k-NN, SVM, RF, and DNN models predicting PC
formation.

Data source Metric 1-
NN

k-
NN

SVM RF DNN

PubChem screening com-
pounds

ACC 0.71 0.70 0.78 0.78 0.76
MCC 0.42 0.40 0.56 0.56 0.53
F1 0.72 0.71 0.77 0.77 0.75
ROC
AUC

0.71 0.77 0.85 0.86 0.84

Kinase inhibitors ACC 0.64 0.64 0.64 0.71 0.70
MCC 0.28 0.28 0.31 0.42 0.40
F1 0.66 0.66 0.56 0.71 0.66
ROC
AUC

0.64 0.64 0.72 0.78 0.77

Table 3. Reported are the ACC, MCC, F1, and ROC AUC values
using 1-NN, k-NN, SVM, RF, and DNN models predicting promiscuity
at the level of single compounds.

Data source Metric 1-
NN

k-
NN

SVM RF DNN

PubChem screening com-
pounds

ACC 0.63 0.65 0.68 0.71 0.69
MCC 0.27 0.31 0.37 0.42 0.39
F1 0.65 0.66 0.69 0.72 0.67
ROC
AUC

0.63 0.71 0.76 0.79 0.77

Kinase inhibitors ACC 0.59 0.60 0.62 0.62 0.58
MCC 0.19 0.22 0.24 0.25 0.16
F1 0.63 0.66 0.65 0.65 0.60
ROC
AUC

0.59 0.63 0.64 0.64 0.60
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Figure 2. In (a), the fingerprint representation of a PC is shown. The MMPFP consists of the core fingerprint (common bits) and two
substituent fingerprints (unique bits for compound 1 and 2, respectively). (b) illustrates pair-based similarity assessment combining
contributions from individual fingerprint components.
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predictive performance and reinforcing the notion of higher
promiscuity-relevant information content of analog pairs
compared to single compounds.

3.5 Predicting Promiscuity Cliffs with Varying ΔPDs

For screening compounds, we also investigated the
influence of different ΔPD threshold values according to
Table 1 on the prediction of PCs. In these calculations, PC
training and test sets were varied but the same set of non-
PC MMPs was used. Representative ROC curves in Figure 3a
show that the performance of machine learning models
was generally very similar for PC predictions and higher
than of NN classifiers. Equivalent observations were made
for PCs at all ΔPD thresholds. However, as shown in
Figure 3b, the accuracy of PC predictions generally de-
creased with decreasing ΔPD threshold values. For exam-
ple, for the RF model, accuracy decreased from 78% for PCs
ΔPD�10 to 60% for PCs with ΔPD of 2–3. The same trend
was observed for all models. For the NN classifiers,
prediction accuracy for PCs with ΔPD of 2–3 was very close
to random classification. Thus, PCs with decreasing ΔPD
values between structural analogs presented increasingly
difficult prediction tasks. These findings indicated that
compounds having little differences in promiscuity were
difficult to distinguish on the basis of structural patterns
represented by transformations, providing further evidence
for the presence of defined structure-promiscuity relation-
ships. It also followed that the largest-magnitude PCs with

ΔPD�10 represented a primary source of structural
patterns determining prediction accuracy.

3.6 Structure-Promiscuity Relationships

The findings discussed above raised the question whether
one might be able to identify structural features determin-
ing accurate PC predictions. To address this question, an in-
depth analysis of feature relevance was carried out.

Therefore, the influence of individual fingerprint fea-
tures on the predictions of screening compound PCs with
ΔPD�10 was assessed using a surrogate model approach
based on linear SVM and feature elimination. The use of
linear SVM models permitted direct comparison of the
importance of different features at the cost of lower
predictive performance compared to nonlinear SVM models
(using the MMP-kernel). To these ends, linear SVM models
were iteratively built using reduced feature sets relative to
the previous step. On the basis of SVM feature weights, we
defined a positive and negative feature as a feature
contributing to the correct classification of PCs and non-PC
MMPs, respectively. In each iteration, the top 100 features
with largest positive or negative weights in SVM predictions
were identified and removed. This process was repeated for
40 iterations. Training data for predicting PCs with ΔPD�
10 yielded a total of 51,146 distinct fingerprint features. Of
these, 5,178 were positive and 5,432 negative. The relatively
small size of subsets of positive or negative features
compared to all features was attributable to inherent
feature redundancy of fingerprints capturing layered atom

Figure 3. In (a), ROC curves are shown for predictions of PCs with ΔPD�10. In (b), prediction accuracy is compared for distinguishing
between PCs with varying ΔPD values and non-PC MMPs.
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environments. On the other hand, feature redundancy
enabled the iterative generation of models with reduced
feature sets retaining predictive power (i. e., eliminated
features could be replaced with others).

Figure 4 reports the origin of positive (top) and negative
features (bottom). Considering the first 100 positive
features, 50% originated from S1FP representing the
substituent fragment of the promiscuous PC analog 1. In
addition, 30% of these features originated from the shared
core structure, thus emphasizing contributions from the
structural context in which S1FP features were presented.
The remaining 20% originated from S2FP representing the
substituent fragment of the non-promiscuous analog.
Among negative features, only features produced by the
core and substituent fragment 1 were highly ranked. During
removal of 200–1000 features, the number of positive
features from the core increased while the number of
positive features from substituent 1 decreased. At the same
time, the fraction of features from substituent 2 increased.
After removal of 1000 features, the proportions of positive
features from different fingerprint components remained
largely constant and were essentially the same as prior to
feature removal. For negative features, removal resulted in
a gradual, albeit only minor increase in features from
substituent 2. After removal of 4000 negative features,

about 20% of negative features originated from substituent
2, 30% from substituent 1, and 50% from the common
core.

Hence, compared to positive features, proportions of
negative features from substituent 1 and the core were
essentially inverted.

Taken together, the results indicated that features from
both compounds in a pair contributed to the prediction of
promiscuity differences. In all predictions, features from the
three different components of MMPFP made significant
contributions including features originating from the
common core. These observations indicated that core-
substituent combinations often played an important role
for predicting pair-based promiscuity differences. Interest-
ingly, features from substituent 1, the substituent of the
promiscuous analog in PCs, often strongly contributed to
correct predictions of promiscuity differences. However,
predictions of non-PC MMPs were predominantly driven by
core features. Hence, different distributions of positive and
negative features differentiated between these predictions.

Figure 4. The graphs report the cumulative fraction of corresponding subsets of eliminated MMPFP features (top: positive, bottom: negative
features). Eliminated features were mapped to the different CFP, S1FP, and S2FP components of MMPFPs.
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4 Conclusions

In this study, we have attempted to systematically predict
PCs. The MMP formalism was applied to generate pairs of
structural analogs encoding differences in compound
promiscuity. From a conceptual point of view, the predic-
tion of promiscuity differences between analogs on the
basis of chemical structure is a non-trivial task. The under-
lying assumption is that structural differences in MMPs can
be related to promiscuity differences and then be com-
pared across analog pair populations. No previous analysis
of compound promiscuity was carried out at the level of
compound pairs. We approached this task using different
machine learning models and compound data sources.
First, we investigated extensively assayed screening com-
pounds for which experimental test frequencies were
available and exclusively assembled experimentally con-
firmed PCs and non-PC MMPs on the basis of shared
targets. Second, we assembled PCs and non-PC MMPs from
kinase inhibitors originating from the medicinal chemistry
literature. In both cases, machine learning differentiated
with reasonable to high accuracy between PCs and non-PC
MMPs; an encouraging finding. Control calculations target-
ing individual promiscuous and non-promiscuous com-
pounds were largely dominated by structural nearest
neighbor effects. For compound pair-based predictions,
accuracy was higher for experimentally confirmed PCs from
screening compounds than for kinase inhibitors. Further-
more, prediction accuracy was found to increase with
increasing ΔPD values captured by PCs; another encourag-
ing observation. Taken together, the results of our
predictions provided evidence for the presence of structural
patterns that were associated with differences in promiscu-
ity between structural analogs. Moreover, the component-
based design of MMPFP made it possible to further explore
structural features of different origins and their contribu-
tions to the predictions. SVM-based feature weighting and
elimination revealed preferential feature contributions to
accurate PC and non-PC MMP predictions from substituents
of promiscuous analogs and the MMP core, in the context
of which substitutions were presented. These insights
strictly depended on exploring compound pair-based
prediction of promiscuity and on successfully predicting
promiscuity differences encoded by PCs. In light of our
findings, we anticipate that PCs will be of considerable
interest in further exploring structure-promiscuity relation-
ships using computational approaches. Therefore, our data
sets and the machine learning models reported herein are
made freely available as an open access deposition on the
Zenodo platform (https://zenodo.org/record/4013954).
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