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Blood flow restriction on force-velocity profile

INTRODUCTION
Resistance training (RT) is a useful tool for increasing athletic per-
formance as well as improving health [1, 2]. Traditionally, to improve 
muscle mass and strength capacity, a range of intensities within 
60–85% of one-repetition maximum (1RM) has been recommend-
ed [3]. However, this methodology has shown remarkable evolution 
in recent years. New training methods and technologies such as 
electrostimulation [4], isoinertial methods [5] mechanical vibra-
tions [6, 7], blood flow restriction (BFR) [8], and different combina-
tions [9] have been a recent subject of research in the specific research 
literature [10].

The interest in BFR training has increased during the last five years. 
This kind of training methodology can provide an effective alternative 
to conventional training [11]. This methodology requires the applica-
tion of a cuff on the proximal part of the limb [12]. The cuff should 
generate an external occlusion leading to BFR, which is the basis of 
this methodology. Therefore, of all variables that configure the BFR, 
the level of occlusion must be properly controlled. In this regard, the 
arterial occlusion pressure (AOP) has been suggested as the most 
precise way to prescribe the level of pressure in BFR [13]. Several 
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pieces of research have shown that the use of AOP can be combined 
with RT stimuli to cause gains in strength and hypertrophy [14]. The 
AOP-based RT training methodology (AOP–RT) has become popular 
in recent years due to its potential to improve strength [11] and mus-
cle hypertrophy [12] by applying light loads (≈20–40% of 1RM). The 
key point of this type of methodology is that the results obtained show 
similar gains compared to traditional training with medium/high loads 
of 60–85% 1RM [11]. This feature offers interesting practical appli-
cations in cases where RT with high loads is contraindicated (i.e., 
older people, patients with chronic diseases, or in recovery process-
es for musculoskeletal pathologies) [15].

Although the application of this BFR-RT methodology within ath-
letic performance could yield performance benefits in many disci-
plines [16, 17], the latest trends in RT include the advice not to 
work in ranges close to full fatigue [18]. In this regard, this stresses 
the importance of implementing velocity as a key variable for mea-
suring the intensity during training [19, 20]. RT training for improv-
ing sports performance is closely related to the velocity at which the 
load has been performed [21]. The velocity has traditionally been 
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96 × 13 cm vs. narrow 57 × 9 cm) during BFR had an acute effect 
on bar velocity and power output during BP exercise at 70% 1RM 
and using 90% of arterial occlusion. The authors found an increased 
in peak bar velocity (i.e., 18%, ES = 1.65), mean bar velocity (i.e., 
13%, ES = 1.00) and peak power output (i.e., 15%, ES = 1.07) 
when wide BFR was compared to narrow BFR, and without 
BFR [33, 34]. Therefore, type of cuffs used during BFR had an influ-
ence on velocity and power in BP exercise. The authors speculate on 
the possibility of a “rebound effect” that would explain the increase 
in the peak velocity, not the average. This effect is attributed to the 
mechanical energy generated by the cuff, and therefore the width of 
the cuff would be an influential factor [34].

A recent study performed by Wilk et al. [32] showed an acute ef-
fect of type of cuffs on bar velocity in BP exercise, but no studies 
have investigated the acute effect of different pressure levels on bar 
velocity in BP and squat (SQ) exercises. Therefore, the main objec-
tive of this study was to analyse the acute effect of different degrees 
of partial occlusion in the arms and legs (without occlusion, 40%, 
60%, 80% and 100% of AOP) on bar velocity (i.e., mean velocity 
of propulsive phase [VelMED]) in bench press and squat exercises at 
60% of 1RM in healthy active subjects.

MATERIALS AND METHODS 
Participants
A total of 14 males took part in this study. All participants were 
healthy and physically active. The mean and standard deviation 
(± SD) of age, height, and body mass were 23.6 ± 4.1 years, 
1.85 ± 0.11 m, and 85.4 ± 4.1 kg, respectively. The 1RM values 
were 79.33 ± 14.53 kg and 76.11 ± 6.95 kg, with a relative strength 
index  [35] of 1.07 ± 0.003 and 1.12 ± 0.04  for BP and 

analysed globally although, for greater precision, it should be bro-
ken down into 3 areas: 1) mean velocity, 2) mean propulsive veloc-
ity (VelMED), and 3) maximum velocity (VelMAX) [22]. The magnitude 
of mean propulsive velocity (VelMED) determines objectively the func-
tional capacity of a subject [23], their performance level, and even 
their level of fatigue [24]. In addition, it contributes to optimization 
of the instantaneous load and avoidance of overtraining [23]. In this 
sense, it seems appropriate to train with multi-joint exercises for the 
RT [25] without neglecting the production of VelMED in addition to 
providing large increases in power, with a high degree of transfer to 
sports movements [26].

The muscle performance is determined by its contractile capaci-
ty and neuromuscular activation [27]. In BFR training, it has been 
shown to acutely affect muscle activation and neuromuscular fa-
tigue [28]. These changes produce mechanical muscle tension that 
increases the force of muscle contractions [29]. This variation in mus-
cle tissue produces an increase in metabolic stress and the sensitiv-
ity of the intracellular anabolic and catabolic pathways [30]. The in-
creased sensitivity leads to the faster synthesis of muscle proteins [29]. 
Recently, Wilk et al. [31] studied the acute effects of external com-
pression with BFR at 100% and 150% of AOP on maximal strength 
and strength-endurance performance during bench press exercise 
(BP) in healthy strength-trained men. Results obtained from this study 
revealed an increase of maximal strength with high external compres-
sion (i.e., 150% vs. without BFR, effect size [ES] = 0.19). The num-
ber of repetitions and time under tension were also increased signif-
icantly when subjects were tested at 150% of BFR. For this reason, 
the authors concluded that maximal strength as well as endurance 
performance was increased when high external compression was ap-
plied. In this line, Wilk et al. [32] found that type of cuffs (i.e., wide 

FIG. 1. Graphic representation of the experimental design.
BFR: blood flow restriction. CON: without blood flow restriction. 1RM: 1 repetition maximum.
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SQ exercises respectively. All study participants reported previous 
recreational experience in external resistance training for 1 to 3 years. 
Prior to conducting the experiment, all participants received an ex-
planation of the purpose of the study, the evaluation procedures, and 
the potential risks of participating in it. Once informed, all participants 
signed informed consent. The experimental procedure of this inves-
tigation complied with the ethical principles of the Declaration of 
Helsinki. This study was approved by the University Ethics Commit-
tee (UA / 2018–11–15).

Experimental setting
All subjects were recruited for a total of 6 visits to the laboratory. The 
intervention protocol is described in Figure 1. During the first visit, 
informed consent was signed, and subsequently, anthropometric 
measurements corresponding to body mass (Avery Ltd Model 3396 
ABV) and height (Holtain Ltd., Dyfed, Wales) were made. In addition, 
the level of partial occlusion of the venous return was individually 
determined for the upper and lower body. On the second visit, the 
participants performed a familiarization session with BP and SQ 
exercises. The familiarization session consisted of standardized warm-
up (i.e., 10 minutes of continuous running) arm and hip mobility 
exercises.

Determination of arterial occlusion pressure (AOP)
For AOP measurement, an ultrasound machine with an echo-Doppler 
probe was used (Doppler Sonosite Titan ultrasound machine, Sonosite, 
Inc., Bothwell, WA). The determination procedure took place a week 
before the testing procedures and was carried out by recording the 
flow wave next to the electrocardiographic vascular pulse scan, taking 
images of flow waves at the level of the inguinal and brachial artery 
fold [36]. Participants remained in a prone position on a stretcher 
during the entire procedure [37]. The pneumatic cuff (Komprimeter 
standard pneumatic Rudolf Riester GmbH – Bruckstr. Jungingen Ger-
many) used for intervention was placed on the proximal portion of the 
arm (57 × 9 cm) and leg (96 × 13 cm) to determine 100% arterial 
occlusion pressure using a Doppler ultrasound scan of the femoral 
and brachial artery. External pressure was increasing and monitored 
with a manometer until the signal of blood flow disappeared in the 
echo-Doppler, and recorded as 100% AOP in mmHg [38]. From this 
value, established as 100% AOP, the relative percentages of AOP 
(80%, 60%, 40%) were calculated and subsequently used in the 
experimental protocols. Table I shows descriptive data of these relative 
percentage values of AOP in participants.

Familiarization session and 1RM test
Five days prior to the beginning of the testing procedures, participants 
performed a preliminary familiarization session with SQ and BP with 
a Smith machine (Multipower Fitness Line, Peroga, Spain), which 
allows a constant vertical movement of the bar throughout the execu-
tion and prevents lateral movement of the bar. Two certified specialists 
(Certified Strength and Conditioning Specialist (NSCA-CSCS)) monitored 

the performance of the correct technique of both exercises. The BP 
exercise began in the supine position on a flat bench, with the feet 
resting on the floor and the hands resting on the bar slightly wider than 
the distance between the shoulders [39]. Bench positions and grip 
widths were measured to be reproduced individually for each lift. The 
course of the bar had to go down to the chest, just above the nipples 
at a controlled velocity and wait there for approximately 1 s, until the 
order to start the concentric phase was given. This momentary pause 
between the eccentric and concentric phases was applied to minimize 
the influence of the rebound effect and allow more consistent measure-
ments [40]. Bouncing the bar on the chest or lifting the shoulders or 
torso off the bench was not allowed. In the SQ exercise the subjects 
started with their knees and hips fully extended forming an upright 
position with feet apart at shoulder height and the bar resting on the 
back at the level of the acromion [41]. Subjects lowered the bar until 
their upper thighs were below horizontal (parallel with floor) [42]. Then 
the reverse movement was started and the initial vertical position was 
ascended. In both exercises (BP and SQ) the eccentric phase was 
controlled and constant, but the concentric phase was carried out at 
maximum velocity. The execution of these exercises was always mon-
itored by 2 experienced evaluators (NSCA-CSCS).

This familiarization session began with a warm-up, consisting of 
5-minute running on a treadmill at 10 km/h and 5 min of lower limb 
mobilization exercises for a SQ day. After that, participants performed 
two sets of 8 and 6 repetitions of SQ with three minutes of rest be-
tween sets and loads of 20 and 30 kg, respectively [43]. After 
48 hours, for familiarization with the BP exercise, it began with 5 min 
of exercise bike cycling at a light self-perceived intensity, followed by 
5 min of passive stretching and mobility exercises for the upper body, 
for two sets of 5 repetitions with loads of 20 and 40 kg [44].

1 repetition maximum in squat and bench press exercises
After the standardized dynamic warm-up, an indirect and incremen-
tal test was performed to obtain the 1RM without exceeding 80% of 
the estimated 1RM. The 1RM allows one to know the individual load 
at 60% 1RM in the full squat and wide grip bench press exer-
cise [45, 46]. The initial load was established at 20 kg (bar weight) 
and was progressively increased by 10 kg loads until the mean 
propulsive velocity (VelMED) obtained was < 0.8 m · s-1. Then, the 
load was adjusted individually, with small increments (from 2.5 to 
5 kg) to accurately determine 1RM at the maximum concentric veloc-
ity, with an eccentric phase that was performed at a controlled aver-
age velocity (~ 0.57–0.77 m · s-1). Three repetitions were performed 
for light loads (≤ 50% 1RM; VelMED ≥ 0.98 m · s-1), two for medium 
loads (50–80% 1RM; VelMED ~ 0.90–0.68 m · s-1), and only one 
repetition for the heaviest loads (> 80% 1RM; VelMED ≤ 0.68 m · s-1). 
The rest between sets ranged from 3 minutes (< 80% 1RM) to 
5 minutes (> 80% 1RM), performing a complete neuromuscular 
recovery and receiving verbal stimuli to reach maximum velocity. The 
assessment device used was a linear encoder (Chronojump, Barce-
lona, Spain), with a sampling rate of 1.000 Hz.
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performed using statistical analysis software (SPSS Inc, Chicago, 
Illinois, USA).

RESULTS 
The 1RM value for BP and SQ corresponded to 79.33 ± 14.53 kg 
and 76.11 ± 6.95 kg, respectively. The 60% 1RM load correspond-
ed to 47.6 ± 8.7 kg, for the bench press exercise and 45.67 ± 4.17 kg, 
for the squat exercise. Table I shows the descriptive statistics of the 
mean propulsive velocity (VelMED) (m · s-1), and the amount of occlu-
sion (mmHg) for all the levels of occlusion.

In relation to BP exercise, RM ANOVA showed statistically signif-
icant differences (F[4,36] = 7.15, p < 0.001, h2

p = 0.44) in main 
effect levels of the occlusion variable. Bonferroni’s post hoc test 
showed statistically significant differences in the comparison of 80% 
BFR vs. CON (mean difference [MD] = 0.035 m · s-1, p < 0.05, 
ES = 0.52 [1.02–0.03]) and 100% BFR vs. CON (MD = 0.074 m · s-1, 
p < 0.001, ES = 1.08 [1.79–0.38]), see Figure 2A.

In SQ exercise, the RM ANOVA showed statistically significant 
differences (F[2.59, 33.66] = 6.26, p < 0.003, h2

p = 0.33) in the main 
effect of the variable levels of occlusion. Bonferroni’s post hoc test 
showed statistically significant differences in the set comparison 
100% AOP vs. CON (MD = 0.031 m · s-1, p < 0.05), 100% AOP 
vs. 40% AOP (MD = 0.04 m · s-1, p < 0.05), see Figure 2B.

Moreover, the trend analysis showed a statistically significant lin-
ear trend (F[1,9] = 34.9, p < 0.001, F[1,13] = 27.32, p < 0.001) 
for the execution velocity in relation to the different levels of occlu-
sion (CON, 40%, 60% 80% and 100%), for the BP and SQ exer-
cises, respectively. Finally, the percentage difference in the VelMED 
between the level without occlusion, and the different percentages 
with occlusion, were 4.57%, 4.74%, 4.78% and 10.02% for 40%, 
60%, 80% and 100% of AOP, respectively.

DISCUSSION 
The main objective of this study was to analyse the acute effects of 
BFR at different degrees of occlusion pressure levels (i.e., CON, 40%, 
60%, 80%, and 100% AOP) on the BP and SQ exercises at 60% 

Procedures (experimental testing session)
The testing procedures were summarized in Figure 1. All experimen-
tal sessions started with a standardized warm-up identical to that 
used in the familiarization session. Then, each participant performed 
5 sets in a randomized order, with each BFR% established (100%, 
80%, 60%, 40%, and 0% –CON–) for 6 repetitions in BP and 
6 repetitions in SQ exercise (48 hours after). The load was calcu-
lated at 60% of 1RM by polynomial equation [47]. For each set, 
a load of %1RM was used, since it is the percentage that achieves 
the best record in the tests, based on previous research [48–50]. 
This load was individually adapted through second-order polyno-
mial [47] settings to the velocity and progressive load data during 
warm-up without BFR [24]. During the performance of the different 
sets with specific %AOP, participants were encouraged to perform 
each concentric repetition as quickly as they could, whereas the 
eccentric phase [40, 44] was performed at the controlled average 
velocity of < 0.80 m · s-1. There were 3 minutes of rest between sets, 
during which the BFR was not maintained. Pressure levels of each 
%AOP were controlled during BFR experimental intervention in each 
set. The test procedures were performed at the same time of day for 
each participant, and under the same conditions (20 ºC - 22 ºC and 
55% - 65% humidity).

Statistical analysis
All variables were expressed as mean and SD. Furthermore, all the 
dependent variables fulfilled the assumption of normality (i.e., Sha-
piro-Wilk test, p > 0.05). To analyse the influence of degrees of 
occlusion on execution velocity, an analysis of variance of repeated 
measures (RM ANOVA [5]) was performed. The degrees of occlusion 
had a total of 5 levels (i.e., CON, 40%, 60%, 80%, and 100%). 
When the sphericity assumption was not fulfilled, the degrees of 
freedom were corrected using the Greenhouse–Geisser approximation. 
The Bonferroni post hoc test was performed to analyse comparisons 
for each of the levels. This analysis was performed for BP and SQ 
exercises. The effect size (ES) was expressed using Cohen’s d. The 
level of significance was established at p < 0.05. All analyses were 

TABLE 1. Descriptive statistics of the main variables of this study. Execution velocity (m · s-1 ± SD) and the amount of occlusion (mmHg ± SD) 
of the AOP.

CON
LEVEL OF COMPRESSION FROM AOP

40% 60% 80% 100%

Bench Press 
Exercise

VelMED 0.73 ± 0.06 0.77 ± 0.06 0.77 ± 0.07 0.77 ± 0.07 0.81 ± 0.05

COMPRESSION 0 62.2 ± 6.1 93.3 ± 9.1 124.4 ± 12.1 155.5 ± 15.2

Squat  
Exercise

VelMED 1.02 ± 0.08 1.01 ± 0.09 1.05 ± 0.08 1.04 ± 0.07 1.05 ± 0.08

COMPRESSION 0 68.3 ± 7.7 102.4 ± 11.6 136.6 ± 15.5 170.7 ± 19.4

CON: without blood flow restriction. AOP: arterial occlusion pressure. VelMED (m · s-1): mean propulsive velocity in meters by seconds. 
mmHg: millimetres of mercury.
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1RM in healthy and active men. One of the key findings was that 
the mean velocity of the propulsive phase at 60% 1RM was higher 
from 80% occlusion in comparison to CON in BP exercise and 100% 
occlusion in comparison to CON in SQ. In addition, the trend analy-
sis concerning the level of occlusion described a positive linear trend, 
a higher level of occlusion, and a higher velocity of execution, for BP 
and SQ exercises.

According to our results, the level of occlusion had an acute ef-
fect on the execution velocity in BP and SQ exercises, greater effects 
the higher the level of occlusion. General recommendations regard-
ing the use of BFR to improve strength and hypertrophy indicate that 
between 40 and 80% of AOP should be applied. Therefore, if these 
adaptations are the primary focus of our training, one should prior-
itize training based on execution velocity. However, there are few gen-
eral recommendations [29] on how to work using the BFR approach 
to achieve these goals. Currently, there are recent scientific studies 
that have studied the effects that RT-BFR can have on the velocity 
of execution in training with external resistance [31, 32, 33, 53].

Recently, the acute effects of the application of different levels of 
occlusion (i.e., WO, 100 vs 150% AOP) on multiple variables (i.e., 
1RM, time under tension, number of repetitions before a load) in BP 
exercise were assessed [31]. This study showed that compared to 
the no-occlusion condition, for the 1RM assessed, the number of to-
tal repetitions at 60% 1RM and the time under tension 

were greater when applying a BFR of 150% AOP [31]. Moreover, 
the velocity of execution evaluation, (i.e., mean and peak) did not 
show variations throughout the different experimental conditions [31]. 
Wilk et al. [31] observed an acute increase in performance and sug-
gested the possibility of a correlation between the level of external 
occlusion and the acute potentiation response for BP. In contrast, we 
found a significant positive relationship between the increase in the 
level of occlusion and the VelMED (see Table 1). These differences 
could be due to our study not having measured the 1 RM in each 
occlusion condition and not including reaching muscle failure. Train-
ing to muscle failure could cause a progressive loss of velocity, which 
increases exponentially with the number of repetitions performed [51]. 
In muscle failure exercises, the VelMED and VelMAX register decrease, 
and could occur prematurely under BFR conditions [52].

In another study, Wilk et al. [32] found large improvements in 
VelMED and VelMAX after BFR-RT with wide cuff (10 cm) intervention 
on BP. Larger increases in VelMED compared to the present study could 
be due to differences in the load percentage (70% vs. 60%), rela-
tive strength of the participants (1.2 vs 1), number of repetitions 
(3 vs. 6), and/or small differences in cuff size (10 vs. 9 cm). In con-
trast, in another study by Wilk et al. [33] which applied a gradual 
increase from 20 to 90% 1RM with 10% increments, no significant 
improvements in VelMED were obtained (in 60% RM) on BP. These 
results, contrary to the previous ones, could be due to the difference 

FIG. 2. Graphical representation of the mean propulsive velocity, in relation to the levels of partial occlusion of the venous return, at 
60% of the 1 maximum repetition (1RM) for the bench press (A) and squat (B) exercise.
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train at a load of 60–70% RM with a wide cuff and at occlusion lev-
els above ~80% AOP for the BP and close to ~100% AOP for SQ. 
Another possible aspect to consider is that the influence of BFR on 
muscle activity could be modified by the characteristics of exer-
cise [34]. For instance, differences between BP and SQ exercise 
could be produced by applying the cuff (BFR) on the main or anoth-
er primary muscles [64]. In the BP the cuff is applied directly on the 
triceps brachii muscle, having less effect on the primary pectoral 
muscles and anterior deltoid [65]. The type of exercise performed 
could influence the strength and power variables in BFR condi-
tions [65]. In addition, in the SQ exercise, the application of BFR in 
the lower extremities also has an effect on the main muscles [34].

Despite these findings, limitations from the current research are 
worthy of consideration. Only 60% of the load was analysed in re-
lation to the force-velocity profile of each participant, and the rela-
tive strength of the participants was not established as an inclusion 
criterion. Future studies should analyse the influence of different oc-
clusion conditions on ranges of upper and lower loads (i.e., > 80% 
1RM and < 40% 1RM) and chronic effects of BFR on the force-ve-
locity profile.

CONCLUSIONS 
In conclusion, our findings demonstrate that the level of AOP during 
BFR has a small but significant effect on the VelMED at 60% of 1RM 
for both BP and SQ exercises. Specifically, our results suggest that 
from ~80% occlusion, VelMED improved markedly for BP exercise 
and ~100% for SQ exercise, compared to sets completed without 
occlusion. These findings have practical application for strength and 
conditioning specialists because our results suggest that superimposed 
BFR at 80% of AOP allowed an acute neuromuscular potentiation 
of execution velocity.
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in cuff size (narrow, 4 in [33], 9 in present study and 10 cm in [32]). 
Regarding SQ exercise, Wilk et al. [53] found, in an incremental 
study from 40 to 90% 1RM, with increases of 10% of 1RM, no sig-
nificant differences in VelMED at ~80% AOP. In the present study, sig-
nificant increases in VelMED were found, but at higher occlusion lev-
els than in the Wilk et al. [53] (~100% vs. ~80% AOP) study. 
Perhaps higher levels of occlusion may be needed to influence VelMED 
in the lower extremities.

It has been stablished that the BFR causes physiological chang-
es in the metabolic stress [53] that could be related to improvements 
in VelMAX and VelMED, as a consequence of an increase in lactate con-
centrations and acidity (↓ pH) in the intramuscular environment [54]. 
Furthermore, the BFR causes increased sympathetic activity and 
nerve impulse transmission [55] which enhances the activation of 
motor units, recruiting predominantly FT motor units (Fast twitch fi-
bres) [56]. The conclusions proposed by Loenneke et al. [55] sug-
gest that the neuromuscular effects with BFR application could have 
positive effects on the production of force and velocity. Another pos-
sible explanation for the positive effects of RT-BFR on VelMAX and 
VelMED could be related to mechanical factors associated with the 
width of the cuff. These advantages could be due to the mechanical 
work generated by the compression of the cuff and the loss of per-
formance caused by the onset of fatigue [57]. Recent research sug-
gests that the mechanical advantage of the compression of the cuff 
could increase with the application of high pressures [58]. The com-
pression and associated effects could increase the efficiency of the 
mechanical joint [30] as a consequence of increased joint stabili-
ty [59] and therefore allow more force to be developed [31]. The in-
crease in the force that causes this compression is produced by an 
accumulation of energy in the eccentric phase that is produced in 
the concentric phase [34, 58, 60].

The BFR application methodology to improve sports performance 
has focused on guidelines for improving strength and hypertro-
phy [54]. Recently, it has been proven the effects of the use of BFR 
applied in specific movements of sports, aiming at the effects of 
greater specificity and transfer [61, 62, 63]. However, when aiming 
to train velocity-based RT-BFR it seems that it would be better to 
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