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Abstract: Prostate cancer (PCa) is the most commonly diagnosed malignancy among men in devel-
oped countries. The five-year survival rate for men diagnosed with early-stage PCa is approximately
100%, while it is less than 30% for castration-resistant PCa (CRPC). Currently, the detection of prostate-
specific antigens as biomarkers for the prognosis of CRPC is criticized because of its low accuracy,
high invasiveness, and high false-positive rate. Therefore, it is important to identify new biomarkers
for prediction of CRPC progression. Extracellular vesicles (EVs) derived from tumors have been
highlighted as potential markers for cancer diagnosis and prognosis. Specifically, urinary EVs directly
reflect changes in the pathophysiological conditions of the urogenital system because it is exposed
to prostatic secretions. Thus, detecting biomarkers in urinary EVs provides a promising approach
for performing an accurate and non-invasive liquid biopsy for CPRC. In this study, we effectively
isolated urinary EVs with low protein impurities using size-exclusion chromatography combined
with ultrafiltration. After EV isolation and characterization, we evaluated the miRNAs in urinary
EVs from healthy donors and patients with CRPC. The results indicated that miRNAs (miR-21-5p,
miR-574-3p, and miR-6880-5p) could be used as potential biomarkers for the prognosis of CRPC. This
analysis of urinary EVs contributes to the fast and convenient prognosis of diseases, including CRPC,
in the clinical setting.
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1. Introduction

Prostate cancer (PCa) is the most commonly diagnosed malignancy among men in
developed countries and the third leading cause of cancer-related mortality [1]. Early-stage
PCa usually develops in an androgen-dependent manner and is treated using androgen
deprivation therapy or surgical castration. However, in most patients with advanced PCa,
the disease progresses to castration-resistant PCa (CRPC) [2]. In the United States, the
average five-year survival rate for early-stage PCa is 100%, while that for CRPC is less
than 30% [3,4]. Currently, the detection of prostate-specific antigen (PSA), a biomarker
for the prognosis of CRPC, is criticized for its low accuracy, false-positive rate, and high
invasiveness due to infection, trauma, and benign prostatic hyperplasia [5,6]. Biopsy
specimens of CRPC are difficult to obtain and might not accurately reflect the disease’s
progression due to intratumor heterogeneity in patients with CRPC. Therefore, additional
prognostic biomarkers are required for the specific and accurate prediction of cancer
progression [7]. To accommodate this, it is necessary to develop a novel liquid biopsy
method for CRPC detection using human body fluids.
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Urine, after blood, is the second most conventionally used biofluid for disease diag-
nosis, and it presents the opportunity for an accurate, non-invasive liquid biopsy. Urine
has enormous potential by providing biomarkers, such as proteins, mRNAs, miRNAs,
and extracellular vesicles [8,9]. Biomarkers in extracellular vesicles (EVs) have been ex-
tensively studied as novel sources for liquid biopsy [10–13]. EVs, which are produced
from their parental cells, serve as central mediators of cell-to-cell communication. They are
nano-sized materials encompassed by lipid bilayers, and multiple components, including
proteins, peptides, lipids, carbohydrates, DNAs, and RNAs, are embedded inside them
or on their surface [14]. EVs can be directly transferred to their parental or neighboring
cells. In addition, EVs can enter the circulatory system and travel through body fluids,
including blood and urine [15,16]. This allows the transfer of biomolecules to other cells
or tissues, where they subsequently participate in regulating the pathogenesis of various
diseases, including cancer [17–21]. Specifically, urinary EVs directly reflect changes in urine
in the pathophysiological status of the urogenital system because it is exposed to prostatic
secretions [22]. Thus, the detection of biomarkers in urinary EVs provides a promising
avenue for achieving accurate and non-invasive liquid biopsies for PCa.

To achieve this, however, high levels of protein impurities in the urine can interfere
with biomarker detection by urinary EVs, resulting in false-positive signals [23]. It is
necessary to develop a standard method for EV isolation from human urine to ensure
high yield and purity. Various methods have been applied to isolate EVs from urine,
including filtration, precipitation, hydrostatic dialysis, and size-exclusion chromatography
(SEC) combined with ultrafiltration [16]. Among them, EV precipitation can be performed
by adding polyethylene glycol (PEG) to urine, and EVs can be recovered via regular
centrifugation [24]. Thus, the method facilitates the isolation of EVs from a large number of
samples. Despite this advantage, this method has been criticized for its considerably low
purity and the fact that it can precipitate many other components, including proteins, along
with EVs [25]. Because it was reported that SEC effectively reduced impurities, such as
albumin and other proteins in the sample [16], this method is more suitable than PEG-based
precipitation for accurate prediction of CRPC progression using EVs from urine. However,
because the concentration of EVs in urine is lower than that in serum, a higher volume
of urine is needed to isolate EVs. Thus, EV isolation using SEC requires a concentration
process, including ultrafiltration (UF), to reduce the volume prior to injection.

Herein, based on our previous work regarding the EV isolation from the healthy
donors [12], we compared the PEG-based precipitation method and SEC combined with
UF to separate EVs from healthy donors and patients with CRPC. After EV isolation, the
size, concentration, purity, and miRNA profiles of urinary EVs in healthy donors and
CRPC patient groups were evaluated (Figure 1). The method and results of this study can
contribute to the development of an accurate liquid biopsy method for CRPC using EVs
from human urine.
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Figure 1. Schematic illustration of extracellular vesicle (EV) isolation using polyethylene glycol 
(PEG) precipitation or size exclusion chromatography and analysis from the urine of healthy donors 
and patients with CRPC. 

2. Materials and Methods 
2.1. Urine Collection and Pretreatment 

Urine samples from patients with CRPC were collected at the Korea University Hos-
pital. The study was approved by the Institutional Review Board of the Korea University 
School of Medicine and the Incheon National University Institutional Review Board (IRB 
7007971-202001-001A). Written informed consent was obtained from all healthy donors 
and patients with CRPC. Urine samples of 8 healthy donors between the ages of 26 and 
53 years were obtained in the morning before smoking and drinking (Table 1). The col-
lected urine samples were stored at −80 °C until further pretreatment. The pretreatment 
method comprised three steps: low-speed centrifugation (300× g, 10 min) to remove cells 
and medium-speed centrifugation (3000× g, 20 min) to remove larger vesicles. After the 
final centrifugation (17,000× g, 20 min), the supernatant was stored at 4 °C while the pellet 
was incubated with 200 mg/mL dithiothreitol (DTT) (Sigma, St. Louis, MO, USA) at 37 °C 
for 10 min to release the trapped EVs through the depolymerization of the Tamm-Horsfall 
proteins [26]. After DTT treatment, the pellet was further centrifuged (17,000× g, 10 min), 
and the supernatants from the centrifugations were mixed and filtered through a 0.22-µm 
pore size filter. 

Table 1. Demographic and clinicopathological characteristics of castration-resistant prostate cancer 
patients recruited to the study. 
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Figure 1. Schematic illustration of extracellular vesicle (EV) isolation using polyethylene glycol (PEG)
precipitation or size exclusion chromatography and analysis from the urine of healthy donors and
patients with CRPC.

2. Materials and Methods
2.1. Urine Collection and Pretreatment

Urine samples from patients with CRPC were collected at the Korea University Hos-
pital. The study was approved by the Institutional Review Board of the Korea University
School of Medicine and the Incheon National University Institutional Review Board (IRB
7007971-202001-001A). Written informed consent was obtained from all healthy donors
and patients with CRPC. Urine samples of 8 healthy donors between the ages of 26 and
53 years were obtained in the morning before smoking and drinking (Table 1). The collected
urine samples were stored at −80 ◦C until further pretreatment. The pretreatment method
comprised three steps: low-speed centrifugation (300× g, 10 min) to remove cells and
medium-speed centrifugation (3000× g, 20 min) to remove larger vesicles. After the final
centrifugation (17,000× g, 20 min), the supernatant was stored at 4 ◦C while the pellet was
incubated with 200 mg/mL dithiothreitol (DTT) (Sigma, St. Louis, MO, USA) at 37 ◦C for
10 min to release the trapped EVs through the depolymerization of the Tamm-Horsfall
proteins [26]. After DTT treatment, the pellet was further centrifuged (17,000× g, 10 min),
and the supernatants from the centrifugations were mixed and filtered through a 0.22-µm
pore size filter.

Table 1. Demographic and clinicopathological characteristics of castration-resistant prostate cancer
patients recruited to the study.

Age (years) Tumor Stage Gleason Score PSA (ng/mL)

Mean ± SD Range T4 6 7 8 9 Mean ± SD Range

Patients with CRPC (n = 6) 76.8 ± 5.9 68–83 6 1 2 2 1 171.1 ± 254.2 0.236–600

2.2. Urinary EV Isolation Using Ultrafiltration and SEC

Then, 12 mL of pretreated urine were concentrated to 0.5 mL at 5000× g for 10 min
using an Amicon Ultra-15 Centrifugal Filter Unit (100 kDa MWCO) (Millipore, Bedford,
MA, USA). The concentrated sample was added to a qEV size-exclusion column (Izon
Science, Christchurch, New Zealand). The fractions (0.5 mL per each faction) were eluted
with PBS, and samples were used immediately or stored at −80 ◦C until further use.
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2.3. Urinary EV Isolation Using Polyethylene Glycol-Based Precipitation

For polyethylene glycol (PEG)-based precipitation, the modified ExoQuick-TCTM

method was used for more efficient isolation of urinary EVs [12]. Briefly, the ExoQuick-
TCTM EV precipitation solution (System Biosciences, Palo Alto, CA, USA) was mixed with
the pretreated urine at a 3:7 ratio (v/v), and the mixture was further incubated for 12 h
(overnight) at 4 ◦C, followed by centrifugation at 3000× g for 30 min at 4 ◦C. The pellet
containing urinary EVs was dissolved in 1× PBS and stored at −80 ◦C until further use.

2.4. Quantification of EV Particles and Proteins

The number and size of urinary EVs were analyzed via nanoparticle tracking analysis
(NTA) using a NanoSight NS300 system (Malvern Panalytical, Malvern, UK). Samples
were recorded for three 30-second videos at camera level 14. The protein concentration
was quantified using the Bradford assay with a Bio-Rad Protein Assay Reagent (Bio-Rad,
Hercules, CA, USA). The Bradford working reagent was used according to the manu-
facturer’s instructions. Each diluted sample and standard were mixed with the reagent
solution, respectively, and incubated at room temperature for 10 min. The absorbance was
measured using VarioskanTM Flash Multimode Reader (Thermo Fisher Scientific, Waltham,
MA, USA) at 595 nm.

2.5. Transmission Electron Microscopy (TEM)

For TEM, the isolated EVs were adsorbed onto copper grids coated only with a thin
carbon foil. The sample on the grid was stained with 2% uranyl acetate for 1 min. The
grid was washed with distilled water, followed by drying for 15 min. The samples were
analyzed using a JEM-1400 Plus electron microscope (JEOL, Akishima, Tokyo, Japan) at the
Korea Basic Science Institute in the Republic of Korea.

2.6. Western Blot Analysis

For Western blotting, EVs were lysed in 10× RIPA buffer (Millipore, Bedford, MA,
USA) supplemented with a protease inhibitor cocktail (Thermo Fisher Scientific, Waltham,
MA, USA). Samples were identified under reducing (TSG101) and non-reducing (CD63)
conditions, and 108 EV particles were loaded onto (10%) polyacrylamide gels and subjected
to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Separated
proteins were transferred to a nitrocellulose membrane with a 0.45-µm pore size (Bio-Rad,
Hercules, CA, USA) at 80 V for 2 h. After blocking with 5% skim milk, the membranes
were incubated with anti-TSG101 (Abcam, ab83, Cambridge, UK) and anti-CD63 (MBL
International Corporation, MEX002-3, Woburn, MA, USA) antibodies overnight at 4 ◦C,
followed by incubation with a horseradish peroxidase-conjugated anti-mouse secondary
antibody (Abcam, ab6728, Cambridge, UK). ECL Blotting Reagent (Cytiva, MA, USA) was
used for the chemiluminescence reaction. Images were analyzed using a ChemiDoc XRS+
imaging system (Bio-Rad, Hercules, CA, USA).

2.7. RNA Extraction and Real-Time Polymerase Chain Reaction (RT-PCR)

RNA was isolated from EVs using a FavorPrepTM Tri-RNA Reagent (Favorgen Biotech
Corp., Ping-Tung, Taiwan) according to the manufacturer’s instructions. RNA concen-
tration and purity were analyzed using a NanoDropTM Lite spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). In total, 300 ng of RNA was reverse-transcribed
with the Mir-XTM miRNA First-Strand Synthesis Kit (Clontech Laboratories, Palo Alto,
CA, USA), which is specific for mature miRNA sequences. RT-PCR was performed using
the StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). To
analyze the miRNA expression levels in EVs, U6 small nuclear RNA (snRNA) was used as
an internal control for the TB Green Advantage qPCR premix (Clontech Laboratories, Palo
Alto, CA, USA). The relative levels of each miRNA were calculated as ∆CT = CTmiRNA −
CTU6. Comparative quantification was performed using the 2−∆CT method and is presented
as log2 values.
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2.8. Statistical Analysis

All data were analyzed using GraphPad Prism 7 (GraphPad Software, La Jolla, CA,
USA). Data were analyzed using the Mann–Whitney U test and two-way ANOVA, and
values were considered statistically significant when p < 0.05.

3. Results and Discussion
3.1. PEG Precipitation-Based Isolation of EVs from Human Urine

The PEG-based precipitation method adopts EV isolation by lowering the solubility of EVs
in the solution. We previously reported that modified ExoQuick-TCTM (MEQ) enabled urinary
EV isolation from healthy donors [12]. Thus, we first isolated urinary EVs from healthy donors
and patients with CRPC using the MEQ method and assessed EV isolation concentration and
purity (Figure 2). The results showed that the average concentrations of urinary EVs from healthy
donors and patients with CRPC were 3.34 × 109 and 2.56 × 109 particles/mL urine, respectively.
However, there was no significant difference in the EV concentration between the two groups
(Figure 2A). The purity of isolated EVs was also measured, and no significant difference in
urinary EV purity was observed between healthy donors (6.93 × 108 particles/µg protein) and
patients with CRPC (3.67 × 108 particles/µg protein) (Figure 2B).
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Figure 2. Isolation of urinary EVs via PEG precipitation from healthy donors and patients with CRPC.
(A) Urinary EV concentration (EV particles/mL urine) from healthy donors and patients with CRPC.
(B) Urinary EV purity (EV particles/µg protein) from healthy donors and patients with CRPC. All
values are presented as the median ± SD (ns: no significance; n = 6–13).

3.2. SEC-Based Isolation of EVs from Human Urine

Recently, SEC has been applied to separate EVs from other components in a solution,
including culture medium and urine. Because neither an additive reagent nor centrifugal
force is required for EV isolation, the method allows for the isolation of EVs with higher
quality and integrity compared to traditional methods. However, considering the relatively
low concentration of EVs in urine, ultrafiltration is a prerequisite for enriching EVs to reduce
the sample volume before injection into the SEC column for urinary EV isolation. Based on
this, urine samples from healthy donors and patients with CRPC were first concentrated
using ultrafiltration, followed by EV isolation using SEC (Figure 3). The concentrations of
urinary EVs in each eluted fraction (33 fractions) were measured using NTA. As shown
in Figure 3A–D, fractions 7 to 9 from healthy donors and patients with CRPC contained
the majority of urinary EVs among the fractions. The average concentrations of EVs
isolated from the urine of healthy donors and patients with CRPC were 12.8 × 109 and
9.5 × 109 particles/mL urine, respectively (Figure 3E). However, no significant difference in
urinary EV concentration was observed between healthy donors and patients with CRPC.
To verify that the isolated EVs maintained typical characteristics of EVs, EVs in fractions
7 to 9 from healthy donors were further analyzed for their shape and the presence of
biochemical markers. As shown in Figure 3F, the EVs showed rounded spherical shapes
with sizes ranging from 100 to 200 nm, as analyzed using TEM. Western blot analysis of the
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EV surface marker, CD63, and EV internal marker, TSG101, demonstrated the presence of
EVs (Figure 3G).
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Figure 3. Isolation of urinary EVs via size-exclusion chromatography combined with UF from healthy
donors and patients with CRPC. (A) Urinary EV concentration (EV particles/mL fraction) from
healthy donors. (B) Urinary EV size distribution from healthy donors in all size-exclusion chromatog-
raphy fractions. (C) Urinary EV concentration (EV particles/mL fraction) from patients with CRPC.
(D) Urinary EV size distribution from patients with CRPC in all size-exclusion chromatography
fractions. (E) Urinary EV concentration (EV particles/mL urine) from healthy donors and patients
with CRPC. (F) TEM image of isolated urinary EVs. (G) Western blot analysis of the EV marker
proteins. The number on the left of blot indicates the size marker. All values are presented as the
median ± SD (ns: no significance; n = 3–24).

3.3. Comparison of PEG Precipitation and SEC for Urinary EV Isolation

To isolate urinary EVs with high yield and purity, the PEG-based EV precipitation
method was also tested for EV isolation from both healthy donors and patients with CRPC.
In many cases, a high concentration of protein impurities from urine can be co-isolated
with urinary EVs. To test this, the same volume of urine was used for comparison between
the methods. As shown in Figure 4A, high amounts of protein impurities (17.9 and 40.1 µg
in healthy donors and patients with CRPC, respectively) were observed in the urinary EVs
isolated through PEG precipitation. Although urinary EVs isolated from CRPC patients
contained slightly higher amounts of protein than those isolated from healthy donors,
no significant difference was observed. However, when EVs were isolated from urine
using SEC, no detectable protein impurities were observed in either healthy donors or
patients with CRPC. This clearly demonstrates that SEC ensured urinary EV isolation with
high purity.
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Figure 4. Comparative analysis of urinary EVs isolated via PEG precipitation and size-exclusion
chromatography. (A) Protein amount (µg) from healthy donors and patients with CRPC. (B) Urinary
EV particle size (nm) from healthy donors and patients with CRPC. (C,D) Urinary EV size distribution
from healthy donors and patients with CRPC isolated via PEG precipitation. (E,F) Urinary EV size
distribution from healthy donors and patients with CRPC isolated via size-exclusion chromatography
combined with UF. All values are presented as the median ± SD (ns: no significance; n = 5–24).

The sizes of urinary EVs isolated using each method were also compared, and there
were no significant differences in the average EV sizes. The average sizes of EVs isolated
via PEG precipitation were 187.3 and 175.6 nm for healthy donors and patients with CRPC,
respectively. Moreover, the average sizes of isolated urinary EVs using SEC were 179.9
and 184.4 nm for healthy donors and patients with CRPC, respectively. However, no
statistically significant difference was observed among the groups, indicating that the
first isolation method did not affect the size of isolated particles. Moreover, the results
suggested that CRPC did not affect the average size of EVs (Figure 4B). Interestingly,
the size distribution profile analyzed through NTA showed that the PEG precipitation
method produced multiple major nanoparticle peaks (Figure 4C,D). In contrast, urinary EV
isolation via SEC resulted in relatively homogenous peaks, regardless of cancer occurrence
(Figure 4E,F). This indicates that PEG precipitation may induce aggregation of EVs with
other EVs. Additionally, protein impurities can be associated with EVs or themselves to
produce heterogeneous nanoparticles. It was also reported that a large amount of EVs
with the size ranging from 50 to 150 nm was obtained by SEC while PEG precipitation
produced particles with various sizes [27]. Overall, we concluded that urine concentration
using UF followed by EV isolation using SEC helps produce urinary EVs with minimal
protein impurities.

3.4. Evaluation of Cancer-Related miRNA Levels in Urinary EVs from Healthy Donors and
Patients with CRPC

EVs are ideal sources of biomarkers for the diagnosis and prognosis of diseases,
including PCa [28]. EVs isolated from human urine can be widely used for liquid biop-
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sies. Some disease-related miRNAs are encapsulated in EVs, secreted into the body fluid,
and circulated through the body. To test if the isolated urinary EVs contained specific
miRNAs, we chose six miRNAs (miR-16-5p, miR-375, miR-6756-5p, miR-21-5p, miR-574-3p,
and miR-6880-5p) that were identified as potential biomarkers for differentiating cancer
from healthy donors based on previous studies [29–33]. Real-time PCR analysis of each
miRNA in the urinary EVs isolated using SEC from healthy donors and patients with CRPC
was performed to assess miRNA levels. The amount of each miRNA was normalized with
U6 snRNA level of the same sample described in the ‘Materials and Methods’ section.
Because the urinary EV miRNA profiles can vary among individuals of different ages,
EV miRNA profiles from healthy donors were compared with different ages. As shown
in Figure S1, there were no significant differences in the most of miRNAs except miR-16-5p
between two groups of different ages. Further investigation should be undertaken to
explore the EV miRNA profiles with ages over 60. First, the relative levels of miR-16-5p
in healthy donors and patients with CRPC were 5.55 and 6.73, respectively (Figure 5A).
However, there was no statistically significant difference between the two groups (p = 0.345).
This is consistent with a previous report that miR-16-5p can be used as an internal control
for EVs because its level does not vary among humans or across disease states [34–36].
In addition, the relative levels of miR-375 and miR-6756-5p were 3.95 and −1.88, respec-
tively, in EVs from healthy donors and 3.40 and −0.86, respectively, in EVs from patients
with CRPC (Figure 5B,C). It was reported that the overexpression of miR-375 prevented the
secretion of metastasis-suppressive proteins by down-regulation of SEC23 homolog A and
Yes-associated Protein 1 [37,38]. Furthermore, overexpression of miR-6756-5p in CRPC cells
was reported, miR-6756-5p decreased the expression of IL-24 that has tumor suppressor
activities [39,40]. However, there was no significant difference in expression of the miR-375
(p = 0.852) and miR-6756-5p (p = 0.181) between the two groups.
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Figure 5. Relative expression levels of cancer-related miRNAs in urinary EVs from healthy donors
and patients with CRPC. (A) miR-16-5p, (B) miR-375, (C) miR-6756-5p, (D) miR-21-5p, (E) miR-574-3p,
and (F) miR-6880-5p in urinary EVs from healthy donors and patients with CRPC analyzed using
RT-PCR and normalized (∆CT analysis) to expression levels for the U6 snRNA gene and are shown
as log2 value. All values are presented as the median ± SD (* p < 0.05, ** p < 0.01, ns: no significance;
n = 6–8).

In contrast, we found significantly higher levels of miR-21-5p, miR-574-3p, and miR-
6880-5p in patients with CRPC (Figure 5D–F). The average levels of miR-21-5p were 1.46
and 3.02 in EVs isolated from healthy donors and patients with CRPC, respectively, which
was equivalent to a 2.07-fold increase in urinary EVs from patients with CRPC. Moreover,
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the relative levels of miR-574-3p and miR-6880-5p were −0.97 and −1.76, respectively, in
EVs from healthy donors and 1.20 and 0.32, respectively, in EVs from patients with CRPC.
Previously, it has been reported as a prognostic biomarker through changes in miR-21-5p
according to the advanced prostate cancer patients receiving androgen deprivation ther-
apy [41]. Overexpression of miR-21-5p has been reported to downregulate programmed
cell death protein 4, which is a target of androgen receptor signaling and a regulator of
PCa cell growth, survival, and castration resistance [42]. In addition, Phosphatase and
tensin homolog (PTEN) is a target gene of miR-21-5p, which involves tumor cell growth,
metastasis and invasion by downregulating the expression of PTEN [43]. Thus, our results
demonstrated that miR-21-5p in urinary EVs can be further investigated as a biomarker for
CRPC using a large cohort study. In addition, miR-574-3p was reported to be overexpressed
in urinary EV of PCa patients [44], miR-574-3p was involved in the regulation of the Notch
signaling pathway, Wnt signaling pathway, apoptosis, DNA damage response, inflam-
matory response pathway and angiogenesis [45]. Previous studies have not reported the
role of miR-6880-5p in PCa. Our findings revealed that miR-6880-5p could be a candidate
biomarker for CRPC. Overall, miR-21-5p, miR-574-3p, and miR-6880-5p in human urinary
EVs can be further investigated as liquid biopsy biomarkers for CRPC. The method and
results investigated in this study offer great opportunities for non-invasive liquid biopsy of
CRPC using EVs from urine.

4. Conclusions

We showed that EVs could be efficiently isolated through a two-step process, including
urine concentration through ultrafiltration and EV isolation via SEC. The method drastically
lowered the amount of protein impurities in the isolated urinary EV solutions compared to
the PEG precipitation method. The size distribution of EVs from the NTA results confirmed
that a relatively homogenous population of EVs was isolated. Analysis of urinary EV
miRNAs demonstrated that the method showed promise for applications, such as the
non-invasive liquid biopsy of CRPC. Overall, the method allows for a feasible analysis that
can be used for the fast and accurate prediction of disease progression, including CRPC.
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