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ABSTRACT

The mention of the COVID-19 waves is as prevalent as the pandemic itself. Identifying the beginning and end of the wave is critical to evaluating the
impact of various COVID-19 variants and the different pharmaceutical and non-pharmaceutical (including economic, health and social, etc.) in-
terventions. We demonstrate a scientifically robust method to identify COVID-19 waves and the breaking points at which they begin and end from
January 2020 to June 2021. Employing the Break Least Square method, we determine the significance of COVID-19 waves for global-, regional-, and
country-level data. The results show that the method works efficiently in detecting different breaking points. Identifying these breaking points is
critical for evaluating the impact of the economic, health, social and other welfare interventions implemented during the pandemic crisis.
Employing our method with high frequency data effectively determines the start and end points of the COVID-19 wave(s). Identifying waves at the
country level is more relevant than at the global or regional levels. Our research results evidenced that the COVID-19 wave takes about 48 days on
average to subside once it begins, irrespective of the circumstances.

1. Introduction

Since the beginning, humanity has remained preoccupied with the three challenges of famine, war, and plague [1,2]. More people
have died from diseases than war and famines put together. Historically, populations were kept low and dispersed by a high death rate
driven by infection [3]. The pandemic threat has multiplied with greater globalization, urbanization, and connectivity [4]. Plague, for
example, has been described as a disease of trade [5]. By mid-January 2022, COVID-19 had infected 313 million, resulting in over 5.5
million reported deaths around the globe.

Determining the exact date of the start and end of the pandemic wave is critical to evaluate the impact of the economic, health,
social and other welfare interventions implemented during the pandemic crisis [6-8]. Furthermore, instead of selecting ad hoc time
periods, knowledge of the breaking points is essential for evaluating the effectiveness of policy measures implemented to limit the
spread of COVID-19, such as school closings, travel restrictions, bans on public gatherings, emergency investments in healthcare fa-
cilities, social welfare provision, contact tracing, etc. [7,9-13].

In this paper, we scientifically identify the COVID-19 wave(s) and the breaking point at which each COVID-19 wave begins and
ends from the January 23, 2020 till June 3, 2021. Unlike a *’spike", which is a temporary increase in new COVID infections, the "wave"
may be calibrated as a *’sustained" period of the upward and downward period [7]. Employing Break Least Square regression (BLS) on
the Johns Hopkins Center for Systems Science and Engineering (CSSE) (2019) data [14] from January 23, 2020 to June 3, 2021, we
perform global, regional, and country level analysis.
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After testing the data for stationarity (Supplementary Information (SI) Tables 1a and 1b), the BLS is estimated for identifying the
structural breaks and associated segments on the unadjusted and adjusted effective reproduction rate (where we replace R; equal to 1
when R; < 1). The data is adjusted to avoid possible misidentification of the start date of a wave where there is a switch from low R (R¢
< 1) values, but this could result in a longer COVID wave duration. We choose 1.1, which is the mean of R; as the cut-off value (refer to
Table 1a in SI), to identify the segments of the wave. For further details on the method, refer to SI.

The analysis is conducted at the global, continent, and national levels. In addition, a subset of countries, including the United States;
Germany, Italy, France, Netherlands, UK, Spain, and Sweden in Europe; India, South Korea, Japan, and Singapore in Asia; South Africa
and Nigeria in Africa; and Brazil and Peru South America are investigated.

We find that COVID-19 waves typically take around 48 days to subside, regardless of the initial conditions. This finding provides
crucial guidance for policymakers and healthcare authorities, enabling them to allocate resources more efficiently and plan in-
terventions more precisely. The outcomes of this study offer invaluable insights into the temporal patterns of COVID-19 waves, which
will prove particularly beneficial in devising more effective mitigation strategies and optimizing resource distribution. The primary
audience for this research encompasses a wide spectrum of professionals, including public health officials, epidemiologists, policy-
makers, and researchers specializing in pandemic preparedness and response. This discussion underscores the broad relevance and
potential impact of our findings in advancing the collective efforts to combat COVID-19. The following section carries out the literature
review. Section 3 explains the Break Least Square Method, which identifies the start and end points of the COVID-19 wave. Section 4
presents results, and section 5 carries out the discussion. The final section provides conclusive remarks.

2. Literature review

Like the Spanish flu pandemic of 1918 [15], the COVID-19 pandemic also occurred in waves. However, evidence is limited on
whether these waves originate from the nature of the disease, pharmaceutical, economic and other non-pharmaceutical interventions,
or human behaviour [16,17]. The COVID-19 wave is a culmination and interactive effect of all these factors. Second, the COVID-19
wave does not have a standard definition [6] and the spread of the pandemic is unsynchronised and regionally divergent [18].
Third, when exposed to an unknown virus, the governments struggled with pandemic related uncertainty and made crucial decisions
on the timing, duration and intensity of interventions [19,20].

The standard model in epidemiology is the Susceptible Infected and Recovered (SIR) model [21] or complex networks [22-24],
which are commonly used to describe the exponential spread of the disease. The spread of the infection in our analysis is measured
using the effective reproduction rate (Ry, hereafter reproduction rate) as estimated by Ref [25]. They combine the basic epidemio-
logical theory with standard time-series filtering techniques (Kalman) to estimate a transparent closed-form estimator. R, measures the
real-time average number of secondary cases produced by a primary case, as adjusted for the depletion of susceptible individuals and
changes in control measures, contact rates, and climatic conditions. For example, in January 2020, the basic reproduction rate (Ro) in
Wuhan, China, was calculated to be between two and three; however, after the lockdown, estimates put the R; at just over one [26]. R¢
is critical for evaluating public policy decisions during a pandemic [27,28]. Some social scientists argue that R¢ < 1 should be taken as a
sign for restricting the use of public policy during the pandemic [29]. Recent literature empirically tries to identify COVID-19 waves
[30,31] based on the state of R being larger/smaller than 1 and the minimum length of persistent developments. These studies find
that, on average, the duration of waves is about 61.7 days.

3. Method
3.1. Break Least Square method (BLS)

The model: The mean of the reproduction rate R, is modeled as the mean ¢ with the error term &:

R =c+e. 1)

In the current study, we employ the Break Least Squares (BLS) estimation, which allows the mean to be time-varying with different
values, cj, wherej = 1,---,M. M is the number of segments in terms of distinguishing values of the mean of R;,. There are M-1 cor-
responding breaks at dates, Tq,T2,---,Ty—1. Note that Tp = 1 and Ty = T are the dates of initial and final observations of the series of Ry,
respectively. equation (1) can be modified as

Ri=c+eg forj=1,- Mandj—1<1r<. 2)

Equation (2) is a pure structural change model, a simplified version of the original multivariant model, which also permits co-
efficients to be irrelevant to the breaks [32]. Given the specified dates T; associated with the number of segments, M (M-1 breaks) [32],
the sum-of-squared residuals (RSS) is defined as

RSS(¢j) = ZM;{E:: (R — C.f)} : ®

The least square method by minimizing (3) can be employed to obtain the best-fitted values ¢; in each segment with the known
dates of breaks.
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Generally, the number of breaks is unknown. Since the main objective of this paper is to identify the start and end date of the COVID
waves and their length, the crucial task is to identify the number of breaks and associated dates.

This paper adopts the global optimizing procedure for identifying multiple breaks developed by Refs [32,33]. In comparison with
the sequential procedure, the global procedure has the advantage of identifying any given number of breaks. It minimizes (3) subject to
T; when M is given. As pointed out by Ref [34], the sequential approach may sometimes fail to identify the breaks when the true
number of breaks is unknown.

Nevertheless, there is no guarantee that introducing an additional break could significantly reduce the RSS. This is important to
determine the optimal number of breaks when the true breaks are unknown. The global optimizing procedure is, thus, also referred to
as a double maximization, reflecting the fact that the algorithm for searching optimal numbers for ‘breaks’ is built on two steps. The
first step contains a series of "zero versus [ breaks" tests, which maximize the given breaks. The second step is the integrated tests for
identifying the number of breaks built on maximizing the statistics from the tests in step one.

The "zero versus [ breaks" test is a multiple breaks test, an extension of the single-break approach developed in Refs [35,36]. When
the number of breaks, 1, is pre-specified for the equality of ¢; across the segments, the hypothesis Hy : ¢; = -+ = ¢;, against Hy : ¢; #
Ciy1 for some i, is tested. This test is based on F-test in which the F-ratio, denoted as F(I), is defined as the unrestricted SSR against the
restricted SSR with the alternative. The higher the F-ratio, the more likely to reject the null of equality.

With an unknown number of breaks, the “zero versus | breaks” tests are carried out sequentially from [=1 to the assigned maximum
break I™™ or until the breaks remain significant, m*, when F (m*) is significant, and F (m*+1) is insignificant. Let m** = min (I"*, m*).
Refs [33,37] propose two statistics to determine the optimal number of breaks, UDpax and WDpax. We denote Dyax = l*ln»lil)r(n MW[F(I).

Note that the definition UDpjax is Dyax when w; = 1. And WDyax when wy is a function of asymptotic critical values to make the same
implied p-values. These statistics do not follow ordinary F-distribution due to the non-nest features. Ref [37] provide the critical values
for testing the significance of the number of breaks. Ref [34] made the critical values available for small samples (less than 50
observations).

To identify the breaking points of COVID-19 waves, a maximum number of breaks, is set at 8, which corresponds 10 %
trimming percentage. The maximum number of breaks sometimes reduce to 6 for the adjusted data. When the optimal number of
breaks is identified according to the global optimizing procedure, the mean values in all segments are estimated. Due to the estimating
errors and using the average values of reproduction rate, a critical value of 1.1 (instead of 1) has been adopted to classify whether a
segment is a part of the COVID wave. The mean value is above 1.1, indicating the segment is part of the COVID wave. If several allied
segments simultaneously exceed the critical value, they are classified as a single wave. The duration of a wave is the sum of the
durations of all involved segments. The values of the means are reported separately.

BLS has a few advantages compared to alternative procedures. First, the BLS does not rely on the normality assumption. Other
procedures based on the likelihood function require the underlying distributions to be normal, for instance, the Markov Regime
Switching model [38,39]. In addition, the Markov Regime Switching model can only identify two or three regimes (convergence in the
higher order of the Markov Switching model is problematic). Thus, it is useful in identifying extreme situations like a higher (est)
effective reproduction rate R;.

The BLS can also deal with possible specification errors, such as heterogeneity and autocorrelation with the common robust stand
errors. Another alternative method, the change point analysis [40,41] requires the underlying series to be free from these errors. BLS
can deal with autocorrelation directly. This can greatly improve the precision of the estimation; however, it makes it hard to identify
the factor causing the differences across the segments due to the lag of the series. Determination of the COVID-19 wave involves a
comparison between the estimated values of the mean and the cutting point of R;, 1.1. However, making more precise forecasting is not
the primary goal of this paper. Thus, the paper adopts a standard BLS estimator with robust standard errors.

max
",

3.2. Stationarity and stationarity with breakpoint tests

As a requirement for using BLS, the underlying series needs to be stationary or at least stationary with a break. To ensure the
stationarity of the underlying reproduction rate R; series. The augmented Dickey-Fuller (ADF) [42] (Dickey and Fuller, 1979) and ADF
with a break (BADF) [43] stationarity tests are implemented. The specification of ADF is with an intercept and a linear trend. The
number of maximum lags is set at 17. Schwarz Information Criterion (SIC) is adopted to select the optimal lags. The BADF includes an
intercept, and the breaking point is allowed in the intercept. The break type is an additive outlier. The number of breakpoints is
determined by minimizing the Dickey-fuller t-statistic. The number of maximum lags is set at 17. The same SIC is adopted to select the
optimal lags. Note that the current method can only identify one break point. Thus, identifying the waves that require multiple breaks
may be inappropriate.

3.3. Data

The analysis in this study is based on the Johns Hopkins Center for Systems Science and Engineering (CSSE) (2019) data [14] from
the beginning of the pandemic, January 23, 2020, to June 3, 2021. This dataset includes data from various aggregated data sources,
namely, the World Health Organization (WHO), the European Centre for Disease Prevention and Control (ECDC), DXY.cn. Pneumonia.
2020, QQ News, US CDC, BNO, WorldoMeters, 1Point3Arces, COVID Tracking Project, Los Angeles Times, The Mercury News. For
further details and other non-US data sources at the country/region and US data sources, refer to https://github.com/
CSSEGISandData/COVID-19, as accessed on September 4, 2023.


https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19

R. Bali Swain et al.

20
1.8
1.6
14
1.2

1.0 ] — :

0.8 el \“—"’:*-\7/

oo n v | 1
2020 2021

a. Africa

| Il i 1\ | Il
2020 2021

c. Europe

e. Oceania
36
|
2.8
2.0
1.2 .
SR
0.4
I moow I Il
2020 2021
g. The World

Heliyon 10 (2024) 25090

36
2.8
2.0
1.2
0.4

3.5\ll
25

15

P ——

] 1l v | 1l
2020 2021

d. North America

0.5
|

2.8
24/
2.0
1.6
1.2
0.8

1 \Y | ]
2020 2021

f. South America

This figure plots the reproduction rate,
estimated values of mean in each
segment based on original data and
adjusted date in which the rate is
replaced by 1 when it is less than 1. The
number of breaks is estimated with the
global minimizing approach developed by
Baiand Perron.

— Effictive Reproduction Rate —— BLS: Original Data —— BLS: Adjusted Data
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Table 1
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Time and Duration of the COVID-19 waves, as identified by Break Least Square, Adjust Break Least Square, and

Reported data for Reproduction Rate for different Regions/Continents.

Continent Break LS: original data Break LS: adjusted data
ASIA

First wave

Mean value(s) 1.79 1.81

Start 2020-01-23 2020-01-23
End: 2020-03-29 2020-03-29
Duration: 67 days + 67 days +
EUROPE

First wave

Mean value(s) 2.11 2.11

Start 2020-02-24 2020-02-24
End: 2020-04-12 2020-04-12
Duration: 49 days + 49 days +
Second wave

Mean value(s) 1.14/1.29 1.14/1.29
Start 2020-07-24 2020-07-18
End: 2020-11-08 2020-11-07
Duration: 106 days 113 days
NORTH AMERICA

First wave

Mean value(s) 2.07 2.07

Start 2020-03-05 2020-03-05
End: 2020-04-21 2020-04-21
Duration: 48 days + 48 days +
Second wave

Mean value(s) 1.13 1.14

Start 2020-07-07 2020-07-07
End: 2020-08-23 2020-08-24
Duration: 48 days 49 days
OCEANIA

First wave

Mean value(s) 1.29 1.49/1.26
Start 2020-03-11 2020-03-11
End: 2020-04-26 2020-04-26
Duration: 47 days + 47 days +
Second wave

Mean value(s) 1.23 1.30

Start 2020-06-13 2020-06-16
End: 2020-08-16 2020-08-01
Duration: 65 days 47 days
Second wave

Mean value(s) 1.14 1.17

Start 2021-02-10 2021-02-20
End: 2021-03-28 2021-04-07
Duration: 47 days 47 days
AFRICA

First wave

Mean value(s) 1.52 1.52/1.11
Start 2020-03-15 2020-03-15
End: 2020-04-06 2020-05-08
Duration: 23 days + 55 days +
SOUTH AMERICA

First wave

Mean value(s) 1.58/1.17 1.58/1.17
Start 2020-03-14 2020-03-14
End: 2020-08-16 2020-08-15
Duration: 156 days + 155 days +
Second wave

Mean value(s) 1.14 1.15

Start 2020-12-01 2020-12-05
End: 2021-03-08 2021-01-20
Duration: 47 days 47 days
Third wave

Mean value(s) 1.13 1.13

Start 2021-03-09 2021-03-09
End: 2021-04-24 2021-04-24
Duration: 47 days 47 days

Notes: Mean values provide the mean effective reproduction rate mean value.
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Table 2A
Time and Duration of the COVID-19 waves, as identified by Break Least Square, Adjust Break Least Square, and
Reported data for Reproduction Rate for Selected Countries.

Country Break LS: original data Break LS: adjusted data
Australia

First wave

Mean value(s) 1.58 1.48

Start 2020-08-01 2020-03-11
End: 2020-10-11 2020-04-26
Duration: 102 days + 47 days +
Second wave

Mean value(s) 1.60

Start 2020-06-13
End: 2020-07-29
Duration: 47 days
Brazil

First wave

Mean value(s) 1.91/1.30 1.73/1.12
Start 2020-03-14 2020-03-14
End: 2020-06-15 2020-08-02
Duration: 94 days + 142 days +
Second wave

Mean value(s) 1.12

Start 2020-11-05

End: 2020-12-21

Duration: 47 days

France

First wave

Mean value(s) 1.93 1.95

Start 2020-03-01 2020-03-01
End: 2020-04-17 2020-04-17
Duration: 48 days + 48 days +
Second wave

Mean value(s) 1.39/1.25 1.39/1.26
Start 2020-07-23 2020-07-18
End: 2020-11-07 2020-11-05
Duration: 108 days 111 days
Third wave

Mean value(s) 1.10

Start 2021-03-04

End: 2021-04-20

Duration: 48 days

Germany

First wave

Mean value(s) 1.92 1.96

Start 2020-03-03 2020-03-02
End: 2020-04-18 2020-04-18
Duration: 48 days + 48 days +
Second wave

Mean value(s) 1.16/1.35 1.16/1.35
Start 2020-07-24 2020-07-16
End: 2020-11-10 2020-11-10
Duration: 110 days 118 days
Third wave

Mean value(s) 1.10 1.32

Start 2021-02-26 2021-03-04
End: 2021-05-03 2021-04-20
Duration: 67 days 48 days +
India

First wave

Mean value(s) 1.82/1.29/1.22 1.81/1.26
Start 2020-03-15 2020-03-15
End: 2020-08-02 2020-07-29
Duration: 141 days + 137 days +
Second wave

Mean value(s) 1.35 1.39

Start 2021-03-08 2021-03-09
End: 2021-05-06 2021-04-29
Duration: 60 days 52 days
Israel

First wave

(continued on next page)
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Table 2A (continued)

Country Break LS: original data Break LS: adjusted data
Mean value(s) 1.53 1.64/1.35
Start 2020-03-14 2020-03-14
End: 2020-04-29 2020-07-18
Duration: 47 days + 127 days +
Second wave
Mean value(s) 1.35/1.15 1.33
Start 2020-06-16 2020-11-12
End: 2020-10-01 2021-01-13
Duration: 108 days 48 days
Third wave
Mean value(s) 1.29 1.41
Start 2020-11-18 2021-05-15
End: 2021-01-15 2021-06-30
Duration: 59 days 47 days
Fourth wave
Mean value(s) 1.27
Start 2021-05-15
End: 2021-06-30
Duration: 47 days +

4. Results

4.1. Global and regional COVID-19 wave

Declaring global pandemic waves and prescribing policy solutions at the aggregate level is problematic. Fig. 1g presents the BLS
and adjusted BLS results for the World and captures a single long wave over the study period. The regional (Fig. 1 and Table 1) and
country level results (Fig. 2 and Table 2) show evidence for the greater number of waves. BLS identifies one initial wave of infection in
Asia (Fig. 1b) for 67 days over the period 23 January to March 29, 2020, with a 1.81 reproduction rate. Similarly, a single wave is
identified for the African continent (Fig. 1a). These overlap over the same period, though their duration varies. The adjusted BLS
identifies that the African wave begins slightly later (March 15, 2020), with a mean reproduction rate of 1.52. The length of this first
infectious wave is 55 days.

In contrast, two COVID waves are identified for Europe (Fig. 1c). The first wave exhibits a high reproduction rate of 2.11 and is 49
days long, extending from February 24, 2020 to April 12, 2020. The second COVID wave is much longer (113 days), plateaus, and is
relatively less severe. It has a lower mean reproduction rate of 1.29 and extends from 18 July to 7 November.

Evidence shows North America underwent two COVID waves (Fig. 1d). The first wave began around March 5, 2020 and ended 48
days later on April 21, 2020. The mean reproduction rate during the first wave was high (2.07). The second wave was initiated on July
7, 2020 with a mean reproduction rate of 1.14. This wave was over 49 days and ended on August 24, 2020.

Oceania and the South American continent witnessed three COVID waves (Fig. 1e and f). According to the adjusted BLS, Oceania’s
mean reproduction rate during the first, second and third waves are 1.49, 1.30, and 1.17, respectively. Each of these waves is roughly
48 days long. The first wave begins on March 11, 2020 and ends on April 26, 2020. The second and third waves started (ended) on June
16, 2020 (August 1, 2020) and February 20, 2021 (April 7, 2021), respectively. The variation in the global and regional/continent
results demonstrates that it is imperative to acknowledge the limitations of aggregate data for identifying pandemic waves.

At the aggregate level (global, regional (continent), or country), much information and variation in the data are lost. Second, taking
the mean value of the reproduction rate does not make sense for large countries or countries where the outbreaks are limited to a few
localized areas. Cities with better connectivity and high population density profiles are more susceptible to the initial spread of the
virus. At the same time, rural and isolated areas catch the infection slowly. Third, the aggregate shocks due to emergent new variants of
concern also introduce regional variation in infections [44]. Fourth, data measurement is fraught with reporting errors and lags due to
case detection, definitions, testing strategies, reporting practice, and lag times that differ between countries/territories/areas [45].
Fifth, behavioral changes and policy interventions (both non-pharmaceutical and pharmaceutical) impact when and for how long the
COVID waves occur.

4.2. COVID waves for selected countries

First discovered in Wuhan, China, community transmission of COVID-19 was likely presented in Europe and the USA by January
2020, with international travel as the main driver and transmitted through events between December 2019 and January 2020 [46].
Fig. 2A, B, and 2C present the evidence from the BLS models for the selected countries. The corresponding breakpoints (start and end
dates) of the COVID-19 waves and their length are presented in Table 2A, 2B, and 2C.

Most European countries have experienced three COVID waves till June 30, 2021. The first wave has high mean reproduction rates
(ranging from 1.53 to 1.96) and is 48 days long on average. The initial date of spread is slightly early for Italy (February 24, 2020) as
compared to France (March 1, 2020), the UK (March 3, 2020), Germany (March 2, 2020), Spain (March 3, 2020), Netherlands (March
7, 2020) and Sweden (March 7, 2020). The second wave has a lower mean reproduction rate but is much longer. While France,

10
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Table 2B

Time and Duration of the COVID-19 waves, as identified by Break Least Square, Adjust Break

Least Square, and Reported data for Reproduction Rate for Selected Countries.

Italy

First wave
Mean value(s)
Start

End:
Duration:
Second wave
Mean value(s)
Start

End:
Duration:
Japan

First wave
Mean value(s)
Start

End:
Duration:
Second wave
Mean value(s)
Start

End:
Duration:
Netherlands
First wave
Mean value(s)
Start

End:
Duration:
Second wave
Mean value(s)
Start

End:
Duration:
Nigeria

First wave
Mean value(s)
Start

End:
Duration:
Second wave
Mean value(s)
Start

End:
Duration:
Peru

First wave
Mean value(s)
Start

End:
Duration:
Second wave
Mean value(s)
Start

End:
Duration:
Third wave
Mean value(s)
Start

End:
Duration:
Singapore
First wave
Mean value(s)
Start

End:
Duration:
Second wave
Mean value(s)

1.85
2020-02-24
2020-04-12
49 days +

1.24/1.45
2020-07-30
2020-11-13
107 days

1.46
2020-02-22
2020-04-16
55 days +

1.44
2020-06-12
2020-08-04
54 days

1.67
2020-03-07
2020-04-23
48 days +

1.30/1.36
2020-07-11
2020-10-24
106 days

1.46/1.17
2020-03-30
2020-06-27
90 days +

1.30
2020-11-28
2021-02-25
45 days

1.67
2020-03-07
2020-04-23
48 days +

1.30/1.36
2020-07-11
2020-10-24
106 days

1.55
2020-03-01
2020-04-25
56 days +

1.23
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1.88
2020-02-24
2020-04-12
49 days +

1.23/1.45
2020-07-22
2020-11-12
114 days

1.48
2020-02-22
2020-04-13
52 days +

1.46
2020-06-20
2020-10-24
78 days

1.69
2020-03-07
2020-04-23
48 days +

1.34/1.26
2020-07-13
2020-12-23
163 days

1.46/1.17
2020-03-30
2020-06-27
90 days +

1.30
2020-11-29
2021-01-12
45 days

1.69
2020-03-07
2020-04-23
48 days +

1.34/1.26
2020-07-13
2020-12-23
163 days

1.10
2021-02-07
2021-04-05
48 days

1.59
2020-03-01
2020-04-24
55 days +

1.23

(continued on next page)

Heliyon 10 (2024) e25090



R. Bali Swain et al. Heliyon 10 (2024) 25090

Table 2B (continued)

Italy

Start 2020-12-05 2020-12-03
End: 2021-01-21 2021-01-19
Duration: 48 days 48 days
Third wave

Mean value(s) 1.14 1.14

Start 2021-03-14 2021-03-14
End: 2021-04-30 2021-04-30
Duration: 48 days 48 days

Germany, Italy, and Sweden witnessed a 113-118 days long wave, the duration of the second wave for the Netherlands and the UK is
much longer at 163 and 186 days, respectively. For most European countries, the second wave begins around mid-July and ends
around mid-November. Netherlands and UK are outliers, with the wave beginning on July 13, 2020 and July 8, 2020 and ending
around December 23, 2020 and January 9, 2021, respectively. Spain has a long plateau that extends nearly one year from summer
2020 to 2021 (361 days).

The third wave is about 48 days long, with mean reproduction rates similar to the second wave. The start and end dates for the third
wave vary substantially across countries. The third cycle begins (ends) on 4 March 21 (April 20, 2021) for Germany; February 7, 2021 (April
5,2021) for the Netherlands; December 14, 2020 (January 30, 2021) for Spain; February 26, 2021 (April 19, 2021) for Sweden and May 14,
2021 (June 30, 2020) for the UK. The BLS unadjusted data shows evidence of a third wave for France (48 days, 4 March — April 20, 2021).

The developments of COVID-19 are accompanied with new variants. Table 3 summarizes the waves, if any, associated with new
variants in the countries of emergence. The durations are estimated on the basis of our analysis. Note that Alpha and Zeta created
relatively longer waves. lota, on the other hand, does not seem to produce a wave in United States. Our analysis shows that other
COVID-19 variants led to waves with durations of around 45-49 days.

5. Discussion

This study is not conclusive but indicative of the methods that may be employed to identify the COVID-19 waves. The method can
be applied to longer time series to identify different COVID-19 variant waves, including the Omicron wave and/or the more recent
COVID-19 explosion in China. In this study, we show that BLS may effectively detect breaking points (start and end) in the effective
reproduction rate to identify COVID-19 pandemic waves and their length. We empirically demonstrate that identifying waves at the
country or local level is more relevant for interventions than global or aggregate levels. Furthermore, irrespective of the circumstances,
once the COVID wave begins, it takes about 48 days on average to subside. It is possible that this figure may change as new COVID
variants emerge. Identifying the correct breaking points is critical to evaluate the impact of various COVID-19 variants and the
different pharmaceutical and non-pharmaceutical interventions and to prescribe effective policy solutions.

Similar studies on COVID-19 waves also adopt the effective reproduction number R [30]. The identification of waves depends on R
and the minimum length of persistent developments. The average duration of waves is about 61.7 days. In contrast, this paper imposes
no such constraint and finds that the shortest duration is about 48 days. However, the results are not comparable as the samples are
different. Nevertheless, the numbers of waves are not dramatically different. Another study [31] considers two other proxies,
confirmed cases and death. An algorithm is developed to rule out the noise/temporal developments from the observed waves. Our
results present the same conclusion regarding Italy and the US (two extreme cases) as [31].

6. Conclusion

The waves are persistent and substantial periods. In comparison to the temporal and short-lived random developments, waves
demand more attention and resources of policy responses. Thus, identifying the waves is crucial for policy makers. This paper provides
a simple framework for detecting the COVID waves. The information is useful for policy makers to plan specific interventions. Besides
these policy implications, our study provides necessary information for evaluating the impacts of the COVID-19 pandemic. In contrast
to the low frequency data and its analysis in other studies, our paper employs BLS method with high frequent data on COVID-19.
However, BLS can only estimate the break points individually for each country. It is not possible to capture the spatial effects of
other countries. Since contagion is an important feature of the pandemic, the analyses with aggregated and individual data might not
be sufficient. The statistical methods that can identify spatial effects and common trends need to be considered in our future work. In
addition, to identifying the waves, we have to set up a small number of maximum breaks. Future research may consider other statistical
methods, such as the generalized autoregressive score model, to model the time varying parameters according to the data distribution.
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Table 2C

Time and Duration of the COVID-19 waves, as identified by Break Least Square, Adjust Break

Least Square, and Reported data for Reproduction Rate for Selected Countries.

South Africa

First wave
Mean value(s)
Start

End:
Duration:
Second wave
Mean value(s)
Start

End:
Duration:
Third wave
Mean value(s)
Start

End:
Duration:
South Korea
First wave
Mean value(s)
Start

End:
Duration:
Second wave
Mean value(s)
Start

End:

Duration
Third wave
Mean value(s)
Start

End:
Duration:
Spain

First wave
Mean value(s)
Start

End:
Duration:
Second wave
Mean value(s)
Start

End:
Duration:
Third wave
Mean value(s)
Start

End:
Duration:
Sweden

First wave
Mean value(s)
Start

End:
Duration:
Second wave
Mean value(s)
Start

End:
Duration:
Third wave
Mean value(s)
Start

End:
Duration:

UK

First wave
Mean value(s)
Start

1.48/1.33
2020-03-19
2020-07-19
123 days +

1.26
2020-11-10
2021-01-12
64 days

1.31
2021-05-03
2021-06-30
59 days +

1.35
2020-02-21
2020-04-09
49 days +

1.30
2020-07-12
2020-10-18
50 days

1.27
2020-10-19
2020-12-25
68 days

1.84
2020-03-03
2020-04-19
48 days +

1.53/1.20
2020-07-03
2020-10-26
116 days

1.31
2020-12-14
2021-01-30
48 days

1.52/1.10
2020-03-07
2020-04-23
48 days +

1.57/1.30
2020-09-16
2021-01-08
115 days

1.15
2021-02-26
2021-05-13
77 days

1.88
2020-03-03
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1.49/1.35

2020-03-19
2020-07-14
118 days +

1.28
2020-11-13
2021-01-09
58 days

1.32
2021-05-04
2021-06-30
58 days +

1.60/1.20

2020-02-21
2020-05-31
101 days +

1.35
2020-07-20
2020-09-06
61 days

1.32
2020-11-07
2020-12-25
49 days

1.88
2020-03-03
2020-04-19
48 days +

1.53/1.12
2020-07-05
2021-06-30
361 days

1.53
2020-03-07
2020-04-23
48 days +

1.57/1.30
2020-09-15
2021-01-08
116 days

1.20
2021-02-26
2021-04-19
53 days

1.88
2020-03-03

(continued on next page)
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Table 2C (continued)

Heliyon 10 (2024) e25090

South Africa

End: 2020-04-19 2020-04-19
Duration: 48 days + 48 days +
Second wave
Mean value(s) 1.11/1.39 1.11/1.39/1.14
Start 2020-08-29 2020-07-08
End: 2020-12-02 2021-01-09
Duration: 96 days 186 days
Third wave
Mean value(s) 1.16 1.32
Start 2021-01-20 2021-05-14
End: 2021-03-08 2021-06-30
Duration: 48 days 48 days +
Fourth wave
Mean value(s) 1.33
Start 2021-05-14
End: 2021-06-30
Duration: 48 days +
USA
First wave
Mean value(s) 2.28 1.86/1.11
Start 2020-03-05 2020-03-05
End: 2020-04-21 2020-07-26
Duration: 48 days + 144 days +
Second wave
Mean value(s) 1.17 1.15
Start 2020-06-09 2020-10-07
End: 2020-07-26 2020-12-17
Duration: 48 days 72 days
Third wave
Mean value(s) 1.19
Start 2020-10-06
End: 2020-11-22
Duration: 48 days

Table 3

The duration of waves associated with new variants.

Variant Country of Emergence Date of Emergence Average Durations of Wave Subsidence (days)
Alpha United Kingdom September 2020 96 days
Beta South Africa May 2020 The wave started before the emergence of Beta.
Ended on July 19, 2020. Duration: 123 days
Gamma Brazil November 2020 47 days
Delta India October 2020 No wave is identified
Epsilon United States May 2020 The corresponding wave started on 9 June 2020. Duration: 48 days
Zeta Brazil April 2020 The wave started on March 14, 2020. Duration: 94 days
Eta Multiple countries December 2020 Nigeria: 45 days
Singapore: 48 days
Spain: 48 days
Tota United States November 2020 No wave is identified

Source [47].

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing in-
terests:Bali Swain received vice-chancellors grant from Sodertorn University for research on COVID-19 and Sustainability. No conflict
of interest to declare. If there are other authors, they declare that they have no known competing financial interests or personal re-
lationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e25090.

14


https://doi.org/10.1016/j.heliyon.2024.e25090

R. Bali Swain et al. Heliyon 10 (2024) 25090

References

1]
[2]
[3]
[4]
[5]
[6]
[71
[8]
[91
[10]

[11]

[12]
[13]
[14]
[15]
[16]

[17]

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]
[34]

[35]
[36]
[37]
[38]
[39]

[40]
[41]

T. Malthus, An Essay on the Principle of Population as it Affects the Future Improvement of Society, with Remarks on the Speculations of Mr. Goodwin, M.
Condorcet and Other Writers (1 ed.) London (1798).

Y. Harari, Homo Deus: A Brief History of Tomorrow, Random House, 2016.

E. Boserup, The Economics of Agrarian Change under Population Pressure, George Allen and Unwin, London, 1965.

C. Kenny. The plague cycle, the unending war between humanity and infectious disease, Scribner, New York, 2021.

W.A. Bernstein, Splendid Exchange How Trade Shaped the World, Grove/Atlantic, Inc., New York, 2009.

A. Ayala, P. Villalobos, F. Dintrans, Elorrieta, C. Castillo, C. Vargas, M. Maddaleno, Identification of COVID-19 waves: considerations for research and policy, Int
J Environ Res Public Health 18 (21) (2021 Oct 21) 11058. https://pubmed.ncbi.nlm.nih.gov/34769577/.

S. Zhang, M. Arroyo, R. Gao, S. Wang, A second wave? What do people mean by COVID waves? — a working definition of epidemic waves. Risk management
health care, Policy 14 (2021) 3775-3782. https://www.tandfonline.com/doi/full/10.2147/RMHP.S326051.

M. Coccia, The impact of first and second wave of the COVID-19 pandemic in society: comparative analysis to support control measures to cope with negative
effects of future infectious diseases, Environ. Res. 197 (2021) 111099. https://pubmed.ncbi.nlm.nih.gov/33819476/.

K. Agyapon-Ntra, P.E. McSharry, A global analysis of the effectiveness of policy responses to COVID-19, Sci. Rep. 13 (2023) 5629, https://doi.org/10.1038/
$41598-023-31709-2.

A.M.S. Fakir, T. Bharati, Pandemic catch-22: the role of mobility restrictions and institutional inequalities in halting the spread of COVID-19, PLoS One 16 (6)
(2021) e0253348, https://doi.org/10.1371/journal.pone.0253348.

T. Hale, N. Angrist, R. Goldszmidt, B. Kira, A. Petherick, T. Phillips, S. Webster, E. Cameron-Blake, Laura Hallas, S. Majumdar, H. Tatlow, A global panel
database of pandemic policies (Oxford COVID-19 Government Response Tracker), Nat. Human Behav. 5 (2021) 529-538, https://doi.org/10.1038/541562-021-
01079-8.

C. Potter, Chronicle of influenza pandemics, in: K.G. Nicholson, R.G. Webster, A.J. Hay (Eds.), Textbook of Influenza, Blackwell Scientific Publications, London,
1998, pp. 3-18.

T. Hale, N. Angrist, R. Goldszmidt, B. Kira, A. Petherick, T. hillips, S. Webster, E. Cameron-Blake, L. Hallas, S. Majumdar, H. Tatlow, A global panel database of
pandemic policies (Oxford COVID-19 Government Response Tracker), Nat. Human Behav. 5 (2021) 529-538. https://www.nature.com/articles/s41562-021-
01079-8.

C.S.S.E. Johns Hopkins, 2019-nCoV Data Repository by, Johns Hopkins CSSE, 2019.

J. Taubenberger, D. Morens, 1918 Influenza: the mother of all pandemics, Emerg. Infect. Dis. 12 (2006) 15-22. https://wwwnc.cdc.gov/eid/article/12/1/05-
0979 _article.

G. Cacciapaglia, C. Cot, F. Sannino, Multiwave pandemic dynamics explained: how to tame the next wave of infectious diseases, Sci. Rep. 11 (2021) 6638.
https://www.nature.com/articles/s41598-021-85875-2.

E. Cameron-Blake, H. Tatlow, K. Green, M. Di Falco, T. Hale, T. Phillips, A. Sudarmawan, H. Zha, What have we learned from tracking every government policy
on COVID-19 for the past two years? Blavatnik School of Government, University of Oxford. https://www.bsg.ox.ac.uk/research/publications/what-have-we-
learned-tracking-every-government-policy-covid-19-past-two-years. (Accessed September 1 2022).

G. Chowell, S. Dahal, A. Tarig, K. Roosa, J. HymanM, R. Luo, An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories:
application to the COVID-19 pandemic in the USA, PLOS Comput. Biol. (2022). https://doi.org/10.1371/journal.pcbi.1010602.

L. Berger, N. Berger, V. Bosetti, I. Gilboa, L.P. Hansen, C. Jarvis, M. Marinacci, R.D. Smith, Rational policymaking during a pandemic, Proc. Natl. Acad. Sci. USA
118 (2021). https://www.pnas.org/doi/10.1073/pnas.2012704118.

M. Bruckner, R. Mollerus, UN/DESA Policy Brief 66: COVID-19 and the least developed countries, in: Development Policy Branch in the Economic Analysis and
Policy Division of UN DESA, 2020.

W. Kermack, A. McKendrick, G. Walker, Contribution to the mathematical theory of epidemics, Proceeding of the Royal Society A: Mathematics, Physical and
Engineering Sciences 115 (1927) 700-721. https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118.

Z. Wang, M. Andrews, Z. Wu, L. Wang, C.T. Bauch, Coupled disease-behavior dynamics on complex networks: a review, Phys. Life Rev. 15 (2015) 1-29. https://
www.sciencedirect.com/science/article/pii/S1571064515001372.

M. Perc, J.J. Jordan, D.G. Rand, Z. Wang, S. Boccaletti, A. Szolnoki, Statistical physics of human cooperation, Phys. Rep. 687 (2017) 1-51. https://www.
sciencedirect.com/science/article/abs/pii/S0370157317301424.

X. Zhan, C. Liu, G. Zhao, Z. Zhang, G. Sun, J.J.H. Zhu, Z. Jin, Coupling dynamics of epidemic spreading and information diffusion on complex networks, Appl.
Math. Comput. 332 (2018) 437-448. https://www.sciencedirect.com/science/article/pii/S0096300318302236.

F. Arroyo-Marioli, F. Bullano, S. Kucinskas, Tracking R of COVID-19: a new real-time estimation using the Kalman filter, PLoS One 16 (2021) e0244474. https://
journals.plos.org/plosone/article?id=10.1371/journal.pone.0244474.

A. Kucharski, T. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, Early dynamics of transmission and control of COVID-19: a mathematical modelling study,
Lancet Infect. Dis. 20 (2020) 553-558. https://www.thelancet.com/article/S1473-3099(20)30144-4/fulltext.

A. Atkeson, What will Be the economic impact of COVID-19 in the US? Rough estimates of disease scenarios, Available at: https://www.nber.org/papers/
w26867, 2020.

G. Leung, Opinion | Lockdown Can’t Last Forever. Here’s How to Lift it, The New York Times, 2020. https://www.nytimes.com/2020/04/06/opinion/
coronavirus-end-social-distancing.html.

E. Budish, Maximize utility subject to R < 1: a simple price-theory approach to COVID-19 lockdown and reopening policy, Available at: https://papers.ssrn.
com/abstract=3567068, , 2020.

S.X. Zhange, F.A. Marioli, R. Cao, S. Wang, A second wave? What do people mean by COVID waves? — a working definition of epidemic waves, Risk Manag.
Healthc. Pol. (2021) 3775-3782.

J. Harvey, B. Chan, T. Srivastava, A.E. Zarebski, P. Dlotko, P. Blaszczyk, R.H. Parkinson, L.J. White, R. Aguas, A. Mahdi, Epidemiological waves - types, drivers
and modulators in the COVID-19 pandemic, Heliyon 9 (2023).

J. Bai, P. Perron, Estimating and testing linear models with multiple structural changes, Econometrica 66 (1998) 47-78. https://www.jstor.org/stable/
2998540?0rigin=crossref.

J. Bai, P. Perron, Critical values for multiple structural change tests, Econom. J. 6 (2003) 72-78. https://www.jstor.org/stable/23113649.

S. Antoshin, A. Berg, M. Souto, Testing for structural breaks in small samples, IMF Working Paper WP/08/75, https://www.imf.org/en/Publications/WP/
Issues/2016/12/31/Testing-for-Structural-Breaks-in-Small-Samples-21808, 2008.

R.E. Quandt, Tests of the hypothesis that a linear regression obeys two separate regimes, J. Am. Stat. Assoc. 55 (1960) 324-330. https://www.tandfonline.com/
doi/abs/10.1080/01621459.1960.10482067.

D.W.K. Andrews, Tests for parameter instability and structural change with unknown change point, Econometrica 61 (1993) 821-856. https://www.jstor.org/
stable/2951764.

J. Bai, P. Perron, Computation and analysis of multiple structural change models, J. Appl. Econom. 6 (2003) 72-78. https://onlinelibrary.wiley.com/doi/full/
10.1002/jae.659.

J.D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica 57 (1989) 357-384. https://www.
jstor.org/stable/1912559.

J.D. Hamilton, Regime-switching models. The New Palgrave Dictionary of Economics, second ed., 2005.

W. Taylor, Change-point Analyzer 2.0 Shareware Program, Taylor Enterprises, Libertyville, Illinois, 2000.

W. Taylor, A Pattern Test for Distinguishing between Autoregressive and Mean-Shift Data, Taylor Enterprises, Libertyville, Illinois, 2000.

15


http://refhub.elsevier.com/S2405-8440(24)01121-6/sref2
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref3
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref4
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref5
https://pubmed.ncbi.nlm.nih.gov/34769577/
https://www.tandfonline.com/doi/full/10.2147/RMHP.S326051
https://pubmed.ncbi.nlm.nih.gov/33819476/
https://doi.org/10.1038/s41598-023-31709-2
https://doi.org/10.1038/s41598-023-31709-2
https://doi.org/10.1371/journal.pone.0253348
https://doi.org/10.1038/s41562-021-01079-8
https://doi.org/10.1038/s41562-021-01079-8
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref12
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref12
https://www.nature.com/articles/s41562-021-01079-8
https://www.nature.com/articles/s41562-021-01079-8
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref14
https://wwwnc.cdc.gov/eid/article/12/1/05-0979_article
https://wwwnc.cdc.gov/eid/article/12/1/05-0979_article
https://www.nature.com/articles/s41598-021-85875-2
https://www.bsg.ox.ac.uk/research/publications/what-have-we-learned-tracking-every-government-policy-covid-19-past-two-years
https://www.bsg.ox.ac.uk/research/publications/what-have-we-learned-tracking-every-government-policy-covid-19-past-two-years
https://doi.org/10.1371/journal.pcbi.1010602
https://www.pnas.org/doi/10.1073/pnas.2012704118
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref20
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref20
https://royalsocietypublishing.org/doi/10.1098/rspa.1927.0118
https://www.sciencedirect.com/science/article/pii/S1571064515001372
https://www.sciencedirect.com/science/article/pii/S1571064515001372
https://www.sciencedirect.com/science/article/abs/pii/S0370157317301424
https://www.sciencedirect.com/science/article/abs/pii/S0370157317301424
https://www.sciencedirect.com/science/article/pii/S0096300318302236
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244474
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244474
https://www.thelancet.com/article/S1473-3099(20)30144-4/fulltext
https://www.nber.org/papers/w26867
https://www.nber.org/papers/w26867
https://www.nytimes.com/2020/04/06/opinion/coronavirus-end-social-distancing.html
https://www.nytimes.com/2020/04/06/opinion/coronavirus-end-social-distancing.html
https://papers.ssrn.com/abstract=3567068
https://papers.ssrn.com/abstract=3567068
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref30
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref30
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref31
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref31
https://www.jstor.org/stable/2998540?origin=crossref
https://www.jstor.org/stable/2998540?origin=crossref
https://www.jstor.org/stable/23113649
https://www.imf.org/en/Publications/WP/Issues/2016/12/31/Testing-for-Structural-Breaks-in-Small-Samples-21808
https://www.imf.org/en/Publications/WP/Issues/2016/12/31/Testing-for-Structural-Breaks-in-Small-Samples-21808
https://www.tandfonline.com/doi/abs/10.1080/01621459.1960.10482067
https://www.tandfonline.com/doi/abs/10.1080/01621459.1960.10482067
https://www.jstor.org/stable/2951764
https://www.jstor.org/stable/2951764
https://onlinelibrary.wiley.com/doi/full/10.1002/jae.659
https://onlinelibrary.wiley.com/doi/full/10.1002/jae.659
https://www.jstor.org/stable/1912559
https://www.jstor.org/stable/1912559
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref39
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref40
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref41

R. Bali Swain et al. Heliyon 10 (2024) 25090

[42] D.A. Dickey, W.A. Fuller, Distribution of the estimators for autoregressive time series with a unit root, J. Am. Stat. Assoc. 74 (1979) 427-431. https://www.
tandfonline.com/doi/abs/10.1080/01621459.1979.10482531.

[43] P. Perron, The great crash, the oil price shock and the unit root hypothesis, Econometrica 57 (1989) 1361-1401. https://www.jstor.org/stable/1913712.

[44] WHO, Tracking SARS-CoV-2 variants, Available at: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/, 2022. (Accessed 13 January 2022).

[45] WHO. Coronavirus disease (COVID-2019) situation reports. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-
reports (2020) (accessed January 13 2022).

[46] J.T. Davis, M. Chinazzi, N. Perra, K. Mu, A.P. Piontti, M. Ajelli, N.E. Dean, C. Gioannini, M. Litvinova, S. Merler, L. Rossi, K. Sun, X. Xiong, .M. Longini Jr., M.
E. Halloran, C. Vicound, A. Vespignani, Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave, Nature 600 (2021) 127-132. https://www.nature.
com/articles/s41586-021-04130-w.

[47] A. Aleem, A.B. Akbar Samad, S. Vaqar, Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19), in: StatPearls [Internet].
Treasure Island (FL), StatPearls Publishing, 2023 May 8, 2023 Jan-. PMID: 34033342.

16


https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10482531
https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10482531
https://www.jstor.org/stable/1913712
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.nature.com/articles/s41586-021-04130-w
https://www.nature.com/articles/s41586-021-04130-w
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref47
http://refhub.elsevier.com/S2405-8440(24)01121-6/sref47

	COVID-19 pandemic waves: Identification and interpretation of global data
	1 Introduction
	2 Literature review
	3 Method
	3.1 Break Least Square method (BLS)
	3.2 Stationarity and stationarity with breakpoint tests
	3.3 Data

	4 Results
	4.1 Global and regional COVID-19 wave
	4.2 COVID waves for selected countries

	5 Discussion
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Supplementary data
	References


