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Resting-state functional magnetic resonance imaging (rsfMRI) is increasingly used
to unravel the functional neuronal networks in health and disease. In particular,
this technique of simultaneously probing the whole brain has found high interest
in monitoring brain wide effects of cerebral disease and in evaluating therapeutic
strategies. Such studies, applied in preclinical experimental mouse models, often
require long-term observations. In particular during regeneration studies, easily several
months of continuous monitoring are required to detect functional improvements.
These long periods of following the functional deficits during disease evolution as well
as the functional recoveries during therapeutic interventions represent a substantial
fraction of the life span of the experimental animals. We have therefore aimed to
decipher the role of healthy aging alone for changes in functional neuronal networks
in mice, from developmental adolescence via adulthood to progressing aging. For
this purpose, four different groups of C57Bl6 mice of varying age between 2 and
13 months were studied twice with 4 weeks separation using resting state fMRI at
9.4T. Dedicated data analysis including both Independent Component Analysis (ICA)
followed by seed-based connectivity matrix compilation resulted in an inverse U-shape
curve of functional connectivity (FC) strength in both the sensorimotor and default
mode network (DMN). This inverse U-shape pattern presented a distinct maximum of
FC strength at 8–9 months of age, followed by a continuous decrease during later
aging phases. At progressed aging at 12–13 months, the reduction of connectivity
strength varied between 25% and 70% with most connectivities showing a reduction in
strength by approximately 50%. We recommend that these substantial age-dependent
changes in FC strength must be considered in future longitudinal studies to discriminate
focused disease-based functional deficits and therapy-related functional improvements
from underlying independent age effects.

Keywords: functional neuronal networks, aging, dependence on aging, mice, resting state fMRI, seed correlation
analysis, brain connectivity
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INTRODUCTION

Mouse models have become the cornerstone of research
for neurodegenerative diseases such as multiple sclerosis
(Binnewijzend et al., 2012; Ransohoff, 2012), Alzheimer’s disease
(Busche et al., 2008), Parkinson’s disease (Antony et al.,
2011) or amyotrophic lateral sclerosis (Lutz, 2018). This has
been achieved due to the opportunities that mice offer to be
genetically manipulated along with the continuous discovery of
gene mutations related to many neurodegenerative pathologies
(Huang et al., 2011).

In this context, functional magnetic resonance imaging
(fMRI) has become a crucial tool for the study of functional
deficits in brain diseases and of functional improvements
due to therapeutic intervention, respectively (Ramos-Cabrer
et al., 2010). Resting-state fMRI (rsfMRI) is non-invasive and
measures at high spatial resolution blood oxygen level dependent
(BOLD) patterns at low frequencies in the absence of external
stimuli (Biswal et al., 1995). From such data, the functional
connectivity (FC) between different anatomical nuclei in the
brain is constructed, and the functional neuronal networks are
determined. Thus, rsfMRI permits to unravel the disturbances
of the functional neuronal networks during development of
cerebral diseases and their functional improvements after
therapeutic interventions.

The study of many cerebral diseases and brain lesions such
as e.g., neurodegenerative diseases or stroke and the exploration
of effective therapeutic strategies requires long-term monitoring,
often of several months (Ramos-Cabrer et al., 2010; Wiesmann
et al., 2017; Green et al., 2019). A factor that is, however,
often overlooked in rsfMRI studies of mice is the progressing
age of the individuals during the required longitudinal studies.
Here, we present a rsfMRI study on the effects of aging on FC
in the healthy mouse brain in the range of 2–13 months of
age. For the analysis of brain connectivity, we have combined
Independent Component Analysis (ICA) to denoise rsfMRI
data, and Seed-based Correlation Analysis (SCA) to study the
correlation between various cortical and subcortical regions of
interest (ROIs), while focusing on the sensorimotor networks
and the default mode network (DMN). For the first time, we
describe changes of the mouse brain connectome during healthy
aging, defining an inverse U-shape curve for the FC that peaks
at the age of 8–9 months followed by substantial continuous
decrease during progressing aging.

MATERIALS AND METHODS

Animals and Experimental Protocol
All animal experiments were performed in accordance with the
guidelines of the German Animal Welfare Act and approved
by the local authorities (Landesamt für Naturschutz, Umwelt
und Verbraucherschutz NRW). Ad libitum access to food and
water was provided to the animals under a controlled light
environment (12 h light/dark).

Twenty-four C57BL/6J male mice (Janvier, Le Genest-St
Isle, France) were studied, subdivided into four groups of age:

2 months (n = 6), 5 months (n = 6), 8 months (n = 6) and
12 months (n = 6). Each group was scanned twice with a 1 month
gap between both acquisitions. Thus, eight time points in total
were covered in the study: 2, 3, 5, 6, 8, 9, 12 and 13 months.

MRI
MRI measurements were carried out on a dedicated animal MRI
scanner (Bruker BioSpec, Ettlingen, Germany) operating with
a horizontal magnet at 9.4T. Radio frequency (RF) excitation
and signal reception were performed with a cryogenic 1H
quadrature surface coil (CryoProbe, Bruker BioSpin, Ettlingen,
Germany). Monitoring of physiological parameters was achieved
with a 1025T System (SA Instruments, Stony Brook, New York,
NY, USA) and recorded with DASYlab Software (National
Instruments, Austin, TX, USA). Body temperature was measured
with a fiber optic rectal probe (SA Instruments, Stony Brook,
New York, NY, USA) and kept at 37◦C ± 1◦C by a water
circulating system (Medres, Cologne, Germany). Anesthesia was
induced in all mice with isoflurane (3.5%) in air mixture of N2
(70%) and O2 (30%), and was reduced to 2% isoflurane in the
scanner, where the animal’s head was fixed with ear bars and a
tooth holder in a dedicated MR compatible animal cradle.

MRI experiments were conducted using Paravision 6.01
(Bruker BioSpin, Ettlingen, Germany). Isoflurane was kept
at 1.5%–1.8%, thoroughly adjusted throughout the duration
of the experiments, for keeping the breathing rate stable
(100–120 bpm). A single bolus of 0.1 mg/kg medetomidine
(Domitor, Elanco) was subcutaneously administered suspended
in 250 µl of NaCl, 15–20 min before functional imaging
acquisition. Within 5 min following the medetomidine injection,
isoflurane was decreased to 0.5%–0%, maintaining a maximum
of 100–120 breaths per minute during the complete functional
imaging data acquisition.

An anatomical reference TurboRARE scan was acquired
with the following parameters: TR/TE = 5,500 ms/32.5 ms,
matrix = 256 × 256, field of view (FOV) = 17.5 mm × 17.5 mm,
48 consecutive (no gap) slices of 0.3 mm, RARE factor of
8, and 2 averages. Then, an adapted gradient echo-planar
imaging protocol (Grandjean et al., 2014) was used for
functional image acquisition TR/TE = 2,840 ms/18 ms,
FOV = 17.5 mm × 17.5 mm, matrix = 96 × 96, in-plane
resolution = 182 µm× 182 µm, 16 slices of 0.5 mm with 0.1 mm
inter-slice gap. Once the scanning protocol was completed, a
1 mg/kg Atipamezol (Antisedan, Pfizer), suspended in 100 µl
of NaCl, was subcutaneously administered to reverse the
effects of medetomidine.

Data Processing
All datasets were brain extracted using FSL [FMRIB (Oxford
Centre for Functional MRI of the Brain) Software Library1,
(Jenkinson et al., 2002; Smith, 2002)]. Preprocessing of rsfMRI
data was performed with single-session Probabilistic ICA (pICA)
with the MELODIC interface of FSL2, following an adapted
procedure of Bajic et al. (2017). This preprocessing consisted
of motion correction with MCFLIRT (Jenkinson et al., 2002),

1http://www.fmrib.ox.ac.uk/fsl
2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
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high-pass temporal filtering (>0.01 Hz) and registration to the
anatomical reference image set (TurboRARE images) which was
registered to an in-house mouse brain template. A threshold
of p < 0.05 was applied to the z-scores spatial maps of the
independent components provided by MELODIC, before being
manually classified into signal or noise, based on information
offered by independent component spatial maps, power spectra
and time series (Griffanti et al., 2017). In order to achieve
the cleaning of data, the components classified as noise were
regressed. Following data denoising, a 0.3 mm full-width
half maximum (FWHM) Gaussian kernel was applied for
spatial smoothing.

Several brain ROIs were selected for FC analysis. Cortical
regions include the primary somatosensory cortex (S1), the
secondary somatosensory cortex (S2), primary and secondary
motor cortex (M1/2), the visual cortex (VC) and the auditory
cortex (AC). Subcortical nodes are the caudate putamen (CPu)
and the thalamus (Th). Moreover, several regions of the DMN
were extracted: the entorhinal cortex (EntC), prelimbic cingulate
(Cg), the rostral dorsal prelimbic cortex (PrL), the retrosplenial
granular and dysgranular cortex (RSG/RSD), the globus pallidus
(GP), the hypothalamus (Hyth) and the hippocampus (Hp). The
DMN is regarded as the basal activity network of the brain
(Stafford et al., 2014).

Group analysis was conducted by using a customized version
of FSLNets (v0.63) in five main steps: (1) averaging of time
series in each ROI; (2) calculate full Pearson correlation between
pairs of ROIs; (3) transformation of Pearson correlation r
values to z-score by applying Fisher transformation to normalize
data; (4) calculate group mean values for each correlation; and
(5) build matrices representing z-score values between pairs of
nodes (i.e., regions).

Analysis of Age Profile of Functional
Connectivity
To construct the age profile of the FC, we followed two
strategies. As first approach, we plotted the mean correlation
coefficients vs. time for each single measured temporal point
(2, 3, 5, 6, 8, 9, 12 and 13 months of age). Alternatively, we
plotted the mean correlation coefficients vs. time, averaging
the two temporal data sets for each group of animals studied
(each group was scanned twice in consecutive months), thus
resulting in four temporal points at 2.5 (averaging month 2 and
3 for animal group 1), 5.5 (averaging month 5 and 6 for
animal group 2), 8.5 (averaging month 8 and 9 for animal
group 3) and 12.5 (averaging month 12 and 13 for animal
group 4) months.

Statistical Analysis
Prism X.0 (Graphpad Software, San Diego, CA, USA) was used
for the statistical analyses. D’agostino-Pearson normality test was
performed to assess the distribution of data for each network
or cross-correlation of interest. In case data was normally
distributed for all groups, an analysis of the variance (ANOVA)
for repeated measures was performed, followed by a two-tailed

3www.fmrib.ox.ac.uk/fsl

unpaired t-test. Otherwise, the non-parametric Kruskal–Wallis
test was first conducted followed by Mann–Whitney test for
pairs of groups. Statistical significances were set at ∗p < 0.05,
∗∗p < 0.01 and ∗∗∗p < 0.001.

RESULTS

Whole-Brain Networks
Color-coded matrices from months 2 to 13, showing the
z-scores corresponding to interactions between different brain
regions, separately analyzed for the left and right hemisphere,
are presented in Figure 1. In a first visual inspection, the
overall correlation is found to increase from month 2 to
month 8 as indicated by the color change in the matrices.
After month 8, the connectivity strength decreased again
progressively until the last time point at 13 months. Nevertheless,
temporal changes are not completely linear and fluctuations
of z-scores from one time point to the next are considerable
when separately analyzing different nodes. To distinguish
potential patterns for individual networks, we followed two
approaches. First, we decided to group the connectivities in four
groups: (1) all intra-hemispheric connectivities of the left
hemisphere; (2) all intra-hemispheric connectivities of the
right hemisphere; (3) all inter-hemispheric connectivities; and
(4) all connectivities within the whole brain (grouping all
2,268 calculated connections together). The averaged z-scores of
each of these network groups were plotted vs. time (Figure 2A).
In addition, we considered that the temporal gap of 1 month
between some experimental points is too narrow to attribute
changes in correlation to an aging effect, and that variability
observed in such short periods could be due to many other
experimental or biological factors. Thus, a smoothing of the
temporal series was achieved by averaging data with temporal
gaps of 1 month (i.e., the pair of scans for each group
of animals), resulting in a reduction of the eight measured
time points into four evenly spaced time points (3–4 months
of temporal resolution, see ‘‘Materials and Methods’’ section.
In this way, better interpretable, smoother trends for aging
effects were obtained (Figure 2B). As shown in Figure 2B, the
mean z-score of both, right and left intra-hemispheric groups
of correlations, as well as inter-hemispheric and whole-brain
connectivities become increasingly stronger from month 2.5 to
month 8.5. The increase of the power of correlation from
one time point to the next is highly significant for all these
periods (p < 0.001). After peaking at month 8.5, there is a
highly significant decrease in connectivity until the month 12.5
(p < 0.001 in all cases).

Grouping the Whole Brain Into
Connectivity Subsets
In a further analysis, the brain nuclei were grouped in
three regions encompassing: (1) the cortical network (CN)
consisting of M1/2, S1, S2, AC, and VC; (2) the subcortical
network (SN) consisting of CPu and Th; and (3) the
DMN (Hyth, EntC, Cg, PrL, RSG/RSD, GP, and Hp).
Then, the interactions among these three different networks
were studied. The connectivity significantly increased for all

Frontiers in Aging Neuroscience | www.frontiersin.org 3 October 2019 | Volume 11 | Article 277

http://www.fmrib.ox.ac.uk/fsl
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Egimendia et al. Aging Dependent Functional Neuronal Networks

FIGURE 1 | Resting state functional magnetic resonance imaging (rsfMRI) full correlation matrices of the inter- and intra-hemispheric connectivities for 15 regions of
interest (ROIs) of the brain. z-score values of cross-correlations are plotted. The eight matrices correspond to 2, 3, 5, 6, 8, 9, 12 and 13 months of age of healthy
C57BL/6J mice. There is an overall continuous increase of the power of correlation until month 8, indicated by the color change in the LUT. The correlation power
decreases again from month 8 until month 13 (p < 0.001). The 15 ROIs are: S1, primary somatosensory cortex; S2, secondary somatosensory cortex; M1/2,
primary and secondary motor cortex; VC, visual cortex; AC, auditory cortex; CPu, caudate putamen; Th, thalamus; EntC, entorhinal cortex; Cg, prelimbic cingulate;
PrL, rostral dorsal prelimbic cortex; RSG/RSD, retrosplenial granular and dysgranular cortex; GP, globus pallidus; Hyth, hypothalamus; Hp, hippocampus. “l” prefix
indicates left hemisphere, “r” prefix indicates right hemisphere.

FIGURE 2 | Averaged z-score values of left and right intra-hemispheric, inter-hemispheric and whole-brain connectivities. (A) z-score values, analyzed at the
eight experimental time points (2, 3, 5, 6, 8, 9, 12 and 13 months). The power of correlation increases up to month 8 and then decreases again until month 13 in a
fluctuating way. (B) z-scores of equally spaced pairs of time points (averaged z-scores for 2–3, 5–6, 8–9, 12–13 months, see “Materials and Methods” section).
Smoothed temporal trends show an inverse-U shape curve peaking at month 8.5. Error bars indicate SD. ∗∗∗p < 0.001.

three inter-network connections: CN-DMN, CN-SN, DMN-SN
networks from month 2.5 to 8.5 (p < 0.001 CN-DMN,
p < 0.001 CN-SN, p < 0.001 DMN-SN), as presented in
Figure 3. From the age of 8.5 months, a continuous decrease
of the inter-network correlations was seen between month
8.5 and month 12.5. Interestingly, the connectivity strength
reached at month 8.5 for CN-SN and DMN-SN networks

was stronger than that for the CN-DMN (p < 0.001 at
month 8.5).

Analysis of Sensorimotor and Default
Mode Networks
In the final step, we assessed the individual patterns of
connectivities between individual nuclei within the sensorimotor
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FIGURE 3 | Inter-network connectivities. Upper row: z-scores of connections between cortical network (CN), subcortical network (SN) and default mode network
(DMN). There is a significant increase of connectivity until 8.5 months, followed by a decrease until month 12.5 in all cases. Lower row: schematic representation of
the strength of correlations over time. Each graph, from left to right, represents a specified age (2.5, 5.5, 8.8 and 12.5 months). Solid line, z-score > 0.41;
Dash-dotted line, z-score > 0.33; Dotted line, z-score > 0.25; No line, z-score < 0.25. CN-SN and SN-DMN connections show a higher correlation over time than
the CN-DMN connection (p < 0.001). Error bars indicate SD. ∗p < 0.05 and ∗∗∗p < 0.001.

network and the DMN, respectively. A set of the stronger
connections within the sensorimotor network is presented in
Figure 4. All connectivities share the pattern of the largest z-score
values at 8.5 months except the interaction between S1 and
S2 which reaches its maximal strength already at 5.5months. This
inverse U-shape pattern is most pronounced for the connections
M1/2-S2, S1-Th, andCPu-Th. In contrast, the connectionsM1/2-
S1, S1-CPu, S2-CPu have only a very weak, non-significant
inverse U-shape during the whole aging process. Interestingly,
the z-score values at 12.5 months reach low connectivity strength
well comparable to those at 2.5 months.

Plotting the mean correlation of all interactions of the
DMN over time leads to a clear inverse U-shape curve,
significantly increasing step-wise from month 2.5 to month
5.5 and month 8.5 followed by a significant decrease to month
12.5 (p < 0.001; p < 0.05; p < 0.001 respectively; Figure 5,
top left). Performing an analysis of connections between the
individual nodes of the DMN, temporal trends show mostly the
same pattern but are more variable than for the sensorimotor
network (Figure 5). Most DMN-internal interactions present the
strongest correlation at month 8.5, being significantly different
frommonth 2.5 (GP-Hp, p< 0.05; Cg-Hyth, p< 0.005; Hyth-Hp

FIGURE 4 | Mean z-score values of cross-correlations of pairs of ROIs of the sensorimotor network over the life span period (2.5 months, 5.5 months, 8.5 months
and 12.5 months). A significant increase of connectivity was seen from month 2.5 to month 8.5 in S1-Th and CPu-Th connections. The CPu-M1/2, CPu-Th and
S1-Th correlations undergo a decrease from month 8.5 to month 12.5. Error bars indicate SD. ∗p < 0.05.
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FIGURE 5 | DMN connectivity. Top left: mean z-score value of all interactions between DMN regions is represented. All other diagrams: cross-correlation of pairs of
ROIs of the DMN is represented. An increasingly strong interaction is seen in month 8.5 comparing to 2.5 in GP-Hp, Cg-Hyth, Hyth-Hp, Hp-Th and Hyth-Th
correlations. There is also a decrease of correlation from month 8.5 to month 12.5 in Hyth-GP, Cg-Hyth, PrL-Hp and Hyth-Th. An inverse U-shape curve is typically
seen. Error bars indicate SD. ∗p < 0.05, ∗∗p < 0.01 and ∗∗∗p < 0.001.

p < 0.05) and show a decline from month 8.5 to month
12.5 (Cg-Hyth, Hyth-GP and the PrL-Hp; p < 0.05). A highly
significant U-shape pattern of the thalamus (Th) was seen with
both Hyth and Hp. Both correlations undergo an increase until
month 8.5 (p < 0.05), but, while the Hp-Th connection is
somehow sustained after month 8.5, the Hyth-Th connection
undergoes a considerable decline from that point until month
12.5. The Cg-PrL interaction remained constant over time
with a strong connectivity (z-score mean = 0.50). Contrary
to the sensorimotor network curves, some DMN-internal
connectivities do not decrease at 12.5 months to the low z-
score values at 2.5 months, but stagnate at higher values,
although clearly lower than at 8.5 months. This is most
pronounced for some connections of the hippocampus: GP-Hp,
Hyth-Hp, Hp-Th.

Condensed Aging Effects of the Functional
Networks
Finally, we have studied the average correlation of a selected
node with all other nodes across the brain, reflecting the

average connectivity strength of this particular node over
time. In Figure 6, this behavior pattern is presented for
all cortical nodes (Figure 6, left), both subcortical nodes
(thalamus and CPu; Figure 6, center) and for all nodes of
the DMN (Figure 6, right). In all three groups, the average
connectivity strength shows an almost identical U-shape pattern
with the maximal values at 8.5 months of age. Only the
entorhinal cortex in the DMN group (Figure 6, right) deviates
from this pattern and shows an irregular pattern. From
these curves, the prominent change in FC strength across
progressing aging is clearly seen. Thus, the subcortical FC
strength loses 36% of its maximal value at 12–13 months of
age in thalamus and CPu. In the cortical node group, the
loss of FC strength at 12–13 months varies between 20%
for the AC and 50% for the VC. The other cortical nodes
have a drop of 33%. In the DMN, the drop of FC is also
strongly expressed. While RSG/RSD and Hp show a 24%
and 22% drop, respectively, GP, Cg and Hyth experience a
much stronger loss of 38% (GP), 40% (Cg), and 45% (Hyth).
The strongest effect is noted for the rostral dorsal prelimbic
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FIGURE 6 | Condensed aging effects of functional connectivity (FC) for individual cortical, subcortical and DMN nodes. Mean z-score values of all correlations of
each ROI are represented. All nodes show a clear inverse U-shape behavior with a pronounced maximum of the z-score values at 8.5 months of age, followed by a
substantial drop to low values at 12.5 months of age. Only the entorhinal cortex (right diagram; DMN) shows a deviating behavior with an early maximum at
5.5 months.

cortex (PrL) with a massive 70% loss in FC strength at
12–13 months of age.

DISCUSSION

In the present study, we have carefully investigated the age
dependence of functional networks by systematic analysis of
the rsfMRI data. The age between 2 and 13 months of age
was studied, thus covering the most relevant life span phase
typically used in chronic long-term experimental mouse models
on cerebral diseases and lesions. We have particularly focused
on the sensorimotor networks and the DMN as these are most
often the relevant functional networks investigated for functional
deficits during brain diseases and for functional improvements
during therapeutic strategies. Thus, we have unraveled an inverse
U-shape behavior of the functional network strength with aging,
reaching the maximal strength at 8–9 months of age for both, the
sensorimotor networks and the DMN.

The age dependence curve shows similar functional network
values shortly after weaning of 2 months of age and at progressed
aging at 13 months of age, crossing the maximum strength at
8–9months. Cortical and subcortical groups presented an overall
drop of approximately 33% in network strength when going from
8 to 13 months, with the exception of only a few correlations
such as the M1/2-S1 or the Cg-PrL connections which remained
rather constant along the whole temporal series. It should be also
highlighted that the S1-S2 connection peaked already at month
5.5, unlike the rest of all the studied interactions. In the DMN, the
variability in network strength was more pronounced, varying
from 24% for RSG/RSD, GP, and Hp to 70% for the rostral dorsal
prelimbic cortex (PrL).

Two earlier studies dealing with mouse models of Alzheimer’s
disease and focusing on the age dependence of the disease
reflected in functional networks changes had also included WT
litter mates in their age dependence studies (Grandjean et al.,
2014; Shah et al., 2016). Although, the age dependence of the
healthy litter mates in those studies was not discussed explicitly
in both reports and their focus was primarily on the AD models,
information about the age dependence of the rsfMRI data can
be derived from their data presentation. Grandjean et al. (2014)
had included an age range from 1 to 21 months at variable step

sizes, including an age range similar to ours. Careful analysis of
the functional networks of the healthy litter mates was limited
to the early life phase and data had been recorded in isoflurane
anesthesia, different from the present medetomidine-isoflurane
mixture, which may affect the functional network results. But
from the examples listed in the report of Grandjean et al. (2014),
maximum connectivity strength appears to occur between 5 and
8 months of age for the healthy litter mates which agrees well
with our present results. In the report by Shah et al. (2016),
quantitative analysis of the hippocampus showed a slight increase
in connectivity till month 8, and for the prefrontal network a
similar increase was reported from 3 to 7 months. Considering
the rather low-level information of the age dependence of the
healthy litter mates in these two studies, the agreement with our
inverse U-shape curve peaking at 8–9 months is very good.

A few recent studies on aging dependence of functional
networks in healthy human subjects (Jolles et al., 2011; Bo et al.,
2014) point also to a general inverse U-shape of functional
network strength. These authors typically compared two or
three age groups, defining them as adolescent, adult and
aged healthy human subjects where the age span within one
group was rather widely defined. These studies confirm our
findings in mice that the FC strength increases from early life,
reaches a maximum to descend again during progressed aging.
Thus, Bo et al. (2014), focusing on the cognitive and motor
networks, found an equivalent inverse U-shape behavior for both
networks, peaking at the young adult group, aged 18–33 years in
their investigation.

Our study shows how FC increases continuously from the
second month of life until month 8–9 in the life span of
mice, from where a continuous decrease in FC takes place
until month 12.5. Although the strength of the FC is variable,
the inverse-U shape is robust throughout the whole brain.
Underlying reasons for this age-dependent behavior of the
functional networks are not understood but a relationship with
structural network changes has been considered. During the
whole life span, a change of the integrity of white and gray
matter content has been reported. Thus, in a study focusing on
the structural brain development of young mice, we recently
reported a continuous myelination increase in healthy mouse
brain up to 6 months of age with parallel cortical thinning,
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clearly indicating an ongoing morphological change during this
period of mouse brain adolescence (Hammelrath et al., 2016). In
a study on structural brain networks with 484 healthy subjects
aging between 5 and 85 years old, Douaud et al. (2014) described
an inverse U-shape pattern. In their study, they revealed how
certain regions of the brain thrive in a late stage of adolescence
till structural connectivity peaked at approximately 40 years of
age, followed by a decrease during aging. With the combined
protocol of diffusion spectrum imaging (DSI) and rsfMRI,
Green et al. (2019) could show dramatic functional changes
without structural changes in mouse models of tauopathy. The
same authors moreover reported that the parallel decreases of
structural and functional networks strength after stroke were
decoupled when a stem cell treatment to the stroke was included
in the experimental protocol (Green et al., 2018). Thus, it
will be of particular interest in future studies to co-register
structural and functional networks using a combined protocol
of DSI and rsfMRI to unravel whether structural and functional
network changes develop in parallel with healthy aging or
whether they may also become decoupled at a certain point.
Parallel to structural alterations, hemodynamic parameters may
also contribute to the observed age dependence decrease of FC.
Thus, Balbi et al. (2015) studied the age-dependent changes
of microcirculation in mouse brain. Their most important
finding was that neurovascular coupling becomes impaired after
8 months already—where also the maximal FC, observed by
us, started to decline—while no change of cellular composition
of the neurovascular coupling or impaired Ca2+ reactivity
was found.

We believe that our studies have an important consequence
for the design, performance and analysis of future longitudinal
rsfMRI studies in mice. As we have seen, there is a strong
effect of aging in mouse connectome, even for temporal
periods as short as a few months. Establishing 8–9 months
as the age at which connectivity starts to decline and taking
into account the progression with age, will benefit to avoid
confounds of aging effects underlying the particular aspects
of disease-caused functional alterations of slow, long-term
functional regeneration processes. In particular, it is between
the 8th and 12th month of life where the mouse begins
to show signs of deterioration. The first senescent changes
take place presumably between 10 and 15 months of age, at
15 months approximately the mouse loses its fertility, and at
18 months aging biomarkers are considered evident (Flurkey
et al., 2007). On the other hand, during the early life span
till 8–9 months of age, a continuously increasing strength of
the functional networks may partly cover decreases caused by

cerebral diseases and may lead to overestimation of therapeutic
effects during apparent ‘‘recovery’’ of functional networks. Thus,
we have planned to extend the study on stroke induction at
variable age in mice to clarify stroke-induced FC alterations
as a function of age and to decipher whether functional
network derangements after stroke are more severe in aged or
young mice.

SUMMARY

FC strength of the sensorimotor and DMNs in the mouse
increases from month 2, continuously reaching the maximum
at 8–9 months of age. The decrease of the functional network
strength after 8–9 months reflects the progressing aging and
reaches low values at 12–13 months of age equivalent to those
in the early adolescent phase at 2–3 months. In summary, the
functional network strength follows a clear inverse U-shape
curve during adolescence to maximum at adulthood and
progressed aging.
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