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Abstract: There has been an explosion of interest in the use of uncouplers of oxidative phosphory-
lation in mitochondria in the treatment of several pathologies, including neurological ones. In this
review, we analyzed all the mechanisms associated with mitochondrial uncoupling and the metabolic
and signaling cascades triggered by uncouplers. We provide a full set of positive and negative effects
that should be taken into account when using uncouplers in experiments and clinical practice.
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1. Introduction

There is a great cluster of knowledge about the protective capabilities of uncoupling
of oxidative phosphorylation in the mitochondria of numerous cells, including neural ones,
thus compromising chemiosmotic mechanism of energy production [1–11]. According to
this mechanism, proton pumps residing in coupling membranes generate the transmem-
brane potential of hydrogen ions (protons), which is used by ATP synthase to make ATP,
thus organizing a tight coupling between the processes of oxidation and phosphorylation.
The requisite of this mechanism is a tightly regulated proton cycling existing across the
coupling membrane and resulting in a high yield of ATP. The term uncoupling is used
concerning the situation when a proton bypasses ATP synthase and electron transport
becomes disconnected from the process of ATP synthesis due to a short-circuit of the
membrane potential existing across the membrane. It also applies to mitochondria, where
uncoupling causes a loss of the tight association of oxidation of respiratory substrates and
ATP synthesis [12,13]. Generally speaking, uncouplers exert their action by organizing
a proton leak in the inner mitochondrial membrane, which jeopardizes the generation
of the proton motive force [14]. Limited usage of uncouplers was announced as one of
the most efficient strategies to coupe with different pathologies including aging [15]. In
subcellular, cellular and organismal experiments, three uncouplers are the most widely
used: DNP (2,4-dinitrophenol; active concentrations are in the region of 100 µM), CCCP
(carbonylcyanide-3-chlorophenylhydrazone; active concentrations are about two orders
less than of DNP), and FCCP (carbonylcyanide-4-trifluoromethoxyphenylhydrazone; active
concentrations are at least one order less than of CCCP).

At the current level of our knowledge on the mechanisms of uncoupling, two modes
are distinguished. According to the first mechanism, even uncouplers using a bilayer
membrane provide a proton leak, causing a collapse of the proton gradient through the
membrane [13,16]. Data in recent years indicate the existence of another mechanism
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involving special proteins in the coupling membranes that mediate the action of uncou-
plers [17–21]), while the number of nominal candidate proteins for the role is constantly
increasing. It should be noted that there is a fundamental difference between these pro-
teins and natural uncoupling proteins (UCPs) [22], the functioning of which differ from
those mentioned.

Meanwhile, the impression arises that moderate uncoupling unambiguously con-
tributes to better resistance to various internal and external challenges, which may attribute
this method of manipulating mitochondrial activity to a neuroprotective strategy. However,
almost nowhere are the negative aspects considered, which should always be evaluated
when using uncouplers in experimental and clinical practice, especially for brain patholo-
gies. Previously, we have already given a similar assessment, weighing all the pros and
cons of using mitochondria-targeted antioxidants [23], which we will do in this mini-
review discussing beneficial and disadvantageous factors accompanying the application of
uncouplers.

2. Pros
2.1. Anti-Oxygen

The oxygen molecule, even in its triplet state, is a quite strong oxidizer, which, when
in the cell, can provide unnecessary oxidation of essential molecules, such as proteins,
lipids, and nucleic acids. There is a point of view that the very appearance on Earth
of oxygen-utilizing bacteria, and later mitochondria, was evolutionarily dictated by the
oxygen menace [24] due to the rise in oxygen in the atmosphere, which was called the Great
Oxidation Event or the Great Oxygenation Event [25]. Normally, the supply of oxygen
to the cell does not limit the rate of its utilization [26], and the measured values of pO2
in the brain do not limit the activity of cytochrome oxidase, which is the main consumer
of oxygen in tissue. By definition, uncouplers activate mitochondrial respiration, thereby
potentially they reduce the intracellular values of pO2. In case it does not reach critical
levels when oxygen concentration does not limit respiration, such lowering of intracellular
oxygen and thus its toxicity may be considered beneficial.

2.2. Anti-ROS

Theoretically, the production of reactive oxygen species (ROS) is a first-order reaction
for oxygen, but there are some indicative exceptions, especially in the range of low pO2
values in tissue when an increased generation of ROS is observed [27,28]. However, the
generation of ROS non-linearly depends on the membrane potential (∆ψ) built in the
inner mitochondrial membrane, while reaching an exponential character at high values
of ∆ψ [29,30]. Thus, even a small decrease in the ∆ψ can lead to a significant reduction in
the generation of ROS, and thereby reduce the risk of unnecessary oxidation of important
cellular components. This behavior of ROS generation by mitochondria allowed the
development of a strategy for combating pathologies accompanied by oxidative stress
through using mild uncouplers. These compounds uncouple the processes of mitochondrial
electron transport and phosphorylation, but in a very modest fashion, only slightly reducing
the membrane potential, ultimately maintaining the ATP at a level that adequately meets
metabolic demands. To understand the quantitative relationship between the membrane
potential of mitochondria and their ability to generate ATP synthase and produce reactive
oxygen species, we performed a literature search and linked these three parameters on
one single graph (Figure 1). Although it is impossible to fully match the data available
in the literature, first, in both cases, there is a sigmoid dependence of the formation of
ATP depending on the membrane potential with the presence of some threshold values,
after which, a significant increase in generation begins. Secondly, even in the absence of
experimental data for the full range of membrane potentials, it is clearly visible that after
120 mV the ATP generation reaches a plateau. This means that it is possible to reduce the
membrane potential without significant violation of the energy balance up to 120–130 mV.
Obviously, this can be used to define the concept of “mild” uncouplers, limiting their
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effective action to the ability to reduce the membrane potential but keeping it not lower
than 120 mV. In accordance with modern knowledge, in general, the uncoupling effect of
uncouplers which are lipophilic weak acids (pKa∼4–8), is determined by their ability to
be protonated on the side of the membrane where the proton concentration is higher, and
translocated to another side. There, after dissociation, the bound proton is released, and
the uncouplers return to their original location in the anionic form. The limiting stage of
this entire cycle is the transmembrane transport of this anionic form [16]. It is important
for uncoupling, which occurs with the participation of fatty acids, for example, caused
by derivatives of Skulachev ions having the properties of mild uncouplers [31–33]. Thus,
the strength (activity) of the uncouplers is partially determined by the rate of transport of
the anionic form [16] and uncouplers potentially can be softly divided into two groups:
strong and mild (weak), quantitatively discriminated by the active concentrations, from
nanomolar to millimolar.
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Figure 1. Dependence of the generation of ROS (red) and ATP (blue) on the values of the mem-
brane potential (∆Ψ). ROS generation was measured on isolated rat brain mitochondria with
α-ketoglutarate as a substrate (from [30], with modifications). Differences in membrane potential
were generated by adding various concentrations of FCCP ranging from 0 to 80 nM. ATP generated
was measured using reconstituted E.coli ATP synthase. K+/valinomycin diffusion potentials were
applied in the presence of ∆pH (from [34] with modifications).

2.3. Anti-Obesity

The activation of respiration caused by the use of uncouplers leads to increased mobi-
lization of oxidative substrates and significant activation of oxidative metabolism, while,
as the depletion of carbohydrate substrates occurs, the mobilization of fat resources takes
place, which is desirable to combat obesity [35–38]. It should be noted that obesity is one of
the risk factors for stroke, including in young adults [31]. Thus, therapeutic uncoupling
can have an indirect neuroprotective effect through normalization of metabolism and
improvement of the functioning of the cardiovascular system [39].

2.4. Increased CO2 Production

In parallel with the activation of mitochondrial respiration, there is a proportional
increase in the formation of CO2, which, in addition to being one of the main factors
in maintaining intracellular pH homeostasis, regulates several integral intracellular pro-
cesses [20,40–44]. Carbon dioxide exerts a direct neuroprotective effect since mild hypercap-
nia during hypoxia–ischemia provides a long-lasting motor function, as well as neurologic
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protection for immature brains [45] or traumatic brain injury and stroke (see for review [46])
possibly through increasing cerebral blood flow during hypoxia. Bicarbonate transporters
in neural cells were also shown to be protective against ischemia [47–49].

2.5. Increased Mitophagic Activity

It has been shown that pharmacologic uncoupling or increased contribution of intrinsic
uncoupling proteins, including UCPs, lead to the activation of auto/mitophagy (e.g.,
see [50–52]) which is now considered as a positive factor, given the determining role of
these processes in the removal of damaged and harmful components of the cell. However,
the ambiguity of the data obtained forced us to place the discussion of this issue in the
Cons section, where some details of the discrepancies are considered.

2.6. Increased Mitochondrial Biogenesis

Uncouplers were found to significantly activate mitochondrial proliferation (biogen-
esis) [53,54], which is beneficial due to onset of compensatory mechanism designed to
preserve mitochondrial ATP production under conditions of toxic mitochondrial damage.
In experimental practice, mitochondrial biogenesis is most often associated with the ac-
tivity of PGC-1α (transcriptional coactivator peroxisome proliferator activated receptor
γ coactivator 1α [55], and usually, the proliferative mitochondrial activity is judged by
the level of PGC-1α in the cell, which increases after the action of uncouplers. However,
in adipocytes, mild mitochondrial uncoupling with FCCP did not stimulate mitochon-
drial biogenesis [56] which, firstly, raises the question of the lack of universality of the
above-mentioned association and, secondly, may discriminate the process of powerful
and moderate (mild) uncoupling, which is a function of a dose and chemical nature of
an uncoupler. Moreover, while the uncoupler stimulated mitochondrial biogenesis in
the oocytes of young animals, this did not happen in old animals [57], which points to
another limiting factor that should be taken into account when evaluating the association
of uncoupling and mitochondrial proliferation.

2.7. Enhanced AMPK Signaling

Uncouplers cause a drop in intracellular ATP through activation of mitochondrial
ATPase. AMP kinase (AMPK) is a powerful sensor for the fall of intracellular ATP, reacting
through the AMP formed as a result of the hydrolysis of ATP and manipulation of adeny-
late kinase activity by the mobilization of key metabolic processes. AMPK is one of the
most powerful cellular regulatory systems that ensures the optimal balance between ATP
production and use [58,59]. It regulates a wide spectrum of different metabolic pathways
being highly sensitive to energy disbalance, modifying numerous target proteins by phos-
phorylating them using ATP. Numerous studies have revealed that activation of AMPK
plays a protective role in the brain (for review see [60]). The protective potential of AMPK
in different phases of ischemia may be different, and correspondingly, the modulation of
its activity may cause variable effects. For example, its activation in the acute ischemic
phase may be deleterious [61,62], while preliminary activation of AMPK has been proven
to promote neurological autophagy and ameliorate ischemic injury [63].

2.8. Anti-Inflammatory

A recent finding includes the anti-inflammatory properties of uncouplers, which
reduce the production of pro-inflammatory cytokines, which is especially important in the
fight against pathologies, such as sepsis [64,65]. Indirect data show the anti-inflammatory
action of uncoupling tightly associated with the expression of uncoupling protein in the
brain [66]. The mechanism remains to be determined, but preliminary data indicate the
activation of a whole series of signaling pro-survival systems, where AMPK plays an
important role [67,68].
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3. Cons
3.1. Possibility of Local Hypoxia/Ischemia

As we have indicated, cellular oxygen reserves are quite limited, and normally the
values of intracellular pO2 are at quite low levels, due to active mitochondrial functioning,
namely oxidative phosphorylation [69]. It is respiratory control that is one of the main
regulators of oxygen consumption in the mitochondria, while in a fairly wide range of cell
activities there is an equilibrium between the energy supply and energy demand of the
cell [70,71]. However, with an increase in the load (for example, caused by an intensification
of metabolism due to increased muscle activity or hormonal/emotional load) the subse-
quent disbalance between oxygen supply and utilization may be observed. Of course, it is
necessary to take into account the presence of intracellular oxygen reservoirs in the form of
different small metalloproteins, globins [72], including myoglobin in muscle tissue [73] and
possibly neuroglobins residing in mammalian neurons [74], apparently playing a certain
O2 buffering role. Of note, although intracellular aquaporins can facilitate transport of
gases within a tissue, such as CO2, NO, and NH3, the transport of O2 through these pores
cannot be of physiological relevance due to its very low rate [75], which means that the
mitochondrial availability of oxygen can be a limiting factor for its utilization, thus using
diffusion as the main mechanism to deliver O2 from blood capillaries to mitochondria.
However, some authors count four different O2-binding globins in the human and rodent
brain [76], of which function remains controversial in terms of a potential role in facilitating
the O2 diffusion. It appears to be very attractive to discuss their role in preventing the con-
centration of available oxygen to limit the rate of electron transfer along the mitochondrial
respiratory chain, which is regarded as the main sign of the onset of hypoxia. In this regard,
very indicative is the degree of reduction of the terminal component of the mitochondrial
respiratory chain, namely, cytochrome oxidase, which is normally within a wide range of
the normal physiological states, is in a completely oxidized state. The appearance of even
the slightest signs of cytochrome oxidase reduction (measured by spectroscopy [77,78])
indicates hypoxia in the area in which the cytochrome oxidase reduction is recorded [79].
This is especially fraught for organs with a high metabolism, which include the brain, heart,
and kidneys. It is known that the brain can tolerate a lack of oxygen supply to tissues
for just a few minutes, after which fatal changes occur, leading to massive death of brain
tissue. That is why it is necessary to take any way of activating mitochondrial respiration
seriously—whether it is caused by physiological stress or pharmacological induction of
respiration, in particular when adding an uncoupler of oxidative phosphorylation. It
should be taken into account that the uncouplers can provide maximum activation of
mitochondrial respiration, which could compromise the supply of oxygen to the cell. This
is why it is important not to allow the use such of concentrations of the uncouplers that
can cause maximum activation of respiration to protect tissue from possible hypoxia.

3.2. The Drop of ATP Synthesis

By definition, uncouplers compromise oxidative phosphorylation and can completely
cease ATP synthesis [14,80]. In general, the synthesis of ATP is determined by the value of
the transmembrane potential of hydrogen ions (∆µH+) [81,82], while the proton gradient
on the inner membrane of the mitochondria is discharged through the rotation of the rotary
part of the ATP synthase complex, driven by the membrane potential (∆ψ). Uncouplers
reduce the membrane potential, thereby inhibiting the ATP synthetic activity of mitochon-
dria, the termination of the functioning of which can lead to an energy crisis in the cell
and a possible switch to less efficient glycolysis in terms of ATP synthesis. To avoid the
onset of such an induced energy crisis, it is necessary to very gently regulate the level of
uncoupling with the prevention of the use of those concentrations of uncouplers that will
lead to a mismatch of energy needs and the level of ATP generation in the cell.
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3.3. Acidic Shift

Uncouplers activate ATP hydrolysis (ATPase activity, [83]) leading to, not only a very
undesirable decrease in the level of ATP in the cell, but also to corresponding acidification
of the intracellular space since ATPase activity is accompanied by proton generation [84].
Acidification can cause unwanted activation of degradative systems, such as proteases,
lipases, and nucleases [85–87].

3.4. The Drop of the Membrane Potential-Dependent Reactions

Uncoupler-induced lowering of the mitochondrial membrane potential retards all
reactions driven by the membrane potential, of which there are many [88]. One of the
most discussed functions (which is attributed to almost the main function that requires
membrane potential homeostasis) is the directed transport of proteins into the mitochon-
dria, without which the existence of the mitochondria itself is impossible, given that the
mitochondrial genome provides only a small part of its protein needs [89–92].

The function of ensuring mitochondrial quality control is directly related to this
mechanism, which includes the step of transport into the mitochondria of elements that
control the quality of mitochondria [93] and the degradation of poorly functioning or
non-functioning mitochondria to preserve a young and healthy phenotype [94,95].

A separate function that depends on the values of the membrane potential is the
transport of ions into the mitochondria. Thermodynamically, the direction of the membrane
potential ensures the transport of cations into the matrix and the exit of anions from
it. Special importance is attached to the electrogenic transport of calcium ions in the
mitochondria, the physiological significance of which is very high [96–99]. However,
there are data that Ca2+ overload and subsequent cell deterioration may be ameliorated
by the use of uncouplers, which reduce the membrane potential-driven inward Ca2+

transport in mitochondria [100,101]. Indeed, lowering mitochondrial membrane potential
by uncoupling agents yielded a higher level of cell tolerance to cytosolic Ca2+ overload
caused by the neurotoxic effect of glutamate [102,103].

3.5. Diminished Mitophagic Activity?

In recent years, the process of programmed micro and macro destruction of cellular
elements (micro and macroautophagy) has begun to attract much attention, given the
widespread opinion that a violation of this process will lead to the preservation of damaged
structures in the cell and, as a result, to the appearance of a pathological (senile) phenotype
(reviewed in [104,105]). This is especially important in relation to the removal of damaged
and poorly functioning mitochondria, thereby enabling the preservation of a healthy
mitochondrial and cellular phenotype [106,107]. The key role in the process of mitophagy is
played by the membrane potential on the inner mitochondrial membrane, as a fundamental
factor of the mitochondrial quality control machinery.

Although, as we have said, a large number of scientific teams are involved in studies of
mitophagy over the world, some purely energetic elements of the process remain logically
and actually unsupported and underexplored, and this primarily concerns the role of the
mitochondrial membrane potential. The general statement about the mandatory presence
of the mitochondrial membrane potential still stays. However, it is only qualitative in
nature, while quantitative estimates of the necessary values of the membrane potential for
mitophagy are practically absent. This differs the mitophagy process from ATP or peroxide
generation presented in Figure 1, where the threshold values, at which the processes
practically do not occur, are obvious.

In fact, this is explained by the very principle of the mitochondrial quality control
machinery, where the key factor is the transmembrane potential-mediated transfer of spe-
cial proteins from the cytosol to the matrix, which are the targets of recycling systems. As
a result, in the presence of a membrane potential, one such protein (PINK1) is quickly
transported to the matrix and becomes inaccessible to detecting systems, while in the
absence of a potential, it anchors on the mitochondrial membrane and becomes the subject
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of ubiquitylation with subsequent degradation of the entire mitochondrion [93]. However,
if we take into account the available data on the role of the membrane potential in the
transport of proteins to the mitochondria, in accordance with this principle, only mito-
chondria completely devoid of potential are subject to labeling and subsequent disposal
while slightly damaged mitochondria stay in cellular population. Additionally, in this
context, it was extremely puzzling to find an increase in mitophagy after the addition of
uncouplers [108]. However, a detailed analysis confirmed that the membrane potential
had nothing to do with it, and the regulation comes from a change in intracellular pH
caused by uncoupler, since the positive effect of the uncoupler (CCCP) was cancelled by the
addition of nigericin which converts ∆pH into ∆Ψ [108]. This shows only one side of the
complexity of the process of regulating the mitochondrial quality control process with the
participation of mitophagy, when the theoretically necessary participation in the process
of the membrane potential can be overruled by other factors, which does not allow the
membrane potential to be attributed to the critical regulators of mitophagy. On the other
hand, an important element of the mitophagic cascade is the transport of proteins into
the mitochondria, which is executed by the TIM22 and TIM23 complexes residing in the
inner mitochondrial membrane (reviewed in [109]), but it has been shown that, firstly, 30
to 50% of all proteins transported to the mitochondria do not require a membrane potential
(i.e., they do not carry a positively charged cleavable presequences [110,111]), secondly,
the transport of those proteins that still continue with participation of the membrane po-
tential depends, almost linearly, on the value of the membrane potential, so mitochondria
can afford even some transport at its minimum values [112], and thirdly, the role of the
membrane potential may be highly specific for different transported proteins requiring a
high potential for the transport of some proteins, while for others it is sufficient to have a
small potential, depending on to which compartment (external or internal membrane or
matrix) this protein is targeted ([113], reviewed in [114]). Except hypothetical provision of
electrophoretic transport driven by the membrane potential, the latter causes dimerization
of TIM23 which is a requisite for a matrix-targeted signal sequence binding to TIM23 [115].

The set of conflicting data gives us the only option to make a soft statement that the
mitochondrial membrane potential plays a role in mitophagy, preferably stimulating it
when the potential is collapsed, thus stimulating an onset of utilization of the process
in fully dysfunctional mitochondria. For low-functional mitochondria preserving some
membrane potential, additional factors are in play.

3.6. Hyperactivation of Oxidative Metabolism, Loss of Cellular Reserves

Again, we must be aware that the metabolism of the brain (or heart and kidneys)
is already quite high and any additional activation may be undesirable, including the
onset of the imbalance between the delivery of resources and energy use. In general,
any hyperactivation is not desirable, and its implementation is permitted only in a short-
term mode, which is quite difficult to regulate. That is why hypermetabolism caused by
hyperthyroidism is the subject for medical treatment when the activity of the key organs,
such as the heart and brain are on the edge (note that thyroid hormones are considered
as uncouplers [87,116]). Such activation can cause complete depletion of resources which
further can cause unwanted cachexia. Additionally, we cannot exclude the danger of the
formation of excessive water associated with the activation of metabolism, which must be
removed from the area of its formation, that is, from the mitochondria to prevent local or
general edema [87].

3.7. Reduction of Redox Signaling

The antioxidative function of uncouplers can potentially retard cell signaling that goes
with the participation of ROS, including proliferation, differentiation, and other functions.
Our analysis shows that a significant part of cellular signaling, especially when it comes
to protective signaling, involves ROS [117,118], which makes us take seriously the use of
antioxidants or the activation of natural processes designed to reduce the level of oxidants
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in the cell. ROS homeostasis in the mitochondria, cells, and organs is a prerequisite for the
healthy existence of the biological system.

3.8. Thermogenesis

Partial or complete loss of oxidative phosphorylation in mitochondria, in particular
achieved by the use of uncouplers, leads to the fact that at least part of the free energy stored
during the oxidation of substrates is released without coupling with the synthesis of ATP,
that is, this energy is dissipated as heat [119]. Thermoregulatory uncoupling in animals
adapted to cold was justified and confirmed earlier [120–122] as one of the examples of
non-shivering thermogenesis. As a result, the thermogenic function of uncouplers can be
attributed to several regulatory physiological functions that are implemented if necessary,
that is, in conditions of additional heat generation when exposed to low temperatures.
Among the possible physiological uncouplers with moderate thermogenic properties, thy-
roid hormones and free fatty acids were named [123–125]. Modern knowledge includes
at least two mechanisms by which uncouplers perform their functions in mitochondria,
namely through the organization of passive proton leakage through the bilayer mem-
brane [126] and the protein-mediated implementation of uncoupling [19,127–129].

Whatever the mechanism, uncouplers in a general sense are thermogenic, causing local
mitochondrial release of heat instead of producing ATP. However, hyperthermia belongs
to the major risk factors possibly causing irreversible changes in the brain [130–133], and
the only positive effect of hyperthermia can be observed using short-term temperature
increases as a stimulus causing a preconditioning effect [134–136]. Moreover, hypothermia
has protective properties, which imposes requirements, not only to prevent anything that
causes an increase in temperature in the brain, but also to use hypothermia in experimental
and clinical conditions to prevent the development of neurological damage [137]. A
reasonable explanation was given in that hypothermia suppresses mitochondrial activity,
in particular, increasing the degree of coupling of oxidation and phosphorylation as the
antipode of uncoupling [138].

4. Discussion

A large number of experimental and analytical works have been devoted to the
problem of the participation of uncoupling of oxidative phosphorylation in various systems
providing a protective effect [1–11], including a recent remarkable analysis of the controlling
role of uncoupling in physiology and disease [6]. However, the mechanisms of the positive
actions of uncouplers operating in a mild mode remain hypothetical, as does the duality of
the effects of the use of uncouplers, providing both positive and undesirable consequences.
On the one hand, there is a direct line of evidence, which completely boils down to the
fact that all positive effects are associated with a guaranteed decrease in the generation of
ROS, in particular due to the oxidation of the mitochondrial respiratory chain components,
capable of transferring one electron to an oxygen molecule, leading to the formation of O2

−

with the further generation of other ROS [139]. Of course, this model assumes an increase
in the respiratory activity of the mitochondria and the activation of the metabolism of the
entire organism. That is, in this model, all the positive effects are within the time interval
of the uncoupler’s action. Another model claims that the positive action is delayed (as an
example, see [140]), and according to this, uncouplers trigger stimulating cascades. If we
talk about neurodegenerative diseases, such as multiple sclerosis, Huntington’s disease,
Alzheimer disease, Parkinson’s disease, amyotrophic lateral sclerosis, as well as brain
trauma, in all these cases, the activation of respiration is not even considered, and the main
protective effects are reduced to the synthesis of cAMP stimulated by uncouplers (although
still incomprehensible in nature) [141], which triggers the expression of a large number of
genes [142], of which the products can afford a neuroprotective effect.

Our analysis, which can converge these two concepts, boils down to the fact that the
second proposed mechanism is one of the examples of mitohormesis [143,144], stimulated
by uncouplers. In this regard, a two-phase protective echelon can be implemented, which
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in the first stage, in the acute phase, reduces the high steady-state levels of ROS observed
in the mentioned neurodegenerative states, but which can activate metabolism, with the
possible short-term onset of near-ischemic states. These are accompanied by a short-term
non-lethal increase in the level of ROS, triggering protective neuroprotective cascades,
similar to those that occur during ischemic preconditioning [107,118,145,146].

The search for endogenous uncouplers has, so far, ended with the recognition that fatty
acids and thyroid hormones can perform this function. This does not exclude mediators
of the uncoupling process caused by uncoupling proteins (UCP 1–4, [22]), the full set of
functions of which must be clarified, with the exception of UCP1, of which the main thermo-
genic function cannot be doubted. However, on the one hand, fatty acids can exhibit both
direct uncoupling properties [147] or be mediators of transmembrane proteins: UCPs [148],
translocator of adenine nucleotides (ANT) [129] and dicarboxylate carrier [18,149]. Other
candidates for the role of an uncoupler, thyroxine and triiodothyronine (T3), have not
been sufficiently investigated although in the last century there were indications of their
uncoupling ability [150–152]. Among recent studies, work has demonstrated that T3 acti-
vates mitochondrial respiration via increased oxidation of fatty acids, while simultaneously
enhancing autophagic flow and, in particular, mitophagy, deserves special attention [153].
The regulation of mitophagy by natural uncouplers (fatty acids and thyroxine) was also
confirmed in experiments on cold exposure of animals, as a result of which the activation
of mitophagy was observed in brown adipose tissue [154]. Later it was demonstrated
that T3 stimulates brown adipose tissue through enhanced mitochondrial biogenesis and
MTOR-mediated mitophagy [153].

In addition, we must be aware that, among commonly used drugs, there are few
that possess uncoupling ability. Among these drugs are those used in pain medication,
aspirin (acetyl salisylic acid), cholesterol lowering Zocor (simvastatin) and diuretic Lasix
(furosemide) (reviewed in [155]), which forces us to carefully monitor symptoms when
they are used.

Considering all these presented arguments, the extremely high metabolic activity
of the brain requires a very careful approach for therapeutically induced manipulations,
accompanied by an increase in the metabolism of neural cells, including neurons, astroglia,
and endothelium. In general, the prevention of hypermetabolism of the brain is one of
the immutable tasks that follows from knowledge of neuropathophysiology [156–161]. In
general terms, this means that the therapeutic window of influence on brain metabolism
is quite narrow, and if it is applied to uncouplers that increase metabolic activity, the
therapeutic window of concentrations is also either very narrow or, due to its chemical
nature, their uncoupling activity should be relatively small, accompanied by insignificant
toxic properties.

In this review, we presented a black-and-white picture of the use of uncouplers of
oxidative phosphorylation as potential therapeutic agents, in particular when using them
in neurological applications. Taking into account the possible positive effects of uncouplers,
which also have critics who deny the validity of certain statements (for example, see [162]),
we show the ambiguity of their use, which, in general, have limitations, consisting in very
careful choices of doses so that the positive effects do not outweigh the negative ones.
However, the search for optimal uncouplers with a sufficiently wide positive concentration
window of action continues, both at the level of basic science and the commercial level.
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