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Purpose: Diabetic macular edema (DME) is one of the leading causes of visual

impairment in diabetic retinopathy (DR). Physicians rely on optical coherence

tomography (OCT) and baseline visual acuity (VA) to tailor therapeutic

regimen. However, best-corrected visual acuity (BCVA) from chart-based

examinations may not wholly reflect DME status. Chart-based examinations

are subjected findings dependent on the patient’s recognition functions and

are often confounded by concurrent corneal, lens, retinal, optic nerve, or

extraocular disorders. The ability to infer VA from objective optical coherence

tomography (OCT) images provides the predicted VA from objective macular

structures directly and a better understanding of diabetic macular health.

Deviations from chart-based and artificial intelligence (AI) image-based VA will

prompt physicians to assess other ocular abnormalities affecting the patients

VA and whether pursuing anti-VEGF treatment will likely yield increment in VA.

Materials and methods: We enrolled a retrospective cohort of 251 DME

patients from Big Data Center (BDC) of Taipei Veteran General Hospital (TVGH)

from February 2011 and August 2019. A total of 3,920 OCT images, labeled

as “visually impaired” or “adequate” according to baseline VA, were grouped

into training (2,826), validation (779), and testing cohort (315). We applied

confusion matrix and receiver operating characteristic (ROC) curve to evaluate

the performance.
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Results: We developed an OCT-based convolutional neuronal network (CNN)

model that could classify two VA classes by the threshold of 0.50 (decimal

notation) with an accuracy of 75.9%, a sensitivity of 78.9%, and an area under

the ROC curve of 80.1% on the testing cohort.

Conclusion: This study demonstrated the feasibility of inferring VA from

routine objective retinal images.

Translational relevance: Serves as a pilot study to encourage further use

of deep learning in deriving functional outcomes and secondary surrogate

endpoints for retinal diseases.

KEYWORDS

treatment response, diabetic macular edema (DME), medical image, visual acuity,
deep learning

Introduction

The best-corrected visual acuity (BCVA) exam is the most
popular test to reflect the condition of the central fovea and the
severity of many ocular diseases. Introduced in 1862 by Herman
Snellen, the visual chart remained the gold standard for visual
acuity (VA) clinical measurement. Visual charts rely on the
ability of the patient to identify rows of letters at a fixed distance
as each row (line) appears increasingly smaller in size. Although
the chart performance depends on the subjective nature of the
human response, chances in the correct guessing, or human
learning from routine follow-up, the chart remained the basis
for VA assessment in clinics and clinical trials. Traditional
examinations such as the Early Treatment Diabetic Retinopathy
Study (ETDRS) grading scale are usually considered more
preferential than other modalities as ETDRS is associated with
an escalated risk for vision-threatening retinopathy and serves
as a grading scale for retinopathy (1). However, the clinical
relevance of the ETDRS grading scale of diabetic retinopathy
and other chart-based examinations has been challenged by
the difficulty to implement in real-world settings and the
technological advances in image acquisition. Thus, the ability
to easily derive VA surrogate from routine image modalities
provides significant clinical insights throughout the clinical
trajectory of macular diseases.

Since the introduction of intravitreal injections (IVI) anti-
VEGF, physicians are able to treat exudative macular diseases
and recover VA (2–5). In clinical practice, ophthalmologists rely
on multiple information, accumulated experience, and intuitive
predictions to predict diabetic macular edema (DME) treatment
response and whether the treatment is worth pursuing based
on an individual’s response (6, 7). In daily clinical practice,
clinicians often encounter DME patients with concurrent ocular
diseases (Figure 1) . Therefore, traditional VA examinations
based on charts may not wholly reflect DME status or be

accurately quantified. For this reason, we aimed to provide
surrogate VA based on optical coherence tomography (OCT)
that depict macular structural health directly.

Optical coherence tomography is routinely used to screen
patients with macular disease where the technology depicts the
structural retinal health via scans of retinal cross layers (8–
10). Besides, the popularity of OCT across medical settings
(i.e., optic glass store, non-ophthalmic clinics) makes the utility
practical for disease screening and earlier referral. The wealth
of information generated via non-invasive retinal scans makes
the technology ideal to distinguish baseline status and treatment
response (11–14). The ability to infer surrogate VA from
OCT and by assisting physicians in detecting OCT-VA and
chart-based VA mismatch will allow the physician to derive
treatment strategies taking account of concurrent ocular disease
to maximize VA recovery.

To evaluate the potential of deep learning in predicting
VA outcomes from structural and functional assessments in
the early stages of the diagnosis, we built an SD-OCT-based
deep learning model using real-world data to infer the VA cut-
off value of 0.50, consistent with the minimal requirement for
referral by the AAO (15). To our knowledge, this is the first study
to implement deep learning in inferring VA from OCT images
in DME patients.

Methods and materials

Ethical approval and data source

This study was approved by the Institutional Review Board
(IRB) of Taipei Veterans General Hospital (TVGH) and written
informed consent was signed. This study does not include
minors, or minorities. Optical coherence tomography (SD-
OCT) B-Scans were selected as the primary input information
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FIGURE 1

Ocular diseases that influence visual acuity (VA). Diseases impact the visual axis, such as corneal lesions caused by degeneration, clouded lens
by cataract, floaters by uveitis, choroidal neovascularization due to age-related macular degeneration (AMD); and optic nerve neuropathy by
glaucoma. Such impact obscures diabetic macular edema’s (DME) involvement in the functional outcome of treatment response, and the need
for DME treatment. Diagram (A) presents concurrent ocular disorders that impact VA measurement, while (B) demonstrates the VA directly
measures macular health when isolate DME is present. Black arrow denotes the visual axis.

to establish the computer-assisted visual acuity diagnosis system.
All OCT images and subjective, objective, assessment, and plan
(SOAP) notes between February 2011 and August 2019 were
retrieved from the databank in the big data center (BDC)
of TVGH. This dataset consists of de-identified secondary
data released for retrospective research purposes. In addition,
the OCT images were collected from the patients diagnosed
with diabetic macular edema (DME) who sought medical help
in the TVGH’s Department of Ophthalmology and received
an ophthalmology image inspection using the RTVue XR
AngioVue OCT device (Optovue Inc., Fremont, CA, USA).

Study participants

Patients were enrolled based on the following inclusion
criteria: (1) age above 20 years old, (2) diagnosis of diabetes
mellitus (I or II), (3) diagnosis of DME with available baseline

OCT image and VA, (4) BCVA measured by Snellen chart
from 0.05 to 1.50 (decimal), (5) central-involved macular
edema defined by the retinal thickness of >250 µm in the
central subfield based on Optovue’s automated quantification
and the presence of intraretinal fluid (IRF) and subretinal fluid
(SRF) seen on SD-OCT, Exclusion criteria were as follows: the
presence of cataract or clouded lens, without cataract surgery
records. The ocular conditions were obtained from the clinical
charts documented by ophthalmologists on the same day when
OCT images were taken. In addition, patient charts were
reviewed for demographic data, hemoglobin A1C (HbA1C)
values, and BCVA.

Clinical labeling

Best-corrected visual acuity of both eyes was measured
on the same day when OCT images were acquired in the
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Department of Ophthalmology, TVGH. Physicians obtained
each OCT scan with a ground truth BCVA and documented
it on chart review in each visit. We excluded patients with
unspecified BCVA or profound visual impairment defined
by the International Classification of Diseases, 11th Revision
(ICD-11) as BCVA of decimal notation less than 0.05. Our
study employed the cut-off value of 0.50, consistent with the
minimal requirement for referral by the American Association
of Opthalmology (AAO) (15). We defined BCVA values greater
than or equal to 0.50 labeled as "adequate" and those less than
0.50 as “impaired” (Figures 2, 3). The same 0.50 thresholds to
discriminate against patients with adequate and impaired vision
is consistently used in the literature (16–18).

Datasets and image pre-processing

All participants in this retrospective study were selected
based on a comprehensive ophthalmic examination. OCT is
accessed via the Big Data Center where reports containing
horizontal scan and vertical scan of mid-foveal position is

uploaded as PDF reports by Optometrist to the institutions
medical image storage PACS (Picture archiving communication
system). We cropped the region of interest (ROI) from both
vertical and horizontal scans and saved the image in png format
(resolution 1960 × 645, bit depth 8) for subsequent model
development. The ROI is extractracted from the middle one
third of scan areas and downsized them to 224 × 224 pixels
resolution by bicubic interpolation. The images were divided
into training, validation, and testing groups (Figures 2, 3).
First, 70% of the images were incorporated into the training
group to train and generate the model parameters. Then, the
model’s performance was checked by evaluating an independent
validation group (20%). The model that generated the smallest
error was designated as the final model. Finally, the test group
was composed of the remaining dataset (10%) independent of
the training. This group was used to appraise the accuracy rate
of the final model. To improve deep learning DL efficiency,
we conducted data augmentation by horizontal and vertical
translation, zooming, Gaussian blurring of the additional noise,
horizontal flipping, and random rotation within 30◦ translation,
zooming, Gaussian blurring of the additional noise, horizontal

FIGURE 2

Schematic diagram showing the flow of this study. We included patients diagnosed with DME with the best- BCVA between 0.05 and 1.50 and
collected the optical coherence tomography (OCT) dataset. The dataset was labeled accordingly with BCVA obtained and DME OCT features by
experienced ophthalmologists. The pre-processed OCT database trained the convolutional neural network, so the artificial intelligence
algorithm could predict VA and guide therapeutic strategy.
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FIGURE 3

Flowchart showing the selection of optical coherence tomography (OCT) images and their analysis. OCT images and patient clinical
information were de-identified secondary data released for retrospective research purposes (N = 4,265). The OCT images were collected from
the patients diagnosed with DME with clear lens (N = 912) or artificial intraocular lens (N = 3,353), best-corrected visual acuity (BCVA) measured
from 0.05 to 1.5 (decimal), excluding those with lower than 0.05 (N = 3,920). Afterimage preprocessing, the dataset was categorized into
training (N = 2,926), validation (N = 779), and test (N = 315) for the establishment of the AI platform.

flipping, and random rotation within 30◦. The augmented
dataset was used only for training and not validation or testing.
The resized or augmented images then underwent pixel-wise
min-max normalization, linear mapping of pixel intensities to
the range [−1, 1]. We then used the F1-score, accuracy, and area
under the curve (AUC) to evaluate the AI model’s performance.
F1-score evaluates the test’s accuracy calculated from the test’s
precision and recall (sensitivity) (Figure 2).

Establishing the artificial intelligence
models

An efficient recognition algorithm, convolutional neural
network (CNN), is frequently used in image processing

TABLE 1 The details of the final trained models.

Parameters Setting

Architecture EfficientNet

Optimizer SGD

Loss function Binary cross-entropy

Learning rate 1e-4 and 1e-5

Batch size 32

Total number of epochs run during training 310

The final model parameters showed the most superior performance where we also
compared transfer learning models of the different network architectures, VGG11,
VGG16, and ResNet34.

and pattern recognition (19, 20). We used EfficientNet-B0
deep neural network architecture to classify OCT images in
this study (21). Employing transfer learning, we compared
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EfficientNet-B0 with models of different network architectures,
VGG11, VGG16, and ResNet34, which were pre-trained for
different tasks, converged them for considerably faster steady
value, and reduced training time. Furthermore, the AI models
were established using the Google cloud platform with two-core
vCPU, 7.5 GB RAM and an NVIDIA Tesla K80 GPU card; the
software used was CentOS7 with Keras 2.2.4 and TensorFlow-
GPU 1.6.0 for training and validation. Because of the retina’s
size and shape variations, a stochastic gradient descent (SGD)
algorithm trained the computational layers with a relatively
small batch size (32 images). The total training iteration was
310 epochs; the learning rate was le-4 in the first ten epochs,
and the learning rate was downgraded to le-5 in the successive
epochs. The training for all categories was performed for 310
epochs, and the loss was calculated using the binary cross-
entropy loss function.

To prevent overestimating and overfitting our model’s
performance, we ensured that both the previous train-test split
and the subdivision of the training set were done “patient-
dependent” to ensure that no images from a single patient
could appear in training corresponding validation sets. The final
model parameters, listed in Table 1, were selected based on the
validation set’s accuracy (Figure 4) and used for the testing set.

Final test and clinical evaluation

To evaluate the final AI model’s performance, we used the
confusion matrix and the receiver operating characteristic curve
(ROC curve) (22, 23). The confusion matrix, comprising four
parameters such as true positive (TP), true negative (TN), false
positive (FP), and false-negative (FN), was used to evaluate
the accuracy, precision, recall (sensitivity), and F1-score. The
ROC curve evaluated the false-negative performance with both
continuous and ordinal scales (24). Negatives were summarized
with a graphical plot of 1-specificity against the sensitivity and
the area under the ROC curve (AUC). Attempting to fathom
which pathognomy features were critical in associating with
BCVA, we used the Grad-CAM technique to visualize the heat
map of AI’s recognitions (25–27).

Results

Image collection

A total of 259 patients with DME were recruited, and eight
patients with visual acuity of decimal notation less than 0.05
were excluded. The participants were mostly over 60 years
old, with an average age of 63 years. The ratio of males was
130 (51.8%). While 17.5% of patients had clear lenses, the
remaining 82.5% had undergone intraocular lens (IOL) surgery.
The database contained 3,920 images. Images from 24 randomly

selected patients (9.6% of 251 patients) were preserved as
the final test set, and the rest of the images constituted the
training and validation sets. A total of 182 and 45 patients have
been assigned to training and validation datasets, respectively.
Therefore, a total of 1,431 OCT images labeled as “impaired
vision” and 1,395 OCT images labeled as “adequate vision”
constituted the training set (70% of all enrolled images), the
validation dataset (20% of all enrolled images) contained 386
OCT images with “impaired vision” label and 393 OCT images
with “adequate vision” label. The test dataset (10% of all enrolled
images) was composed of 315 OCT images, which contained
162 images with an “adequate vision” label and 153 images
with an “impaired vision label,” as shown in Table 2. Besides,
BCVA values of the impaired and adequate groups dataset were
similar in each dataset (the visual acuity of the impaired group
and adequate group in each dataset was close to 0.22 and 0.68,
respectively) (Table 2).

Model development

The CNN model EfficientNet achieved superior
performance during the training process and was selected
as the final model for subsequent verifications. The training
process’s detailed learning curve revealed that iterations
attained lower loss and higher accuracy as the model underwent
successive iterations (Figure 4). Finally, the validation accuracy
curve achieved a testable level, and the training accuracy was
higher than the validation accuracy, which meant that the
training process was finished. The 232nd epoch represented the
best performance of the validation accuracy (76.1%). Hence,
this trained AI model has been selected as the final model to
execute the final test.

The final test of the trained artificial
intelligence model

Finally, the final trained AI model was verified by the final
test dataset to evaluate its realistic performance. The test dataset
contained 162 images with the “adequate vision” label and
153 images with the “impaired vision” label. Our AI model’s
accuracy, precision, recall, and F1-score were 75.9, 68.6, 78.9,
and 73.4%, respectively (Figure 5A). As was calculated from
the receiver operator characteristic (ROC) curve, the area under
the curve (AUC) was 0.801, with the confidence interval (CI)
from 0.751 to 0.851 (Figure 5B). Furthermore, we applied heat
map visualization to identify OCT image areas recognized by
the AI to discriminate between BCVA classes (Figure 6). The
heat maps highlighted a more extensive area covering nearly the
entire retinal layer instead of specific smaller lesions in some
cases. The more extensive coverage of heat maps identified by
AI to be critical for the determination of BCVA could be related
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FIGURE 4

The deep learning model training curve. The CNN model EfficientNet training process revealed that iterations attained lower loss (A) and higher
accuracy (B) as the model underwent successive iterations with the 252nd epoch representing the best performance.

TABLE 2 The details of the training, validation, and final test datasets list the numbers of allocated patients and optical coherence tomography
(OCT) images and average BCVA values of patients.

Dataset Training Validation Final test

Number of patients 182 45 24

Number of images 2,826 (1,431 impaired, 1,395 normal) 779 (386 impaired, 393 normal) 315 (153 impaireds, 162 normal)

BCVA (SD) Impaired 0.22 (0.12) Impaired 0.23 (0.13) Impaired 0.22 (0.14)

Normal 0.68 (0.17) Normal 0.69 (0.20) Normal 0.66 (0.14)

BCVA, best-corrected visual acuity; SD, standard deviation.

to the multiple microstructural changes and the thickness of the
retina.

Discussion

Artificial intelligence in DR screening and referral decisions
has achieved clinical reality. The first FDA-approved AI system
(2018), IDx-DR (Iowa, USA), can analyze the digital fundus
photograph (FP) in DR screening to provide referral suggestions
(23). Apart from using the FP-based AI model, researchers have
also developed an OCT-based algorithm, Notal OCT analyzer
(NOATM, Notal Vision, Israel), which uses deep learning
algorithms to detect the retinal fluid in AMD patients (24).
However, up-to-date, in our literature review, there is no study
focusing on an AI-based model to evaluate visual acuity in
DR nor DME. Thus, our study developed an OCT-based AI
model that could infer the binary VA status separated by the
threshold of 0.5 (decimal notation) and attained an accuracy of
75.9%, a sensitivity of 78.9% with AUC = 80.1% based on OCT
images only (Figure 4). Furthermore, to verify that our deep
learning model indeed analyzed the exacted structural features
of DME, we applied the heat map visualization to graphically

show the different weighted values in pixel matrices of OCT
images (Figure 6).

While visual acuity is a clinical measurement of changes in
visual function as a primary endpoint, FDA recommends that
retinal imaging technologies help determine anatomic markers
for clinical progression of the disease. With the advent of
imaging technologies such as the color fundus, angiography,
and OCT, clinicians can observe the structural health of the
neurosensory retina and generate new endpoints not previously
accessible. For example, current technologies can identify onset,
or progressions before symptom occurrence, leading to smaller
marginal changes for earlier intervention and better visual
outcomes. The use of OCT images was therefore incorporated
into the work routine of the ophthalmologist to quantify the
structural changes in individual patients’ retinal pathological
and topographic profiles (28). In addition, the ease of use and
adoption into routine clinical practice makes the technology
powerful to derive surrogate endpoints that change along with
clinical endpoints and represent the disease status.

There are several limitations to our study. Rather than
inferring the continuous VA variable, we only employed a binary
classification of “impaired” and “normal” VA. Some may argue
that the grade of impairment is essential as we may evaluate
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FIGURE 5

The final test of the trained AI model. (A) Confusion matrix demonstrating the accuracy of prediction of two visual acuity classes based on the
validation dataset of OCT images. (B) Receiver operating characteristic (ROC) curve showing the accuracy of prediction with the area under the
curve (AUC) = 0.801.

FIGURE 6

The heat map visualization of representative six (A–F) OCT images recognized by our AI model as predictors of best-corrected visual acuity
(BCVA)-defined impaired vision. Top panel: original input images from the final test dataset. Bottom panel: heat map visualization of areas used
by our AI model to discriminate between BCVA classes.

whether the patient is close to the treatment threshold or far
away. Linear regression was not performed as we face small
sample size that does not follow the assumption of normality,
constant variance, and independent sampling, to construct a
robust model in predicting visual function status at the decimal-
level. Besides, our small sample size coupled with real-world
heterogeneity caused our standard deviation of VA relatively
large and BCVA measurements in the clinic may not be recorded
as vigorously in controlled trials with EDTRS logmar standard.
Our deep learning model may assist in evidence-based assistance
to the physician, alleviating their burden in determining those
with impaired vision (less than 0.5 baseline VA). Moreover,
we only excluded patients with cataract diagnoses without
cataract surgery. To achieve a better yield, we ideally have to
impose exclusion criteria such as (1) prior history of choroidal
neovascularization due to AMD, retinal vein occlusion, uveitis,
or any other inflammatory disease, (2) presence of cataract

or clouded lens, (3) glaucoma or any other neuropathy, (4)
epiretinal membrane, vitreomacular traction disease, or any
other maculopathy, and (5) corneal disease or degeneration. By
only excluding cataracts, we obtain broader inclusion criteria
that allow this AI model to closely imitate real-world settings
and be expanded to accommodate most DME patients. Our
AI model may be extended to serve a wider population by
not excluding patients who underwent previous treatment and
can be used for screening, referral, and monitoring. Finally,
our model is constructed with horizontal and vertical scans
of the mid-foveal position and not OCT volume. Therefore,
we cannot analyze the concordance of the binary outcome
of several OCT slices of the same patient and quantify their
contradicting outcomes.

In the future, inferring VA based on imaging may
be considered as quasi-functional surrogate endpoints for
interventional clinical trials. By doing so, clinical trials can
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enroll a larger set of patients that resemble those in the real
world and provide treatment recommendations that can be
implemented in the clinic (29–31). Furthermore, DME results
in loss of visual function long before visual acuity is impaired
as central acuity is not always affected. Herein, only a subgroup
of DME fits the standard. Clinically significant macular edema
(CSME) is defined as a lesion within 500 µm of the foveal
center and center involved macular edema as central subfield
retinal thickness of >250 µm in central 1 mm ETDRS grid
(foveal thickness). Much macular retinal health recovery is
not reflected in visual acuity. Visual acuity measured by visual
charts (EDTRS, Snellen test) measures the photopic function of
the central retina and is not reflective or sensitive to gain of
retinal health or therapeutic benefits. Therefore, it is proposed
that patient-reported outcome measures assess impairment
of visual function in more detail. Redefine investigation of
treatment effects superior to standard visual acuity testing
without the need for extensive psychophysical examination. The
European Medicines Agency (EMA) and FDA now demand the
employment of patient-reported outcome measure (PROM) as
functional endpoints in clinical trials (NEI-VFQ-25) are now
routinely used as a valid and reliable measure of patients’ vision-
related quality of life. However, these tests are time-consuming,
demanding for the elderly patient, and present significant
inter-interpreter variability. In addition, rather than inferring
function in a cross-sectional time manner for baseline VA,
another interesting aspect is to predict VA in the future – what
are the estimated letter gains after IVI-VEGF for my disease
status? These algorithms inform patients about treatment
prognosis and give patients the power to self-assess the cost-
benefit of pursuing the IVI-VEGF. Overall, sensitive and robust
outcome measures of retinal function are pivotal for measuring
the clinical trial primary endpoint of VA and reinforce patient
autonomy in the decision-making process.

Conclusion

This study built an OCT-based deep learning model that
inferred VA status based on OCT and was correlated with
the concurrent BCVA measured by standard visual charts. We
achieved an accuracy of 75.9%, sensitivity of 78.9%, and a ROC
AUC of 80.1%. This demonstrated the feasibility of predicting
the functional outcome VA from routine ophthalmic images and
served as a pilot study to develop further surrogate markers that
can better represent the disease.
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