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Abstract: The biosynthesis pathway of melanin is a series of oxidative reactions that are catalyzed by
melanin-related proteins, including tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and
tyrosinase-related protein-2 (TRP-2). Reagents or materials with antioxidative or free radical-
scavenging activities may be candidates for anti-melanogenesis. 3,4-Dihydroxybenzalacetone (DBL)
is a polyphenol isolated from fungi, such as Phellinus obliguus (Persoon) Pilat and P. linteus. In this
study, we investigated the effects and mechanisms of DBL on antioxidation and melanogenesis in
murine melanoma cells (B16F10) and human epidermal melanocytes (HEMs). The results indicated
that DBL scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals, and exhibited
potent reducing power, indicating that it displays strong antioxidative activity. DBL also inhibited
the expression of TYR, TRP-1, TRP-2, and microphthalmia-related transcription factor (MITF) in
both the cells. In addition, DBL inhibited hyperpigmentation in B16F10 and HEMs by regulating
the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), v-akt murine thymoma viral
oncogene homolog (AKT)/glycogen synthase kinase 3 beta (GSK3β), and mitogen-activated protein
kinase kinase (MEK)/extracellular regulated protein kinase (ERK) signaling pathways. DBL not only
shortened dendritic melanocytes but also inhibited premelanosome protein 17 (PMEL17) expression,
slowing down the maturation of melanosome transportation. These results indicated that DBL
promotes anti-melanogenesis by inhibiting the transportation of melanosomes. Therefore, DBL is a
potent antioxidant and depigmenting agent that may be used in whitening cosmetics.

Keywords: 3,4-dihydroxybenzalacetone; natural antioxidants; melanogenesis; melanosome matura-
tion; melanosome transport; microphthalmia-associated transcription factor; PMEL17

1. Introduction

Melanoblasts are derived from neural crest cells and are present in the skin, hair
follicles, and eyeballs. Melanoblasts differentiate into melanocytes and initiate melanin
production. Differentiated melanocytes transfer mature melanosomes into the surround-
ing keratinocytes, followed by melanin synthesis [1,2]. The biosynthesis pathway of
melanin is a series of oxidative processes that are catalyzed by melanogenesis-related
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proteins, including tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-
related protein-2 (TRP-2). The initial tyrosine is hydroxylated by L-tyrosinase to L-3,4-
dihydroxyphenylalanine (L-DOPA), which is oxidized to DOPA quinone. It is then divided
into two synthetic pathways: pheomelanin (a red–yellow soluble polymer), mediated via
5,6-dihydroxyindole, and eumelanin, mediated via benzothiazine and benzothiazole [3–6].

Melanin not only absorbs UV radiation but also has antioxidant and free radical-
scavenging capacity. This is the most important light-protective barrier. Although melanin
plays an important role in protecting the skin, continuous UV irradiation may lead to
the accumulation of abnormal melanocytes, which cause pigmentation disorders, includ-
ing melasma, freckles, post-inflammatory melanoderma, and solar lentigo [3,4,7,8]. Ker-
atinocytes communicate with melanocytes using cell–cell contacts and secreted factors that
bind to the receptors on the melanocyte surface. Keratinocytes influence melanogenesis
through paracrine growth factors and cell adhesion molecules [1]. These biofactors include
α-melanocyte-stimulating hormone (α-MSH), endothelin-1 (ET-1), interleukin2 (IL-2), basic
fibroblast growth factor (b-FGF), stem cell factors (SCF), nitric oxide (NO), adrenocor-
ticotropic hormone (ACTH), prostaglandins, leukotrienes, thymidine dinucleotide, and
histamine [1,4,9–11]. When exposed to UVB radiation, keratinocytes induce or secrete
various biofactors that stimulate melanocyte biosynthesis [4].

Keratinocytes secrete α-MSH, which binds to the melanocortin 1 receptor (MC1R) on
melanocytes to trigger melanin synthesis. α-MSH stimulates adenylyl cyclase (AC), thus
increasing the level of cyclic adenosine monophosphate (cAMP), to activate the translo-
cation of protein kinase A (PKA) into the nucleus. It activates microphthalmia-related
transcription factor (MITF) through phosphorylation of the cAMP response element bind-
ing protein (CREB). MITF plays a key role in melanogenesis and controls the expression of
melanogenic enzymes, such as TYR, TRP-1, and TRP-2. The MITF protein also regulates
melanosome transport and the melanosomal matrix protein premelanosome protein 17
(PMEL17) [1,4,9,12,13]. In addition, MITF is regulated by the phosphoinositide 3-kinase
(PI3K)/v-akt murine thymoma viral oncogene homolog (AKT) and mitogen-activated
protein kinase (MAPK) pathways. Activation of cAMP downregulates PI3K, AKT, and
glycogen synthase kinase 3 beta (GSK3β) expression, which then activates the phospho-
rylation of MITF at serine 298 and its binding to the M-box of the TYR promoter. This
leads to the expression of TYR, which influences melanogenesis. In contrast, cAMP inhibits
AKT phosphorylation at threonine 308 and serine 473, and GSK3β phosphorylation at
serine 9 to downregulate melanin synthesis [14–17]. The activation of cAMP regulates
RAS and mitogen-activated protein kinase kinase (MEK), which leads to phosphorylation
of extracellular regulated protein kinase (ERK), followed by phosphorylation of MITF at
serine 73, subsequently leading to the downregulation of TYR and inhibition of melanin
synthesis [18–20].

3,4-Dihydroxybenzalacetone (DBL) is a polyphenol compound with a dihydroxyben-
zene structure that is isolated from fungi, such as Phellinus obliguus (Persoon) Pilat and
P. linteus [21]. DBL has been reported to exhibit antioxidative activities such as 2,2-diphenyl-
1-picrylhydrazyl (DPPH)-scavenging activity and ferric reducing power [22]. DBL protects
against reactive oxygen species (ROS) and apoptosis in H2O2-induced PC12 cells [23].
DBL has been reported to attenuate inflammation in acute lung injury in mice through the
MAPK and PI3K/AKT signaling pathways [21]. DBL not only prevents Parkinson’s disease
through AKT/nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione pathway [24],
but also induces autophagy in human neuroblastoma SH-SY5Y cells [25]. DBL exhibits
anti-tumor activities, such as against cancer cell proliferation and apoptosis in HCT116 and
PA-1 cells [26,27]. To date, no study has discussed the effects of DBL on hypopigmenta-
tion. Therefore, in the present study, we investigated the effect and mechanisms of DBL
on antioxidation and melanogenesis. Cultured α-MSH-induced murine melanoma cells
(B16F10) and human epidermal melanocytes (HEMs) were used in this study to investigate
the effect of DBL on melanogenesis and the related mechanisms, including the expression
of CREB, PI3K, AKT, GSK3β, MEK, TYR, PMEL17, and MITF in both the cells.
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2. Results
2.1. DBL Scavenged Free Radicals and Reactive Oxygen Species

To investigate the antioxidative effect of DBL, we examined its DPPH radical-scavenging
activity, reducing capacity, and hydroxyl radical-scavenging activity. The DPPH radical-
scavenging activity of DBL doses over 25 µM was higher than 90%. The DPPH radical-
scavenging activity of 50 µM DBL was 92.3%, while that of the positive control, 10 µg/mL
(equal to 56.8 µM) ascorbic acid, was 73.7% (Figure 1a). The DPPH radical-scavenging
activity of DBL had an IC50 value of 11.28 µM.
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Figure 1. Antioxidative activity (%) of 3,4-dihydroxybenzalacetone (DBL). (a) 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
radical-scavenging activities, (b) reducing capacity, and (c) hydroxyl radical-scavenging activities. Each value has been
presented as mean ± standard deviation (SD). Significant difference with control group: *** p < 0.001.

The reducing capacity of various concentrations of DBL (25 to 200 µM) ranged from
22.0% to 79.1%, while that of the control, 100 µg/mL (equal to 568 µM) ascorbic acid, was
80.3% (Figure 1b). The reducing capacity of DBL had an IC50 value of 69.1 µM.

The hydroxyl radical-scavenging activity of various concentrations of DBL (25 to
200 µM) ranged from 84.1% to 90.7%, while that of 10 mM mannitol was 71.0%. (Figure 1c).
The results suggested that DBL exhibited strong antioxidative activity. The hydroxyl
radical-scavenging activity of DBL had an IC50 value of 9.3 µM.

2.2. DBL Displays No Cytotoxicity but Reduced Dendrites and Melanin Content in Melanocytes

As shown in Figure 2a, upon treatment with 1.25–25 µM DBL, except for 25 µM DBL
in B16F10, the cell viability was over 85%; thus, there was no apparent cytotoxic effect of
DBL in the B16F10, HEMs, human foreskin fibroblast Hs68 cells, and human keratinocyte
HaCaT cells.

The photographs shown in Figure 2b are of HEMs stimulated using various con-
centrations of DBL (1.25 to 25 µM). HEMs treated with DBL displayed shorter dendritic
morphology than the untreated cells. Representative DBL shortened the morphology of
dendritic melanocytes so that the melanosomes could neither transfer nor translocate. In
this manner, DBL inhibited melanogenesis.

As shown in Figure 2c, the melanin content was 226.8% upon treatment with α-MSH.
Following this, when the cells were treated with 2.5–10 µM DBL, the melanin content
ranged from 182.4% to 121.4% in B16F10. As shown in Figure 2d, DBL significantly reduced
the melanin content in B16F10 without α-MSH. As shown in Figure 2e, the melanin content
decreased from 100% to 70.5% after DBL treatment in HEMs.
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Figure 2. Cell viability, dendritic morphology, and melanin content of DBL. (a) The cell viability (%) of B16F10 at 48 h, human
epidermal melanocytes (HEMs) at 72 h, and Hs68 and HaCaT cells at 24 h. (b) Representative dendritic morphology of DBL
in HEMs at 72 h. (c) Melanin content (%) of B16F10 and cell pellets stimulated with α-melanocyte-stimulating hormone
(α-MSH) and DBL for 48 h. (d) Melanin content (%) of B16F10 and cell pellets treated with DBL for 48 h. (e) Melanin
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difference versus control group: * p < 0.05, ** p < 0.01, *** p < 0.001. Significant difference versus α-MSH-treated group:
### p < 0.001. Positive control: 1 mM arbutin.

2.3. DBL Reduced Tyrosinase Activity in Melanocytes

TYR is a key enzyme involved in melanogenesis. Thus, the effect of DBL on TYR
activity was evaluated. As shown in Figure 3a, TYR activity was 153.1% after treatment
with α-MSH. Following that, when the cells treated with 2.5–10 µM DBL, TYR activity
ranged from 140.1% to 132.5% in B16F10. As shown in Figure 3b, DBL also reduced
TYR activity in B16F10 that were not induced with α-MSH, ranging from 97.8% to 91.2%.
As shown in Figure 3c, TYR activity decreased from 100% to 51.3% after DBL treatment
in HEMs.

2.4. Effect of DBL on the Expression of Melanogenesis-Related Proteins

TYR, TRP-1, TRP-2, and PMEL17 participate in melanin synthesis. As shown in
Figure 4a, DBL significantly reduced the levels of melanocytic proteins such as TYR
and TRP-1 in B16F10, after stimulation with α-MSH. We investigated whether the ef-
fect of DBL on decreasing melanogenesis was associated with melanosome maturation.
PMEL17 is an essential protein involved in melanosome maturation. DBL significantly
decreased the level of PMEL17 protein in B16F10 stimulated with α-MSH (Figure 4b). All
the above melanocytic proteins were involved in melanogenesis and controlled by the
MITF transcription factor. Therefore, we evaluated the expression of MITF upon treatment
of B16F10 and HEMs with DBL. As shown in Figure 4c, the protein expression of total
MITF increased 1.93-fold after treatment with α-MSH. Following that, when the cells were
treated with 2.5–10 µM DBL, the expression level decreased from 1.14-fold to 0.69-fold
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in B16F10. Total MITF protein expression was significantly downregulated by DBL in
α-MSH-induced B16F10.
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Therefore, we also investigated the expression of TYR, TRP-1, TRP-2, PMEL17, and
MITF in DBL-treated HEMs. DBL inhibited the expression of TYR, TRP-1, TRP-2 (Figure 4d),
PMEL17 (Figure 4e), and MITF (Figure 4f) in HEMs. The results indicated that the down-
regulation of melanin synthesis by DBL could be driven by the MITF transcription factor,
TYR, and PMEL17.

2.5. DBL Inhibited Melanogenesis Through cAMP/PKA, AKT/GSK3β, and MEK/ERK
Signaling Pathways

Signaling pathways such as protein kinase C (PKC), cAMP, MEK, and wingless-
related integration site (WNT) regulate MITF transcription factors, which affect melanin
synthesis [12]. To understand how DBL regulates melanin-related proteins, we investigated
the effect of DBL on different signaling pathways, including cAMP/PKA, AKT/GSK3β,
and MEK/ERK. One of the anti-melanogenic mechanisms is suppression of PKA and p-
CREB during cAMP signaling. In this study, as shown in Figure 5a, the protein expression
of PKA increased 1.52-fold after treatment with α-MSH. Following that, when the cells
were treated with 2.5–10 µM DBL, there was a decrease in PKA expression from 0.84-fold
to 0.82-fold in B16F10. As shown in Figure 5b, DBL induced p-CREB protein expression
in B16F10 stimulated with α-MSH. In addition, the AKT/GSK3β signaling pathway is a
negative regulator of melanogenesis. Phosphorylation of GSK3β reduces melanogenesis.
As shown in Figure 5c, there was a 0.57-fold decrease in the phosphorylation of GSK3β
in α-MSH-induced B16F10. Following that, when the cells were treated with 2.5–10 µM
DBL, there was an increase in the protein levels from 1.06-fold to 1.02-fold. It is known
that activation of p-ERK leads to phosphorylation of MITF at serine 73, and subsequent
inhibition of melanogenesis [28]. As shown in Figure 5d, the protein expression of p-ERK
decreased by 0.93-fold in α-MSH-induced B16F10. When these cells were further treated
with 2.5–10 µM DBL, there was an increase in protein expression from 1.29-fold to 2.55-fold.
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Figure 4. The expression of signaling molecules and melanogenic enzymes, in response to the effect of DBL in α-MSH-
induced B16F10 and HEMs. Western blot analysis of the expression of (a) tyrosinase (TYR), tyrosinase-related protein-1
(TRP-1), (b) premelanosome protein 17 (PMEL17), and (c) microphthalmia-related transcription factor (MITF) in DBL-treated
and α-MSH-induced B16F10 for 48 h. Western blot analysis of the expression of (d) TYR, TRP-1, tyrosinase-related protein-2
(TRP-2), (e) PMEL17, and (f) MITF in DBL-treated HEMs for 72 h. Inserted values indicated relative protein expression in
comparison with β-actin. All data have been presented as mean ± SD. Significant difference versus control group: * p < 0.05,
** p < 0.01, *** p < 0.001. Significant difference versus α-MSH-treated group: ## p < 0.01, ### p < 0.001. Positive control:
1 mM arbutin.

Likewise, as shown in Figure 5e, DBL also inhibited the protein expression of p-CREB
from 0.84-fold to 0.52-fold in HEMs. In this study, the expression levels of p-GSK3β
(Figure 5f) and p-ERK also increased in DBL-treated HEMs (Figure 5g). As shown in
Figure 5h, DBL treatment increased the protein expression of p-MITF from 0.95-fold to
2.04-fold in HEMs.
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Figure 5. The expression of signaling pathways, in response to the effect of DBL in α-MSH-induced B16F10 and HEMs.
Western blot analysis of the expression of (a) protein kinase A (PKA), (b) p-cAMP response element binding protein (CREB),
(c) p-glycogen synthase kinase 3 beta (GSK3β), and (d) p-extracellular regulated protein kinase (ERK) in B16F10 treated with
DBL and induced with α-MSH for 48 h. Western blot analysis of the expression of (e) p-CREB, (f) p-GSK3β, (g) p-ERK, and
(h) p-MITF serine 73 in HEMs treated with DBL for 72 h. Inserted values indicated relative protein expression in comparison
with the internal control (β-actin, CREB, GSK3β, and ERK 1/2). All data have been presented as mean ± SD. Significant
difference versus control group: * p < 0.05, ** p < 0.01, *** p < 0.001. Significant difference versus α-MSH-treated group:
## p < 0.01, ### p < 0.001. Positive control: 1 mM arbutin.

3. Discussion

DBL is a polyphenol compound with a dihydroxybenzene structure. It has been
reported that plants contain polyphenol compounds that exhibit potent anti-oxidant prop-
erties, including tea [29,30], fruits, vegetables, grain products [31–34], and edible mushroom
extracts [35,36]. In addition, the chemical structure of catechols has been reported to have
antioxidative and antimelanogenic properties. For example, protocatechuic acid [37], (−)-
epigallocatechin-3-gallate [38], ellagic acid [39], and caffeic acid [40–42] exhibit excellent
antioxidative and antimelanogenic properties. When oxy-tyrosinase brings about oxida-
tion of catechols, the copper atoms of TYR coordinate with the two active site oxygens
of catechols [43]. This inactivates TYR, resulting in immature melanosomes and a lack
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of melanin [44,45]. The present study demonstrated that DBL has potent antioxidative
activity, such as DPPH-scavenging activity (Figure 1a), reducing power (Figure 1b), and
hydroxyl radical-scavenging activity (Figure 1c). However, a previous study has shown
inhibition of DPPH activity and ferric ion reducing antioxidant power upon treatment with
DBL [22]. The effect of DBL on DPPH-scavenging activity was stronger in the present study,
as compared with that shown in other studies. The IC50 of the DPPH-scavenging activity of
DBL from Phellinus linteus was 11.28 µM (Figure 1a), while a previous study reported that
of the DBL isolated from Chaga as 27.75 µM [22]. Several studies have suggested that ma-
terials or plant extracts with antioxidative activity may slow down melanogenesis [8,46,47].
In this study, DBL inhibited melanin synthesis in B16F10 and HEMs; this antioxidative
activity of DBL may contribute to its anti-melanogenic activity.

Exposure to solar UV directly induces ROS, which may cause oxidative stress, re-
sulting in DNA damage, non-melanoma and melanoma skin cancers, photoaging, and
photodermatoses [48–50]. Melanin is synthesized by a series of reduction–oxidation re-
actions that are catalyzed by various melanogenic enzymes such as TYR, TRP-2, and
TRP-1 [8,51]. However, another melanogenic protein, PMEL17 (also referred to as gp100,
ME20, and a product of the murine silver locus) is a premelanosome protein or pigment
transmembrane glycoprotein [52,53]. PMEL induces the maturation of melanosomes from
stage I to II through the endoplasmic reticulum [53–55] or participates in the biosynthesis
of melanin intermediate 5,6-dihydroxyindole-2-carboxylic acid into melanin [56,57]. The
melanogenic enzymes TYR, TRP-1, and DOPA chrome tautomerase are enriched in stage III
and IV melanosomes [55,58,59]. Watt et al. reported that altering PMEL17 fibrils can result
in hypopigmentation [60]. It has been reported that the expression of PMEL17 is dependent
on MITF [61,62]. PMEL17 and TRP-2 are unable to express MITF mutations [61]. In our
study, DBL downregulated the expression of TYR, TRP-1, and TRP-2, to inhibit melano-
genesis. Furthermore, we examined the influence of DBL treatment on the melanosomal
matrix protein PMEL17 to further understand the involvement of melanosomes in the
pigmentation of DBL. The data showed that DBL inhibited PMEL17, thus inhibiting the
maturation and transport of melanosomes, and subsequently melanogenesis (Figure 4b,e).
We verified that DBL downregulated the expression of PMEL17 through MITF (Figure 4c,f).
MITF has been shown to transcriptionally regulate PMEL17. Our results demonstrated
that DBL could shorten the dendritic morphology of HEMs, inhibiting the transfer of
melanosomes from melanocytes to the surrounding keratinocytes (Figure 2b). It also re-
flects the imperfect structure of the dendrites of melanocytes, which hinders the delivery
of melanin-synthesizing enzymes, so melanin is not deposited in the melanosomes.

It has been reported that cAMP influences melanin synthesis through the PKA/CREB,
MEK/ERK, and PI3K/AKT pathways via α-MSH stimulation [15,63]. Therefore, we inves-
tigated the inhibitory effect of DBL on melanogenesis by assessing the regulation of the
related signaling pathways. It is known that activation of PKA induces the phosphorylation
of the transcription factor CREB and stimulates MITF transcription [64]. Many promot-
ers participate in MITF transcription, including lymphocyte enhancer factor-1 [65,66],
CREB [67], Paired Box 3 [68], and SRY-Box Transcription Factor 10 [69]. In particular,
binding of phosphorylated CREB to CRE promotes MITF transcription [70]. These data
indicate that DBL reduces PKA and p-CREB activation in α-MSH-stimulated B16F10 and
HEMs. DBL showed stronger effects than arbutin (Figure 5b,e).

The PI3K/AKT pathway plays key roles in melanin synthesis via cAMP-mediated
signaling [71]. It has been reported that cAMP promotes the activation of p-AKT and
p-GSK3β through a PI3K-dependent mechanism [15]. It has also been shown that p-GSK3β
cannot stimulate the action of MITF on the TYR promoter. Furthermore, cAMP has also been
shown to induce the activation of RAS and MEK expression, which, in turn, phosphorylate
ERK 1/2 (p44/p42 MAPK). Activation of p-ERK promotes the phosphorylation of MITF on
serine 73, resulting in the suppression of melanin synthesis [15,72,73].

Chao et al. reported that DBL attenuates acute lung injury by suppressing the ROS-
mediated MAPK and PI3K/AKT signaling pathways [21]. Gunjima et al. showed that DBL
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enhances intracellular defense systems against oxidative stress through the PI3K/AKT
pathway [24]. Therefore, we hypothesized that DBL could inhibit melanogenesis through
the MAPK and PI3K/AKT pathways. We further investigated whether DBL activates
or inhibits the MEK/ERK and PI3K/AKT pathways. The results of the present study
indicated that not only the downstream protein of p-GSK3β but also p-ERK is activated by
DBL in α-MSH-stimulated B16F10 and HEMs. In addition, activation of p-ERK leads to
phosphorylation of MITF at serine 73 in DBL-treated HEMs.

However, all of the above pathways suppress or activate MITF expression, resulting
in inhibition of melanin synthesis enzymes [74]. MITF is upregulated by CREB and PKA,
which are downregulated by the PI3K/AKT and MEK/ERK pathways [12,51,75,76]. In
our experiments, DBL significantly reduced p-CREB and total MITF expression in HEMs,
as well as in B16F10, resulting in decreased TYR, TRP-1, TRP-2, and PMEL17 expression.
Additionally, DBL increased the expression of p-GSK3β, p-ERK1/2, and p-MITF (serine 73),
inhibiting melanogenesis.

4. Materials and Methods
4.1. Materials
4.1.1. Chemical Reagents

DBL was synthesized at the laboratory of Professor Yueh-Hsiung Kuo and dissolved
in dimethyl sulfoxide (DMSO) for experimentation. The final concentration of DMSO in
the medium was below 0.1%. DMSO, DPPH, arbutin, L-DOPA, DL-dithiothreitol, and all
other reagents used in this study were purchased from Sigma-Aldrich Chemicals (St. Louis,
MO, USA). α-MSH was purchased from Merck (Darmstadt, Germany). All other chemicals
used in this study were reagent grade.

4.1.2. Antibodies

Antibodies used in this study, including anti-actin, anti-PKA, anti-GSK3β, anti-p-
GSK3β, anti-mouse, and anti-rabbit secondary antibody were purchased from GeneTex
(Irvine, CA, USA). Antibodies including anti-p-ERK and anti-CREB were purchased from
Cell Signaling Technology (Beverly, MA, USA). Antibodies including anti-p-CREB, anti-
MITF, and anti-p-MITF were purchased from Abcam (Cambridge, UK). Other primary
and secondary antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz,
CA, USA).

4.2. Antioxidant Assay
4.2.1. DPPH Radical-Scavenging Activity Assay

A previously described method was applied in this study [77]. DPPH was mixed
with various concentrations of DBL, added to a 96-well microplate, and incubated at room
temperature for 30 min in the dark. Absorbance was measured at 492 nm using a Tecan
Sunrise absorbance microplate reader (Sunrise, Tecan, Salzburg, Austria). Ascorbic acid
was used as a positive control.

4.2.2. Reducing Power Activity Assay

A previously described method was applied in this study [78] to determine the re-
ducing capacity of DBL. Ferrocyanate and trichloroacetic acid were mixed with various
concentrations of DBL. After centrifugation, ferric chloride was mixed with the super-
natant and the absorbance was measured at 700 nm. Ascorbic acid were used as positive
controls, respectively.

4.2.3. Hydroxyl Radical-Scavenging Activity Assay

Previously used methods were applied to detect the hydroxyl radical-scavenging
activity [48]. DBL was mixed with a KH2PO4–KOH buffer, deoxyribose, FeCl3, H2O2,
ascorbic acid, ethylenediaminetetraacetic acid and distilled water. In the next step, 2-
thiobrabituric acid and trichloroacetic acid were added to this mixture and incubated at
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100 ◦C for 15 min. After centrifugation, the absorbance of the supernatant was measured at
532 nm using a microplate reader (BioTek, Winooski, VT, USA). Mannitol was used as a
positive control.

4.3. Cell Cultures and Cell Viability Assay

B16F10 melanoma cells (Bioresource Collection and Research Center, Hsinchu, Taiwan)
were cultured in Dulbecco’s Modified Eagle’s Medium supplemented with 10% fetal bovine
serum (Gibco, Thermo Fisher Scientific, Waltham, MA, USA). HEMs (ScienCell Research
Laboratories, CA, USA) were cultivated in Medium 254 supplemented with 1% human
melanocyte growth supplement (HMGS) (Gibco). All cells were maintained at 37 ◦C in
an incubator with 5% CO2. The cells were harvested using trypsin. Cell viability was
measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay, as previously described [63].

4.4. Melanin Content and Tyrosinase Activity Aassay in B16F10 and HEMs

The melanin content and TYR activity of B16F10 were assayed according to a method
described in previous studies [79]. Cells, seeded at a density of 2 × 104 cells/well, were
cultured in 24-well culture plates and incubated with 2.5–10 µM DBL for 48 h. The
absorbance was measured using a microplate reader (Sunrise, Tecan, Salzburg, Austria) at
405 nm for assaying melanin content and TYR activity.

HEMs were cultured at a density of 5 × 104 cells/well in 24-well culture plates. The
cells were treated with a medium containing various concentrations of DBL (2.5–10 µM)
for 72 h. NaOH (2 N) was added to each well to lyse the cells; following this, the cells were
centrifuged. The amount of melanin in the supernatant was spectrophotometrically mea-
sured at 405 nm using a microplate reader. For the TYR activity assay, HEMs were seeded
at a density of 5 × 104 cells/well in a 24-well plate and treated with a medium containing
various concentrations of DBL for 72 h. The medium was removed and replaced with 1%
Triton X-100 solution. The mixture was frozen at −80 ◦C, thawed at room temperature, and
then centrifuged. The supernatant was mixed with freshly prepared 15 mM L-DOPA and
incubated. The absorbance of each well was measured at 405 nm using a microplate reader.

4.5. Western Blot

As previously described [8,13], the expression of melanogenesis-related proteins in
B16F10 was detected using Western blot analysis. HEMs (at a density of 1 × 105) were
cultured in a 10 cm dish for 48 h. Subsequently, various concentrations of DBL were
added to medium 254 + HMGS and incubated for 72 h. Cells were lysed in radioim-
munoprecipitation (RIPA) lysis buffer and assessed using the Bradford method (Bio-Rad
Laboratories, Hercules, CA, USA). Equal amounts of proteins (30 µg per lane) were sub-
jected to SDS-PAGE, followed by electrotransfer to polyvinylidene difluoride (PVDF)
membranes. The blots were blocked with 5% non-fat powdered milk for 30 min at room
temperature and then probed with primary antibodies at 4 ◦C overnight. The membranes
were then incubated with secondary antibodies at room temperature for 2 h. Subsequently,
the membranes were washed in a 0.1% Tris buffer, and the bands were visualized using an
enhanced chemiluminescent reagent and autoradiography.

4.6. Statistical Analyses

All results have been expressed as the mean ± standard deviation (SD) of at least
3 independent experiments. For each experimental test condition, significant differences
of the samples from their respective controls were assessed using one-way analysis of
variance and Tukey’s multiple comparison test. A p-value of <0.05 indicated a statistically
significant difference.
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5. Conclusions

This study indicates that DBL modulates melanogenesis through the CREB, MEK/ERK,
and PI3K/AKT pathways in B16F10 and HEMs (Figure 6). In addition, it inhibits the mat-
uration and transport of melanosomes by downregulating MITF, TRP-1, and PMEL17
expression. Thus, DBL may be used in lighten hyperpigmentation and developed as a
skin-whitening agent and antioxidant.
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AKT v-akt murine thymoma viral oncogene homolog
cAMP cyclic adenosine monophosphate
CREB cAMP response element binding protein
DBL 3,4-dihydroxybenzalacetone
L-DOPA L-3,4-dihydroxyphenylalanine
DMSO dimethyl sulfoxide
DPPH 2,2-diphenyl-1-picrylhydrazyl
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PKA protein kinase A
PMEL17 premelanosome protein 17
ROS reactive oxygen species
TYR tyrosinase
TRP-1 tyrosinase-related protein-1
TRP-2 tyrosinase-related protein-2

References
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