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Abstract: Background: Osteoarthritis (OA) is a progressive and multifactorial disease that is associated
with aging. A number of changes occur in aged cartilage, such as increased oxidative stress, decreased
markers of healthy cartilage, and alterations in the autophagy pathway. Propolis extracts contain
a mixture of polyphenols and it has been proved that they have high antioxidant capacity and could
regulate the autophagic pathway. Our objective was to evaluate the effect of ethanolic extract of
propolis (EEP) on chondrocytes that were stimulated with IL-1β. Methods: Rabbit chondrocytes
were isolated and stimulated with IL-1β and treated with EEP. We evaluated cell viability, nitric oxide
production, healthy cartilage, and OA markers, and the expression of three proteins associated with
the autophagy pathway LC3, ATG5, and AKT1. Results: The EEP treatment reduces the expression
of LC3, ATG5, and AKT1, reduces the production of nitric oxide, increases the expression of healthy
markers, and reduces OA markers. Conclusions: These results suggest that treatment with EEP
in chondrocytes that were stimulated with IL-1β has beneficial effects, such as a decrease in the
expression of proteins associated with autophagy, MMP13, and production of nitric oxide, and also
increased collagen II.
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1. Introduction

Osteoarthritis (OA) is a progressive, degenerative, and multifactorial joint that is disease
characterized by a progressive loss of articular cartilage, subchondral bone sclerosis, osteophyte
formation and synovial inflammation that has been positioned as the world-wide leading cause of
pain and dysfunction [1–7]. Moreover, the high prevalence of OA and its great impact on the work
ability make this disease an important social problem [8,9].

Aging is one of the most important risk factors of OA [5,6,10–12]. In aged cartilage as well as
in OA, there is an increased production of reactive nitrogen and oxygen species (RNOS) that impact
the adult chondrocytes, since they become more susceptible to cell death mediated by RNOS [13,14].
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Chondrocytes are stimulated by proinflammatory cytokines, such as IL-1β, which leads to the
production of large amounts of nitric oxide (NO) through the increased activity of inducible nitric oxide
synthase (iNOS) [15–17]. Subsequently, NO inhibits the production of an extracellular matrix (ECM)
and interferes with important paracrine and autocrine factors that are involved in OA, perpetuating
the catabolic state of articular chondrocytes [15,16]. Animal and human articular cartilage with OA
have both been reported to increased RNOS production, which also contributes to the degradation of
cartilage by upregulation of matrix metalloproteinases (MMPs) such as MMP13 [18–21]. Moreover,
the cellular oxidation caused by an increased production of RNOS leads to cell aging, especially in
postmitotic tissues, such as cartilage [22], which depend on autophagy as the main mechanism for
eliminating damaged or dysfunctional organelles and macromolecules [23].

Autophagy is a preserved evolutionary pathway of intracellular degradation, in which damaged
organelles and long-lived proteins are degraded and recycled to maintain cellular homeostasis [24–26].
This process consists of dynamic membrane rearrangements that are mediated by a group of four main
autophagy-related proteins (ATG) that include unc-51, like autophagy activating kinase 1 (ULK1),
Beclin1 (BECN1), microtubule associated protein 1 light chain 3 alpha (LC3), and autophagy related 5
(ATG5). Upstream, the PI3/AKT and ERK/MAPK pathways are able to regulate the mammalian target
of rapamycin (mTOR), which is a vital regulator of autophagy, by controlling the interaction between
mTOR serine and threonine kinases in the mTOR complex 1 (mTORC-1) [27]. The inhibition of mTORC-1
promotes autophagy, while the activation of mTOR kinase suppresses it [27,28]. In addition to its key
role in physiological conditions, aging is often accompanied by defects of general autophagy [29] and its
deregulation is implicated in various pathological conditions, such as aging-related diseases [30,31].
In fact, alterations of autophagy are correlated with cell death and OA [31].

Autophagy has a controversial role in cellular survival and death [32,33]. Although autophagy
mostly protects cells allow their adaptation to several types of stress, excessive or prolonged activation
of this pathway can promote cell death [26,34]. Moreover, the autophagy pathway may be related to
proinflammatory signaling through a mechanism that involves oxidative stress [35–38]. It has been
observed that cellular damage that is generated by excessive production of RNOS can stimulate this
pathway [22,26,39]. For this reason, the functional relationship between autophagy and apoptosis is
complex and apparently it is the stimulus that determines an induction of apoptosis or autophagy
in a context-dependent mode [34,40,41]. One of the links between these processes could be ATG5,
which has a dual role in autophagy and apoptosis, because it could trigger apoptosis through several
mechanisms and it is part of the molecular mechanisms that govern the inhibitory crosstalk between
apoptosis and autophagy [40].

Although several therapeutic strategies have been developed to improve the repair of hyaline
cartilage, none has been sufficiently effective to generate functional and long-lasting tissue. Currently,
there are no drugs available to modify OA and a large number of candidate drugs have failed to
demonstrate efficacy or they were associated with significant side effects [23,42]. This makes it necessary
to search for other therapeutic alternatives that can avoid undesired effects and can be adapted to the
progressive and multimodal nature of OA.

Polyphenols are the most common bioactive natural products that are present in fruits, vegetables,
seeds, among others [43–46], and they have a wide range of activities in the prevention and treatment
of various physiological or pathophysiological states, such as cancer, neuroinflammation, diabetes,
and aging [47–49]. Several of the beneficial effects of polyphenols have been attributed to their
antioxidant capacity and their ability to modulate antioxidant defense mechanisms [50]. Additionally,
these bioactive components have a great potential to prevent diseases through genetic and epigenetic
modifications [48,49,51–53]. Paullauf et al., also reported that polyphenols affect numerous cellular
targets that can induce or inhibit autophagy and mention that autophagy interferes with the symptoms
and putative causes of aging [54,55]. In fact, several studies described the regulation that polyphenols
have on the path of autophagy [49,56–60].
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Propolis extract is an extremely complex mixture of natural substances; it contains amino acids,
phenolic acids, phenolic acid esters, flavonoids, cinnamic acid, terpenes, and caffeic acid [61], and it has
multiple pharmacological properties, including hepatoprotective, antioxidant, and anti-inflammatory
actions, and in the cartilage, it has been shown to offer excellent protection, being mediated in part
by its RNOS scavenger action [62,63]. Pinocembrin (PB) is one of the most abundant flavonoids in
propolis [64–66] and it has been associated to the inhibition of MMP-1, MMP-3, and MMP-13 expression
at both the protein and mRNA levels in cartilage [66]. Additionally, it is suggested that PB could
protect the brain against ischemia-reperfusion injury, and the possible mechanisms might be attributed
to the inhibition of apoptosis and reversed autophagy disfunction in the penumbra area [65,67].

Altogether, this evidence suggests a potential effect of propolis in reverting the alterations on the
autophagy pathway in chondrocytes with OA, promoting the viability of the chondrocytes and the
maintenance of healthy cartilage. Thus, the goal of our study was to evaluate the effect of ethanolic
extract of propolis (EEP) in chondrocytes that were stimulated with IL-1β and its influence on the
expression of proteins related to autophagy pathway and healthy and osteoarthritic marker.

2. Results

2.1. Characterization of Polyphenols Present in the EEP

The chromatographic profile of the EEP was obtained while using HPLC, showing about 53 peaks
(Figure 1), whose identification was assigned by analyzing standards using the same conditions as in
EEP sample, while considering the exact mass, UV absorption spectrum, and decomposition in the gas
phase (fragmentation). Table 1 describes the identified compounds and related data. Additionally,
the amount of PB was measured by mass spectrometer, resulting in a concentration of 44.1 mg mL−1.
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2 11.4 310 163.0399 C9H7O3 −2.2 p-Coumaric acid 
3 12.6 298, 320 193.0508 C10H9O4 0.9 Isoferulic acid 
4 14.3 295, 322 193.0506 C10H9O4 0.0 Ferulic acid 
5 16.8 292 287.0565 C15H11O6 1.3 Dihydrokaempferol 
6 18.0 230 121.0281 C7H5O2 −6.1 Benzoic acid 
7 22.4 295, 320 207.0658 C11H11O4 0.3 3,4-Dimethyl-caffeic acid 
8 30.4 295, 322 207.0664 C11H11O4 0.0 3,4-Dimethyl-caffeic acid isomer 
9 31.2 285 285.0768 C16H13O5 −0.2 Pinobanksin-5-methyl ether 
10 32.3 308 177.0559 C10H9O3 1.0 p-Coumaric acid methyl ester 
11 33.3 255, 369 301.0351 C15H9O7 −0.8 Quercetin 

Figure 1. Characterization of polyphenols present in the Ethanolic Extract of Propolis. Chromatogram
at 290 nm showing 53 peaks of compounds detected in ethanolic extract of propolis (EEP).

Table 1. Identification data of compounds detected in the Ethanolic Extract of Propolis.

Nº Rt (Min) λmax (nm) [M-H]− (m/z) Ion Formula Error (ppm) Compound

1 7.3 292, 323 179.0353 C9H7O4 1.6 Caffeic acid
2 11.4 310 163.0399 C9H7O3 −2.2 p-Coumaric acid
3 12.6 298, 320 193.0508 C10H9O4 0.9 Isoferulic acid
4 14.3 295, 322 193.0506 C10H9O4 0.0 Ferulic acid
5 16.8 292 287.0565 C15H11O6 1.3 Dihydrokaempferol
6 18.0 230 121.0281 C7H5O2 −6.1 Benzoic acid
7 22.4 295, 320 207.0658 C11H11O4 0.3 3,4-Dimethyl-caffeic acid
8 30.4 295, 322 207.0664 C11H11O4 0.0 3,4-Dimethyl-caffeic acid isomer
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Table 1. Cont.

Nº Rt (Min) λmax (nm) [M-H]− (m/z) Ion Formula Error (ppm) Compound

9 31.2 285 285.0768 C16H13O5 −0.2 Pinobanksin-5-methyl ether
10 32.3 308 177.0559 C10H9O3 1.0 p-Coumaric acid methyl ester
11 33.3 255, 369 301.0351 C15H9O7 −0.8 Quercetin
12 34.3 291 271.0619 C15H11O5 2.5 Pinobanksin
13 37.6 252, 350 285.0404 C15H9O6 −0.1 Luteolin
14 39.5 256, 357 315.0504 C16H11O7 −1.9 Quercetin-3-methyl ether
15 44.0 265, 366 285.0410 C15H9O6 1.8 Kaempferol
16 44.6 286 269.0826 C16H13O4 2.7 Pinocembrin-5-methyl ether
17 46.3 267, 338 269.0448 C15H9O5 2.6 Apigenin
18 46.9 254, 370 315.0510 C16H11O7 −0.1 Isorhamnetin
19 49.7 266, 352 299.0549 C16H11O6 −4.0 Kaempferol-methyl ether
20 50.5 311 173.0621 C11H9O2 7.6 Chrysin-5-methyl ether
21 50.8 265, 310 267.0663 C16H11O4 −3.2 Cinnamylidenacetic acid
22 51.2 290 329.0674 C17H13O7 2.1 Unknown
23 53.6 296 313.0714 C17H13O6 1.1 Pinobanksin acetate derivative
24 55.3 255, 369 315.0508 C16H11O7 −0.7 Rhamnetin
25 57.1 290 255.0664 C15H11O4 0.5 Pinocembrin
26 59.4 327 269.0818 C16H13O4 0.4 Caffeic acid benzyl ester
27 59.8 300, 325 247.0977 C14H15O4 0.7 Caffeic acid isoprenyl ester (isomer)
28 60.3 290 285.0766 C16H13O5 −0.8 Unknown
29 61.1 292 313.0727 C17H13O6 3.1 Pinobanksin-3-O-acetate
30 61.4 300, 325 247.0988 C14H15O4 4.9 Caffeic acid isoprenyl ester (isomer)
31 62.0 301, 325 247.0986 C14H15O4 3.9 Caffeic acid isoprenyl ester (isomer)
32 63.3 268, 314 253.0515 C15H9O4 3.6 Chrysin
33 65.7 298, 325 283.0987 C17H15O4 4.0 Caffeic acid phenylethyl ester (CAPE)
34 66.5 265, 359 269.0467 C15H9O5 4.5 Galangin
35 69.3 268, 332 283.0624 C16H11O5 4.2 Acacetin
36 69.8 311 253.0883 C16H13O3 5.0 p-Coumaric acid benzyl ester

37 70.4 298, 325 283.0987 C17H15O4 3.9 Caffeic acid derivative
(phenylethyl ester)

38 70.9 298, 323 261.1138 C15H17O4 2.3 Caffeic acid derivative
(hexenoate ester)

39 72.2 298, 324 261.1145 C15H17O4 4.9 Caffeic acid derivative
(hexenoate ester)

40 72.7 290 327.0904 C18H15O6 9.0 Pinobanksin-3-O-propionate
41 74.1 247, 295, 325 295.0993 C18H15O4 5.7 Caffeic acid cinnamyl ester
42 75.7 298 267.1033 C17H15O3 2.3 Unknown
43 76.2 300, 327 269.0825 C16H13O4 2.0 Caffeic acid derivative

44 78.7 289 433.1313 C25H21O7 4.7 Pinocembrin
methoxyphenylpropionate derivative

45 82.4 nd 417.1376 C25H21O6 7.9 Pinobanksin phenylpropionate
derivative

46 82.9 286 353.1062 C20H17O6 9.0 Pinobanksin-3-O-pentenoate
47 83.3 293 341.1048 C19H17O6 8.2 Pinobanksin-3-O-butyrate/isobutyrate
48 88.3 nd 311.2249 C18H31O4 6.8 Unknown

49 92.5 292 355.1220 C20H19O6 9.3 Pinobanksin-3-O-pentanoate/
2-methylbutyrate

50 96.1 291 403.1238 C24H19O6 12.6 Pinobanksin-3-O-phenylpropionate
51 97.7 291 369.1397 C21H21O6 14.4 Pinobanksin-3-O-hexanoate
52 99.6 283 293.2148 C18H29O3 8.7 Unknown
53 103.6 283 281.2509 C18H33O2 9.5 Unknown

Rt: Retention time; λmax: Maximum wavelength; m/z: Mass-to-charge ratio.

2.2. Cell Viability Analysis after Treatments

Cell viability assay by trypan blue was performed to identify the highest dose of EEP that does
not show a significant decrease in chondrocytes viability. After the EEP treatment using concentrations
that ranged between 0 and 15 µg/mL, a significant decrease in cell viability was observed, starting
from 5 µg/mL (Figure 2). For this reason, 2.5 µg/mL was selected as the dose for the following EEP
treatments. The IL-1β, bafilomycin, and rapamycin doses were selected according to the literature and
these did not significantly modify the viability of the chondrocytes (data not shown).
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*** p < 0.001. (N = 5 independent experiment). 

Figure 2. Cell viability analysis of Chondrocytes after EEP treatment. Quantification of cell viability
with trypan blue, after application in the supernatant of different doses of propolis for 24 h in culture of
rabbit chondrocytes in P2. (N = 12 technical replicates). Different letters show statistically significant
differences compared to the untreated group (0µg/mL), a: p ≤ 0.05 and b: p ≤ 0.01.

2.3. Effect of OA Induction on Autophagy-Related Proteins

LC3I and LC3II proteins were detected by western blot (Figure 3a) to evaluate the effect of
IL-1β-induced OA on autophagy pathway. An increase in the protein expression of LC3I was observed
under IL-1β inflammatory stimulus, similarly to that observed after the treatment with rapamycin (RAP),
which corresponds to a well-known autophagy stimulator (Figure 3a,b). Subsequently, no changes in
the protein expression of LC3I or LC3II were observed when EEP or vehicle treatment was applied
(Figure 3b,c). The cells exposed to bafilomycin (BAF), an autophagy inhibitor, markedly increased
LC3II expression (Figure 3a,c). This accumulation in response to BAF treatment was described in the
guidelines for the use and interpretation of assays for the monitoring autophagy by Klionsky et al. [7],
where the accumulation of LC3I and II can be obtained by interrupting the autophagosome-lysosome
fusion step, increasing the number of autophagosomes. Finally, a decrease in LC3I was observed
in OA-induced chondrocytes after EEP treatment when compared to cells stimulated with IL-1β
(Figure 3a,b).
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Figure 3. Effects of IL-1β and EEP treatment on autophagy markers. (a) Relative expression of LC3 I
and II proteins evaluated by Western Blotting. (b,c) Quantification of protein expression of LC3 I and
II evaluated in rabbit chondrocytes exposed to different condition per 24 h. Control (No treatment);
RAP (100 nM rapamycin); BAF (20 nM bafilomycin); IL-1β (10 ng/mL IL-1β); EEP (EEP 2.5 µg/mL);
IL-1β and EEP (10 ng/mL IL-1β and 2.5 µg/mL EEP) and vehicle (2% ethanol). * p < 0.05, ** p < 0.005,
*** p < 0.001. (N = 5 independent experiment).
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2.4. Effect of EEP Treatment on Autophagy Protein in OA Chondrocytes

To analyze the autophagy pathway in OA chondrocytes under EEP treatment, three proteins
were selected: LC3, ATG5, and AKT1. The protein expression of LC3I had a significant decrease in
the condition co-treated with IL-1β and EEP when compared to the IL-1β group, and there were no
significant differences between EEP treatment, and the EEP and IL-1β condition (Figure 4a). In relation
to LC3 gene expression, a significant decrease was observed in OA chondrocytes that were treated
with EEP, as compared to the IL-1β stimulated condition (Figure 4d).

Regarding ATG5 protein expression, a significant decrease was observed in the condition of
co-treated with IL-1β and EEP when compared to the IL-1β group and there were no significant
differences between EEP treatment, and EEP and IL-1β condition (Figure 4b). In relation to ATG5
gene expression, a significant decrease was observed in OA chondrocytes that were treated with EEP
compared to IL-1β stimulated condition (Figure 4e).

Finally, a significant decrease of AKT1 protein expression was observed in the condition co-treated
with IL-1β and EEP when compared with the IL-1β group and there were no significant differences
between EEP treatment, and EEP and IL-1β condition (Figure 4c). This effect was not reflected in the
gene expression analysis (Figure 4f).
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Figure 4. Relative expression of autophagy-related genes and proteins from rabbit chondrocytes
stimulated by IL-1β and treated with EEP for 24 h. (a–c) Protein expression of LC3 I, ATG5, and AKT1
evaluated by Western Blotting and quantitative analysis. (d–f) Gene expression analysis of markers of
the autophagy pathway evaluated by RT-PCR. * p < 0.05, ** p < 0.005, *** p < 0.001. IL-1β: stimulated
with IL-1β 10 ng/mL, EEP: treated with EEP 2.5 µg/mL, IL-1β EEP: treated with IL-1β and EEP. All data
were normalized by control (without treatment). One-way ANOVA, Tukey Multiple Comparison Test.
SW normality test. (N = 5 independent experiment).

2.5. Effect of EEP Treatment on Cartilage Markers Expression in OA Chondrocytes

Collagen II (Col2a1) was selected as a healthy cartilage marker and MMP13 as OA marker. Col2a1
protein expression did not significantly change with EEP treatment when compared to the IL-1β
stimulation. However, there is a significant increase from 1 to 1.4 in the condition of being co-treated
with IL-1β and EEP when compared to the IL-1β stimulation, and between EEP, and IL-1β and EEP
(Figure 5a). On the other hand, a significant increase in gene expression is observed between the IL-1β
and EEP condition, but not in the condition of being co-treated with IL-1β and EEP (Figure 5c).
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Figure 5. Relative protein and gene expression of cartilage markers in rabbit chondrocytes in response
to IL-1β stimulation and EEP treatment for 24 h. (a,b) Protein expression evaluated by Western Blotting
of col2a1 and MMP13 and quantitative analysis. (c,d) Relative expression of mRNA levels of col2a1
and MMP13 evaluated by RT-PCR. * p < 0.05, ** p < 0.005, *** p < 0.001. IL-1β: stimulated with IL-1β
10 ng/mL, EEP: treated with EEP 2.5 µg/mL, IL-1β EEP: treated with IL-1β and EEP. All the results
were normalized by control (without treatment). One-way ANOVA, Dunnets and Tukey Multiple
Comparisons (N = 5 independent experiments).

There is a significant decrease in MMP13 protein expression when EEP treatment is co-treated
with IL-1β stimulation as compared to the IL-1β condition and there were no significant differences
between EEP treatment, and EEP and IL-1β co-treated condition (Figure 5b). In relation to gene
expression, there is a significant decrease in the EEP and IL-1β co-treatment when compared to the
IL-1β condition (Figure 5d).

2.6. Effect of EEP Treatment on Chondrocytes Nitric Oxide Production Induced by the Inflammatory Stimulus

A significant increase in the amount of NO from 8 to 22 µM was observed in chondrocytes that
were stimulated with IL-1β as compared to the control condition; this increase is reduced significantly
to 16 µM with EEP treatment (Figure 6). In addition, EEP treatment does not modify the amount of NO
in the supernatant compared to the control condition. On the other hand, the activation or inhibition of
autophagy does not significantly modify the amount of NO that is released to the medium (Figure 6).
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Figure 6. Analysis of nitric oxide in samples of rabbit chondrocytes stimulated with IL-1β and treated
with EEP for 24 h. Different letters indicate statistic differences significance. Control: No treatment,
Control RAP: treated with rapamycin 100 nM (positive control autophagy), Control BAF: treated with
bafilomycin 20 nM (negative control autophagy), IL-1β: treated with IL-1β 10 ng/mL, EEP: treated with
EEP 2.5 µg/mL, IL-1β EEP: treated with IL-1β and EEP and vehicle: treated with ethanol. * p < 0.05,
** p < 0.005, *** p < 0.001. One-way ANOVA, Tukey Multiple Comparison Test. (N = 5 independent
experiments).

3. Discussion

OA is the most common chronic degenerative joint disease and it heavily impacts on life
quality [8,9]. OA treatment is complex, because it is a multifactorial disease and current therapies are,
at best, moderately effective pain relievers and several of these drugs have adverse effects [9], so the
development of safe treatments is necessary.

Autophagy is a highly conserved mechanism of homeostasis maintenance [55,68] and its
deregulation contributes to OA development. In fact, in late stages of OA, this process also
could be conjunctly activated with apoptosis as an alternative pathway to chondroptosis [69,70].
Hence, the modulation of autophagy can be a promising therapeutic strategy for OA, since it has the
potential to counteract both effects of the inflammatory stimuli and age-related defects [8].

Propolis is highly rich in active components and its extracts have numerous applications in treating
various diseases [71]. PB is one of the most abundant flavonoid in propolis [65,72] and it has drawn
much attention for its broad spectrum of pharmacological properties, such as the reversion of autophagy
dysfunction in the ischemia-reperfusion injury [65,67]. We evaluated the amount of pinocembrin
present in the Chilean propolis used in this study, since its composition depends on the source of the
various trees that were used by honeybees [72,73]. The used EEP contains a significant amount of
pinocembrin, being polyphenol the most abundant extract (Figure 1 and Table 1). These results are
corroborated by previous studies of propolis that were extracted from the same region [74–76].

Given that autophagy defects could have a central role in OA, the objective of this study was to
evaluate the potential effect of propolis in autophagy proteins on chondrocytes with OA. Importantly,
there are no absolute criteria for determining autophagic status that are applicable in every biological
or experimental context [7]. The radio between LC3I and LC3II is used to evaluate the autophagy
pathway [55]. One limitation of our study was that it was not possible to calculate said radius due
to the low abundance of LC3II, hence preventing reliable quantification. Therefore, it was decided
to omit this indicator. Nevertheless, LC3I is used as a marker of autophagic induction [55] and the
conversion pattern of LC3I to LC3II is dependent on the type and cellular context [7], so we evaluated
the expression of this marker in response of IL-1β stimulation.

Certain studies have indicated that stimulation with IL-1β could inhibit the autophagy pathway,
especially in those that are associated with nutrient deprivation [77]. In our study, we decided to
observe what happens with the autophagy pathway without a context of nutrient deprivation.
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After the IL-1β stimulation, there was an increase in LC3I protein expression similar to the one that
was observed with the autophagy inducer, rapamycin (Figure 3). This suggests that the inflammatory
stimulus with IL-1β increases the expression of LC3, which is consistent with the literature [78–80].
On the other hand, a decrease in LC3I protein expression with EEP treatment on OA chondrocyte was
observed, as compared to chondrocytes that were stimulated with IL-1β, which suggested that EEP
could regulate the autophagy pathway (Figure 3).

Subsequently, an analysis of gene and protein expression of three genes associated with the
autophagy pathway was performed in response to IL-1β-stimulation and treatment with EEP in
chondrocytes: LC3, ATG5, and AKT1. In response to IL-1β–stimulation, thee chondrocytes increased
their protein expression of LC3I, ATG5, and AKT1 (Figure 4a–c). This result was also observed in
mRNA expression of LC3I and ATG5 (Figure 4d,e), which suggested that the autophagy pathway is
triggered by the inflammatory stimulus. Autophagy has been recognized as an adaptive response
to stress that promotes survival, whereas in other cases it is capable of promoting cell death and
morbidity [68–70], and a functional relationship between both processes is postulated [34,40,41]. This is
also consistent with the effects of another proinflammatory cytokine, TNFα, which also increases with
age and in OA, which is additionally able to increase the expression of LC3 through the inhibition of
AKT activation [79,80]. AKT1 is an upstream regulator of mTOR and is usually considered a suppressor
of autophagy, but it has been observed that some natural components activate autophagy with
a concomitant increase in AKT phosphorylation [27].

On the other hand, it has been shown that the acute stimuli of oxidative stress may be able to
induce a positive regulation of autophagy in an adaptive way, which helps to restore intracellular
homeostasis, however, an alteration in autophagy may be generated if this stress is prolonged [35].
In aged cartilage and the development of OA, there is an increase ROS levels and adult chondrocytes
become more susceptible to cell death that is mediated by ROS [13,14]. In addition, chondrocytes
that are stimulated by proinflammatory cytokines, such as IL-1β, produce large amounts of nitric
oxide [15,16,81,82], which contributes in part to this oxidative/nitrosative stress. This agrees with
what we observed in chondrocytes that were stimulated with IL-1β (Figure 6). We suggest that the
alterations produced in chondrocytes with OA are partly produced by this oxidative stress that is
induced by NO.

Some polyphenols might regulate several cellular targets that can thus induce or inhibit
autophagy [54], and it is thought that a partial restoration of basal autophagy might contribute
to improving chondrocyte viability in OA [55]. Therefore, we evaluated whether the EEP, rich in
polyphenols, could regulate the expression of the selected proteins. In response to EEP treatment,
chondrocytes stimulated with IL-1β significantly decrease the protein expression of LC3I, ATG5,
and AKT1 (Figure 4a–c). This result was also observed in mRNA expression of LC3I and ATG5
(Figure 4d,e). This suggests that EEP treatment, which is a rich mixture of polyphenols, particularly
pinocembrin, could be able to return to it basal levels of autophagy. Recently, it has been reported
that Chinese propolis reduce the inflammation through an inhibition of autophagy by reducing the
distribution and accumulation of LC3 in vascular endothelial cells [83]. Another study mentions that
a Taiwanese green propolis partially inhibited the NLRP3 inflammasome via autophagy induction [84].
Moreover, chrysin, another polyphenol, has been reported to be present in propolis and our samples
(Table 1, number 32). Chrysin would be able to decrease the induction of proteins associated with
autophagy in mesangial cells that were exposed to advanced glycation end products [85].

This decrease could restore this pathway normal levels, returning the homeostasis that had
been lost with the inflammatory stimulus. As oxidative stress could mediate an excessive induction
of autophagy [86], we analyzed whether EEP treatment, by exerting its scavenger action [62,63]
could decrease the amount of NO that was released to the medium. Indeed, the EEP treatment reduced
the amount of NO produced (Figure 6). Therefore, this could be the mechanism by which the autophagy
activation may be inhibited, decreasing the expression of proteins, such as LC3 I, ATG5, and AKT1



Int. J. Mol. Sci. 2019, 20, 3768 10 of 19

(Figure 4a–c). To elucidate this, functional analysis should be done in the pathway of autophagy in
chondrocytes in response to EEP treatment.

Collagen(s) are long-lived proteins [87,88]. Oxidative damage is, by far, the most important way
of inducing a post-translational chemical modification of ECM of the cartilage that will alter collagen
longevity [88]. So, a reduction in the oxidative damage by EEP treatment could improve the expression
of healthy cartilage marker. EEP treatment induces an increase in protein expression of Col2a1 in
chondrocytes that were stimulated with IL-1β probably through this way (Figure 5a,b). It has been
described that the increase of ROS contributes to the degradation of the cartilage by means of an up
regulation of MMPs [18] and that pinocembrin (one of the most abundant components of our propolis)
inhibits the expression of MMP-1, MMP-3, and MMP-13 at the protein and mRNA levels in cartilage [66].
EEP treatment significantly reduces MMP-13 protein expression in chondrocytes that were stimulated
with IL-1β (Figure 5c,d), probably again through an antioxidant mechanism. These results suggest
the beneficial effects of EEP treatment in chondrocytes with OA in vitro, increasing the expression of
healthy cartilage marker and reducing the OA marker.

To the best of our knowledge, there is no study that analyzes the effect of propolis on the expression
of col2a1 or MMP13 on chondrocytes. Although, it has been described that pinocembrin was able to
reduce MMP13 levels in chondrocytes that were stimulated with TNF-α [66] and chrysin was able to
increase the levels of collagen II and reduce the levels of MMP13 in chondrocytes [85].

Koussounadis et al. [89], in 2015, mentioned that mRNA and protein expression do not always
present good correlation for diverse reasons, for example, the different post-transcriptional regulation,
mRNA degradation, the half-life of the protein, among others. In the case of the differences that were
observed in the expression of Col2a1, we can infer that, since it is a long-lived protein, the oxidative
stress that was generated by the inflammatory stimulus could favor the degradation of this protein.
Moreover, its degradation would reduce by decreasing the amount of nitric oxide without altering
mRNA expression when the treatment with EEP is applied (Figure 5a). It is also necessary to
mention that the MMP13 expression has a negative relationship with the Col2a1 expression and since
this metalloprotinase specifically degrades Col2a1, this could be another way in which the protein
expression of Col2a1 varies without generating any modification of its mRNA.

Autophagy is a dynamic pathway whose activity can change in response to different stimulus,
such as drugs, cell type, and confluence [7], because of that, it would be not unusual to find differences
between gene and protein expression and sometimes it can be difficult to interpret the results. Hence,
this is why we only mentioned the increase or reduction of protein expression.

According to the guidelines for the study of autophagy, most of the ATG genes do not show
significant changes in mRNA levels when autophagy is induced [7]. A slight increase of mRNA of LC3
has been observed between 4 to 16 h after starvation, which decreases over time [90]. For this reason,
it is thought that the increases in the mRNA expression of LC3 can be quite modest and are cell type
and organism dependent. It is also suggested that the study of protein expression would be a more
significant parameter in relation to the initiation and completion of autophagy [7]. Therefore, it is likely
that, during the time in which the mRNA analysis was performed (24 h post treatment), it had already
been degraded by intracellular mechanisms, which would be observed as a lower mRNA expression,
despite the fact that the protein expression would remain high (Figure 4). Alternatively, we should
have measured the rate of general protein breakdown by autophagy, to measure the autophagic flow,
and therefore estimate the activity of the autophagy pathway. This is another limitation of this study.

It is important to consider that the antioxidant capacity of propolis responds to a heterogeneous
mixture of compounds, including several polyphenols [72,73]. Each one possesses a particular
antioxidant capacity and, for this reason, only the amount present of a particular polyphenol in the
EEP is not a good indicator of the scavenger capacity of the compound [91]. For example, quercetin
found in the chromatographic profile of Figure 1, as indicated with the number 11, has approximately
20 times more antioxidant power than pinocembrin, although it is found in a smaller quantities than
this latter [91]. Therefore, we cannot rule out that the other polyphenols may be responsible for the
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antioxidant effect of propolis. In addition, we must take into account that the mixture of polyphenols
could have an additive effect. In order to clarify this, the experiments should be carried out to include
the effect of each of the different polyphenols that were present in the EEP sample, in comparison to
the complete mixture.

In conclusion, the inflammatory stimulation with IL-1β applied on chondrocytes causes a decrease
in the expression of healthy cartilage marker and increases in the OA marker, also generates
a deregulation of the autophagy pathway. The treatment with EEP is probably able to inhibit
these deregulations counteracting the decompensation of the mechanisms that maintain cellular
homeostasis, such as autophagy, which could be the initial trigger of mechanical and structural
alterations of the tissue. We propose that the mechanism that is involved in the effect of propolis
is through a reduction of oxidative stress that is generated by the application of the inflammatory
stimulus (Figure 7).
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Figure 7. Mechanism proposed by which EEP treatment can reverse the alterations generated by the
inflammatory stimulus in chondrocytes. Defects that are generated by the inflammatory stimulation in
chondrocytes such as decrease expression of col2a1, increase of nitric oxide production, increase of
MMP13 expression and deregulation of autophagy proteins are inhibited by EEP treatment through
an antioxidant mechanism.

Finally, we propose that treatment with dietary polyphenols in people with OA triggered by
aging could be an effective complementary therapeutic approach, since, through anti-inflammatory,
antioxidant, and autophagy regulating mechanisms, could inhibit or reduce the causes that would
origin cartilage degeneration in relationship to age, such as: modification of the composition of
the matrix, increase in oxidative stress, decrease in the number of chondrocytes that are associated
with age, and change of the chondrocyte phenotype, among others, thus promoting the viability of
chondrocytes and the maintenance of a healthy cartilage. More in vitro and in vivo studies are needed
in order to support the effect of polyphenols in OA, evaluating the bioavailability and establishing
an effective dose.

4. Materials and Methods

4.1. Preparation and Characterization of Ethanolic Extract of Propolis

A crude brown propolis sample was obtained from a mountainous area (latitude −38◦58′4046′′,
longitude −72◦1′1573′′) near Cunco city, La Araucanía, Chile. Briefly, crude propolis was mixed with
ethanol 80% in a 1:3 w/v proportion in an amber colored bottle and incubated for 30 min at 60 ◦C under
constant mixing. Subsequently, the mixture was filtrated on a Whatman No. 1 filter paper in order
to separate the ethanolic extract from crude propolis residues. The extract was left at 4 ◦C and then
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centrifuged for one night, in order to promote the precipitation of waxes and other poorly soluble
waste. Subsequently, the propolis solvents were removed by evaporation and then the product was
lyophilized and reconstituted in a 1:1 w/v proportion with ethanol. The EEP was analyzed with HPLC
equipment (LC-20AD pumps, SIL-20AC injector, CTO-20A columns and DAD detector SPD-M20A,
Kyoto, Japan); MS: MicroTOF-QII, Bruker Daltonics (Billerica, MA, USA). In the mass spectrometer,
the DAD detector effluent was divided into a 1:10 ratio (split 1:10), with one part (50 µL/min.) being
directed to the mass spectrometer. The electrospray source was used in negative mode at 3000 V.
Nebulizer gas (nitrogen): 35 psi; drying gas (nitrogen): 6 L/min. at 220 ◦C. The mass scale of the
equipment was calibrated with a sodium acetate solution. Additionally, the amount of pinocembrin
was quantified while using the same method.

4.2. Cartilage Samples Collection and Primary Chondrocyte Culture

Normal articular cartilage was collected from five white New Zealand buck rabbits, which
were anesthetized with overdose of propofol and euthanized using Potassium chlorate 60 mg/Kg.
After knee joint surgery, the pieces of articular cartilage were dissected and separated from the
underlying bone and connective tissues. The pieces were washed three times with PBS 1× and 5%
penicillin/streptomicin. The extracted cartilage was digested in a solution of 2 mg/mL Protease Type
XIV. Bacterial from (Streptomyces griseus) (Sigma Aldrich, St Louis, MO, USA) in PBS 1× for 1.5 h
and 1.5 mg/mL collagenase B (Roche, Meylan, France) in basic medium DMEM at 37 ◦C overnight.
This suspension was centrifuged at 1200 rpm for 8 min. to collect the chondrocytes and was washed
with basic medium DMEM. The chondrocytes were cultured in DMEM/F12 (1:1 with 15% FBS plus
1% antibiotic mixture of penicillin/streptomycin) at a density of 1 × 105 cells/mL and incubated in
a humidified atmosphere of 5% CO2 at 37 ◦C. Culture medium was changed every two days and each
passage was made when the confluence reached between 80–90%. We only used the second passage of
cells in all experiments in order to avoid loss of chondrocyte phenotype [92].

4.3. Cell Viability Analysis in Response to EEP Treatment

Cell viability was assessed while using trypan blue staining, as previously described [93]. Rabbit
chondrocytes were briefly incubated and then exposed to different concentrations of EEP (0, 2.5, 5, 7.5,
10, and 15 µg/mL) in 24 well plates at a density of 2 × 104 cell per well for 24 h. Each experiment was
performed in triplicate. The results are expressed as % of viable cells relative to control cells (untreated).

4.4. In Vitro Model of OA and Treatments

For the induction of OA-like biological changes, the chondrocytes were stimulated using IL-1β [17].
The cells were incubated for 24 h under the following conditions: Control (untreated); RAP (100 nM
rapamycin, Sigma Aldrich, USA); BAF (20 nM bafilomycin, Sigma Aldrich, USA); IL-1β (10 ng/mL IL-1β);
EEP (EEP 2.5 µg/mL); IL-1β and EEP (10 ng/mL IL-1β and 2.5 µg/mL EEP); and, vehicle (2% ethanol).

4.5. Western Blot Analysis

The chondrocytes were isolated from confluent monolayer cultures using RIPA buffer
supplemented with 1mg/mL Halt™ Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher,
Waltham, MA, USA) at 4 ◦C for 30 min. The samples were then centrifuged at 15,000 rpm for 30 min.,
and the supernatants were harvested to measure the protein concentration. Proteins were quantified
while using the Bradford method with BCA detection kit and adjusted to equal concentrations (45 µg)
across different samples. Equal amounts of protein were heated at 95 ◦C for 5 min. and separated
using 4–20% Mini protean TGX Precast gel (Biorad, Hercules, CA, USA). Following electrophoresis,
the proteins were transferred onto a polyvinylidene fluoride membrane (PVDF, MilliporeSigma,
Burlington, MA, USA). The membranes were blocked with 5% BSA (TBST) at room temperature for 1h
and then incubated overnight at 4 ◦C with primary antibodies of autophagy proteins: ATG5 (ab108327,
Abcam, Cambridge, UK), AKT1 (#9272, Cell Signaling, Danvers, MA, USA), LC3 (ab128025, Abcam,
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Cambridge, UK), and cartilage markers COL2A1 (ab34712, Abcam, Cambridge, UK), MMP13 (ab84594,
Abcam, Cambridge, UK). Following three wash steps with TBST the membranes were incubated with
Horseradish peroxidase (HRP) goat anti-rabbit IgG (#7074 Cell Signaling, Danvers, MA, USA) for 1 h at
room temperature. They were washed then with TBST, three times, for 5 min. each time. Protein bands
were detected using Amersham ECL TM Advance Western Blotting Detection Kit (GE Healthcare,
Chicago, IL, USA).

In the case that proteins have a weight similar to β-actin, stripping was performed with Restore
Western Blot Stripping Buffer (21059, Thermo Fisher Scientific, Waltham (MA), USA) according to the
manufacturer’s instructions. Finally, β-actin expression was used as load control in all western blot
assays (A5441, Sigma Aldrich, St Louis, MO, USA). The quantification was performed by densitometry
and bands analysis with the ImageJ 1.8.0 software (Rasband, W.S., ImageJ, U. S. National Institutes of
Health, Bethesda, MD, USA)

4.6. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)

Total RNA was isolated while using mirVana™miRNA Isolation Kit (AM1560, Thermo Fisher
Scientific, Waltham (MA), USA), according to the manufacturer’s instructions. First-strand cDNA
was synthesized while using kit Superscript VILO cDNA synthesis, according to the manufacturer’s
instructions, and Quantitative PCR was performed using 7500 real time PCR system with SYBR
Green Master Mix (4309155, Thermo Fisher Scientific, Waltham (MA), USA). The forward and reverse
primers that were used are shown in Table 2. β-actin expression was used as an internal control.
Each experiment was repeated three times in technical triplicate. The relative expression of target
genes was calculated while using the −2−∆∆Cq method.

Table 2. Primers used to analyze gene expression in rabbit chondrocytes.

Gene Symbol Sequence Forward (5′-3′) Sequence Reverse (5′-3′)

COL2A1 GGT GAC TAC TGG ATA GAC CCC
AAC CAA

TGA AGT GGA AGC CGC CAT
TGA TG

MMP13 GAA TTA AGG AGC ATG GCG AC TAA GGA GTG GCC GAA CTC AT

ATG5 CGT CCT GTG GCT GCA GAT G AAG GAC ACA CTT CTT TGA GGA
GAT C

MAPLC3A/B (LC3I/II) GCC TTC TTC CTG CTG GTG AAC AGC CGT CCT CGT CTT TCT CC

AKT 1 ATG GCA CCT TCA TTG GCT AC CCC AGC AGC TTC AGG TAC TC

ACTB AGA CCA CCT TCA ACT CGA TCA T ACT CGT CAT ACT CCT GCT TGC T

4.7. Measurement of NO Release

The NO release was measured from supernatant of rabbit chondrocytes cultures employing a NO
chemiluminescence analyzer (model NOA, Sievers Instruments, Boulder, CO, USA). The evaluated
conditions were: control; RAP; BAF; IL-1β; EEP; IL-1β and EEP; and, vehicle. All conditions were
cultured for 24 h. The release of gaseous compounds was monitored for at least 8 h at intervals of
15 and 30 min., and 1, 2, 4, 6, and 8 h. After 15 min. of incubation, aliquots (0.5 mL) of accumulated
gaseous materials in the headspace were injected into the detector chamber using a Hamilton Gastight
syringe [94]. Each experiment was repeated three times.

4.8. Statistical Analysis

All of the experiments were repeated at least three times. The results were expressed as mean ±
S.D., and the data was analyzed using one-way ANOVA followed by Dunnett, Bonferroni or Tukey
Multiple Comparisons while using Sigma Plot (Analysis made in Graph Pad Prism version 5) to
determine any significant differences. p < 0.05 was considered to be statistically significant.
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ATG Autophagy-related proteins
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EEP Ethanolic extract of propolis
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iNOS Inducible nitric oxide synthase
IL-1β interleukin 1 beta
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MMP-13 Matrix metalloproteinase 13
mTOR Mammalian target of rapamycin
mTORC-1 Mammalian target of rapamycin complex 1
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OA Osteoarthritis
OARSI Osteoarthritis Research Society International
PB Pinocembrin
RAP Rapamycin
RNOS Reactive Nitrogen and Oxygen Species
TNF-α Tumor necrosis factor α
ULK1 unc-51 like autophagy activating kinase 1
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