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A B S T R A C T   

Accurately identifying neoantigens is crucial for developing effective cancer vaccines and improving tumor 
immunotherapy. Mass spectrometry-based immunopeptidomics has emerged as a promising approach to iden-
tifying human leukocyte antigen (HLA) peptides presented on the surface of cancer cells, but false-positive 
identifications remain a significant challenge. In this study, liquid chromatography-tandem mass 
spectrometry-based proteomics and next-generation sequencing were utilized to identify HLA-presenting neo-
antigenic peptides resulting from non-synonymous single nucleotide variations in tumor tissues from 18 patients 
with renal cell carcinoma or pancreatic cancer. Machine learning was utilized to evaluate Mascot identifications 
through the prediction of MS/MS spectral consistency, and four descriptors for each candidate sequence: the max 
Mascot ion score, predicted HLA binding affinity, aliphatic index and retention time deviation, were selected as 
important features in filtering out identifications with inadequate fragmentation consistency. This suggests that 
incorporating rescoring filters based on peptide physicochemical characteristics could enhance the identification 
rate of MS-based immunopeptidomics compared to the traditional Mascot approach predominantly used for 
proteomics, indicating the potential for optimizing neoantigen identification pipelines as well as clinical 
applications.   

1. Introduction 

Correct identification of tumor specific antigens generated by 
genomic mutations in tumor cells, known as neoantigens, is essential for 
developing effective cancer vaccines and improving the efficacy of 
tumor immunotherapy [1,2]. Mass spectrometry (MS)-based immuno-
peptidomics is a promising approach for analyzing peptides present on 

the surface of cancer cells and can provide direct and reliable evidence 
for neoantigen identification [3–6]. However, conventional proteomics 
workflows face significant challenges, especially false-positive peptide 
identification, when applied to immunopeptidomics because of differ-
ences in analysis purposes and sample nature [7,8]. First, the diversity of 
intracellular hydrolysis mechanisms leads to inherently diverse human 
leukocyte antigen (HLA) peptides, with a particular issue being the lack 
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of a positive charge at the C-termini [9–11]. This leads to lower frag-
mentation and ionization efficiency of peptides than traditional tryptic 
peptides, increasing the spectral peaks of intermediate internal frag-
ments in tandem MS spectra and causing a loss of paired y-ions [11–13]. 
This poses challenges for database searching based on spectral similar-
ity, such as using Mascot [14], to identify correct peptide spectrum 
matches. Second, the property of specific binding to the major histo-
compatibility complex (MHC), also known as HLA in humans, makes 
HLA peptides more similar in amino acid length and conservation but 
lower in abundance compared to tryptic digested peptides in conven-
tional shotgun proteomics. Therefore, false-positive peptide identifica-
tion from a large number of similar peptides makes accurate peptide 
spectrum matching difficult [15]. Third, most contaminants carry a 
single charge, which makes it challenging to identify and distinguish 
signal peaks from noise [8]. In shotgun proteomics, achieving a reliable 
and identical result is typically associated with a Mascot ion score at 
25–30 or False Discovery Rate (FDR) ≤ 1% in general [16]. Despite 
being mentioned above, the reduced ionization efficiency arising from 
the absence of inherent positive charges in immunopeptides frequently 
leads to lower Mascot ion scores in the obtained results, and employing 
high cutoffs with Mascot can result in a notable decline in 
co-determination efficiency. Therefore, some studies utilizing shotgun 
pipelines for immunopeptidomic research employed reduced Mascot 
cutoff values, such as Mascot at 22, and/or FDR of 5–9% [17], to attain 
the intended number of candidate results. Therefore, it remains neces-
sary to evaluate the attainable accuracy when employing this method for 
analyzing real clinical tumor samples, while also crucially focusing on 
the development of new strategies to enhance precision [15]. 

In this study, Liquid chromatography-tandem mass spectrometry 
(LC-MS/MS)-based proteomics and next-generation sequencing (NGS) 
were used to identify HLA-presenting neoantigenic peptides resulting 
from non-synonymous single nucleotide variations (SNVs). Tumor tis-
sues from 18 patients with renal cell carcinoma or pancreatic cancer 
were analyzed using a conventional proteomic workflow based on 
Mascot. To comprehensively assess the precision of this method in the 
examination of genuine clinical tumor samples, all candidate sequences 
with a maximum Mascot ion score exceeding 10 were synthesized as 
standard peptides. Their mass spectrometry spectra were then compared 
to those of the corresponding peptides identified in the tumor tissues. 
Additionally, a machine learning-based filter biased towards HLA pep-
tides was developed by incorporating peptide physicochemical infor-
mation and experimental information. The results showed that 
conventional proteomic methods have limited capabilities in identifying 
immunopeptides originating from SNVs in actual clinical tumor sam-
ples. Nonetheless, by applying post-processing filter based on machine 
learning, the identification performance can be significantly improved, 
and it can also help rescue reliable identifications with low Mascot ion 
scores. 

2. Material and methods 

2.1. Patient material and HLA-typing 

Cancerous and normal tissues from patients with renal cell carci-
noma or pancreatic cancer were used in this study (Table S1). Sequence 
data of the genomic DNA samples were analyzed for HLA haplotypes at 
the HLA Laboratory (Kyoto, Japan). This study was conducted in 
accordance with the provisions of the Declaration of Helsinki and was 
approved by the institutional review board of the Kanagawa Cancer 
Center, Kanagawa, Japan (approval number: 2017–11 and 2017–83). 
Informed consent was obtained from all patients involved in the study 
after explaining the nature of the study and its possible consequences. 

2.2. Genomic analyses: Mutation discovery 

Total RNA and genomic DNA were extracted from frozen pieces of 

tumor and normal tissues using the Prep DNA/RNA kit (Qiagen, Düs-
seldorf, Germany) according to the manufacturer’s instructions and 
subjected to RNA sequencing and whole-exome sequencing at BGI 
(Beijing, China). Exome sequencing was performed using the Sure-
SelectXT Human All Exon Kit V6 (Agilent Technologies, Santa Clara, CA, 
USA). DNA/RNA sequence reads were mapped against the GRCh38 
human genome reference using minimap2 [18] with a default 
paired-end setting. The splice option was enabled. The resulting BAM 
files were sorted and indexed using SAMtools, and potential somatic 
mutations were called from the normal and tumor BAM files using the 
Karkinos variant caller [19]. Candidate somatic mutation sites were 
filtered based on overlapping variants that were also observed in RNA 
sequence reads. Somatic variations in RNA sequences were extracted 
using samtools/bamtools with the pileup option. The gene code, 
GRCh38 (release 42), was used as the transcript database. We developed 
a script to modify transcript sequences to reflect somatic mutations in 
the SNVs detected above. BioPython API was used to translate the 
altered somatic RNA sequences into amino acid sequences. The somatic 
amino acid sequences were then compared against a reference amino 
acid sequence, and only non-synonymous mutations were used as the 
peptide database for peptide searching by MS. To minimize information 
loss, FASTA files focusing on 15 amino acids (15mer) centered around 
mutations were created and used for MS analysis. 

2.3. Immunoprecipitation 

Tumor tissues were sliced into pieces of approximately 100 mg in 
size in a frozen state, and then weighed. If the total amount of tumor 
tissues was significantly less than 100 mg, all available quantity was 
weighed and utilized (Table S1). The weighted tissues were homoge-
nized in 1 mL of lysis buffer containing 20 mM Tris-HCl pH 8.0, 1 mM 
EDTA, 100 mM sodium chloride, 1% Triton X-100 (Roche, Basel, 
Switzerland), 60 mM n-octylglucoside (Dojin Chemicals Co., Kumamoto, 
Japan), 1 mM PMSF (Sigma-Aldrich, Tokyo, Japan), cOmplete Protease 
Inhibitor cocktail (Roche, Basel, Switzerland), PhosSTOP Phosphatase 
Inhibitor cocktail (Roche, Basel, Switzerland) and 10 U/mL Benzonase 
(Millipore, Burlington, MA) for 30 s using TissueRuptor homogenizer 
(Qiagen, Düsseldorf, Germany). After 30 min of incubation on ice, ly-
sates were cleared by centrifugation at 16,000g for 10 min at 4 ◦C. The 
protein concentration in the supernatant was measured using a BCA 
protein kit (Nacalai, Kyoto, Japan), and the samples were diluted to 1 
mg/mL with lysis buffer. 100 μg of anti-HLA-ABC mAb W6/32 (Bio-
XCell, New Haven, CT, USA) was conjugated to 2 mg of FG NHS beads 
(Tamagawa Seiki, Nagano, Japan) according to the manufacturer’s in-
structions. 0.5 mg of conjugated beads were used for immunoprecipi-
tation from 1 mL of lysate for 2 h at 4 ◦C on a rotator. 
Immunoprecipitates were washed with 1 mL of 50 mM Ammonium bi-
carbonate buffer three times, and peptides were eluted with 200 μL of 
0.1 M Glycine-HCl pH 2.5 for 5 min at room temperature. 

2.4. Sample preparation of LC-MS/MS analysis 

Samples obtained by immunoprecipitation were desalted using a 
MonoSpin C18 column (GL Sciences, Tokyo, Japan). The resin was 
conditioned with 300 μL of buffer A (5% formic acid, 90% acetonitrile) 
(5,000g, 30 s, room temperature) and equilibrated with 300 μL of 5% 
formic acid (5,000g, 30 s, room temperature). An equal volume of 0.2 M 
NDSB was added to the sample, and the mixture was acidified with 2.5% 
trifluoroacetic acid (TFA). The sample was　passed through a spin 
column (5,000g, 30 s, 10 ◦C) until all the samples had passed through 
the spin column. The spin column was rinsed three times with 300 μL of 
5% formic acid (5,000g, 30 s, 10 ◦C). The peptides were eluted from the 
spin column twice with 50 μL of buffer B (5% formic acid, 30% aceto-
nitrile) (5000g, 30 s, 10 ◦C). 
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2.5. LC-MS/MS analysis 

The eluates were dried using a SpeedVac (Thermo Fisher Scientific, 
Waltham, MA, USA) and resuspended in 0.1% TFA in 2% acetonitrile. A 
capillary reverse-phase high-performance (HP) LC-MS/MS system 
(ZAPLOUS System; AMR, Tokyo, Japan), comprising of an advanced 
ultra-high-performance (UHP) LC instrument (Michrom Bioresources, 
Auburn, CA), an HTC PAL autosampler (CTC Analytics, Zwingen, 
Switzerland), an Orbitrap Fusion ETD, and a quadrupole linear ion trap 
Orbitrap mass spectrometer (Thermo Fisher Scientific) equipped with a 
Dream Spray ESI source (Dream Spray; AMR, Tokyo, Japan), was used 
for LC-MS/MS analysis. Aliquots of samples were automatically injected 
onto a C18 PepMap 100 Peptide Trap cartridge (5 × 0.3 mm I.D.; 
Thermo Fisher Scientific, Waltham, MA) attached to an injector valve for 
desalting and concentrating the peptides. After washing the trap with 
0.1% TFA in 98% MilliQ water and 2% acetonitrile, the peptides were 
loaded into a separation capillary reverse phase column (L-column2 
micro C18 column 3 µm, 200 Å, 150 × 0.2 mm I.D.; CERI, Tokyo, Japan) 
by switching the valve. The eluents used were 0.1% formic acid in water 
(A), and 100% acetonitrile (B). The column was developed at a flow rate 
of 1.0 μL/min, with a concentration gradient of acetonitrile: from 5% B 
to 30% B for 100 min, then from 30% B to 95% B for 2 min, maintained 
at 95% B for 8 min, from 95% B to 5% B for 2 min, and finally re- 
equilibrated with 5% B for 8 min. The effluents were introduced into 
the mass spectrometer via a nanoelectrospray ion interface that held the 
separation column outlet directly connected to a Dream Spray electro-
spray ion source. The electrospray ionization voltage was 1.8 kV, and 
the transfer capillary of the orbitrap inlet was heated to 280 ◦C. No 
sheath or auxiliary gases were used. The mass spectrometer was oper-
ated in a data-dependent acquisition mode, in which MS acquisition 
with a mass range of m/z 390–1590 was automatically switched to MS/ 
MS acquisition under the automated control of the Xcalibur software. 
The top 20 precursor ions were selected by an MS scan with Orbitrap at a 
resolution of 240,000, and for the subsequent MS/MS scans through ion 
traps in the normal/centroid mode, using the automatic gain control 
(AGC) mode with AGC values of 2 × 105 and 1 × 104 for full MS and MS/ 
MS, respectively. We also employed a dynamic exclusion capability that 
allowed the sequential MS/MS acquisition of abundant ions in the order 
of their intensities, with an exclusion duration of 5 s and exclusion mass 
widths of − 5 and + 5 ppm. The trapping time was 35 ms with an auto- 
gain control. 

2.6. Data analysis of LC-MS/MS 

Mass spectra were extracted using the Proteome Discoverer (version 
2.5). All MS/MS samples were analyzed using the Mascot database 
search engine (version 2.6; Matrix Science, London, UK). Mascot was set 
up to search for an in-house database with the digestion enzyme none 
specific. Mascot was searched using a product ion mass tolerance of 
0.60 Da and a precursor ion tolerance of 5.0 ppm by considerations of 
sensitivity, acquisition time, and the goal of obtaining more candidates 
through a more relaxed database search filter. Gln->pyro-Glu at the N- 
terminus, oxidation of methionine and acetyl at the N-terminus, and 
phospho-serine, threonine, and tyrosine were specified in Mascot as 
variable modifications. Scaffold (version 4, Proteome Software, http 
s://www.proteomesoftware.com/) was used to validate the MS/MS- 
based peptide and protein identification. To include a broader range 
of peptide matches, a relatively low threshold of 10 was set for the 
Mascot ion scores of candidate peptides. To preserve the possibility of 
identifying additional false negatives, FDR-based cutoff was not 
employed to further adjust the Mascot search results [20]. Candidate 
sequences (CandiSeqs) were identified based on the following criteria: 
1) maximum Mascot ion score (MaxMascotIonScore) higher than 10; 2) 
presence of mutation points; 3) length of 8–12mers. 

2.7. Validation of identified candidate sequences against synthetic 
peptides 

For validation the identifications by Mascot, synthetic peptides 
(SynPeps) were synthesized for all CandiSeqs, and their mass spectra 
were measured under the same conditions. The tandem MS spectra of 
each CandiSeq from the clinical samples were compared with those of 
the corresponding SynPeps, and the number of consistent peaks (MS2) 
was counted. MS2 revealed the consistency in MS/MS spectra between 
CandiSeqs and their corresponding SynPeps. 

To assess and compare the identification capabilities of Mascot and 
the novo machine learning filter, a subset of reliable identifications with 
highly consistent MS/MS spectra (HCS) were further selected by two 
experienced MS spectral analysts by comprehensively evaluating MS2 
information, peptide fragmentation patterns, and retention time. 

3. Results 

3.1. Experimental design 

The workflow of this study is illustrated in Fig. 1. Tumor and normal 
tissues were collected from nine patients with renal cell carcinoma and 
nine patients with pancreatic cancer, and HLA-peptide complexes were 
extracted by immunoprecipitation. LC-MS/MS was used to analyze the 
peptides and obtain tandem MS fingerprints for each HLA peptide. NGS 
was performed on tumor and normal tissues from each patient to 
construct a database of peptide sequences containing SNV mutations by 
comparison with the reference gene sequence obtained from the corre-
sponding normal tissue counterpart for each tumor tissue. Mascot-based 
tandem MS spectral searching was used to obtain sequence assignment 
results (the top-ranked sequence by Mascot) corresponding to each 
tandem MS spectrum. To validate the identification efficacy of Mascot, 
CandiSeqs with a length of 8–12 amino acids, Mascot score ≥ 10, and 
containing amino acid mutations were synthesized. The tandem MS 
spectra of each CandiSeq from the tumor samples were compared with 
those of the corresponding SynPep measured under the same conditions, 
and MS2 was counted. To evaluate the prediction performance, reliable 
identifications with highly consistent MS/MS spectra were further 
selected based on a combination of MS2, retention time, and MS/MS 
fragmentation pattern. To overcome the false-positive identification of 
HLA peptides by Mascot, a machine learning filter was developed, which 
includes physiochemical property-related factors such as retention time, 
HLA-binding affinity, and hydrophobicity. Our data showed that a 
substantial enhancement in immunopeptide identification performance 
can be achieved through the implementation of post-processing filters 
grounded in machine learning. 

3.2. Descriptor collection for machine learning 

1) Descriptors recorded during MS experiment and data analysis: 
MaxMascotIonScore, NL, ClinRT and TPM. The MaxMascotIonScore, 
actual retention time (ClinRT) and normalization level (NL) were 
recorded for each CandiSeq, where NL was defined as the actual in-
tensity of the strongest peak in the mass spectrum, indicating the signal- 
to-noise ratio. The transcript per million (TPM) value determined by 
RNA-Seq was included as a descriptor regarding the expression level of 
the corresponding gene for machine learning. 

2) Descriptors predicted by sequence information: PI, Insta-
bilityIndex, IfStable, AliphaticIndex, Gravy, Hydrophobicity, MinRank 
and Entrp. Six physiochemical features of CandiSeqs were obtained by 
using their sequence information. Specifically, theoretical isoelectric 
point (PI), instability index (InstabilityIndex), stability (IfStable), 
aliphatic index (AliphaticIndex), and grand average hydropathicity 
(Gravy) were determined using the Expasy ProtParam tool [21] (http 
s://web.expasy.org/protparam/). For all CandiSeqs, theoretical hydro-
phobicity (Hydrophobicity) was predicted using a web-based tool 
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(Proteotypic Peptide Analyzing Tool from Thermo Fisher Scientific; 
https://www.thermofisher.com/jp/ja/home/life-science/protein-bi 
ology/peptides-proteins/custom-peptide-synthesis-services/peptide- 
analyzing-tool.html), analogous to the approach employed for HCS 
identifications (as summarized in Fig. S1). HLA-binding affinity was 
obtained using NetMHCpan-4.1[22] (https://services.healthtech.dtu. 
dk/services/NetMHCpan-4.1/) and the minimal percentile rank (Min-
Rank) among the HLA class I types of the corresponding patients was 
selected. Shannon’s entropy value (Entrp) of the peptide sequences was 
calculated using the diversity R function in the vegan package. 

3) Descriptors derived from extended calculations: PredSynRT and 
ClinPredSynRTRatio. As shown in Fig. 2, descriptors for signifying 
retention time deviation were calculated based on the robust linear 
correlation existing between Hydrophobicity and standard retention 
time for reliable identifications of HCS. Each CandiSeq in the tissue 
samples had an actual retention time during MS observations. To enable 
a machine-learning filter that could directly filter the results of Mascot 
identification without synthesizing candidate peptides, the predicted 
retention time of each CandiSeq was calculated based on its sequence 
information, and the degree of deviation between the predicted and 
actual retention times was used as a descriptor for machine learning. The 
subset of HCS identifications was used to determine the correlation 
between the predicted Hydrophobicity and retention time under 
experimental conditions (The selection process for Hydrophobicity was 
summarized in Fig. S2). Simple linear regression was performed using 
the lm function in R (ver. 4.2.1; https://www.r-project.org/) to derive 

Eq. (1), which describes the relationship between the standard retention 
time of reliable identifications with highly consistent MS/MS spectra 
(SynRT_HCS) and Hydrophobicity under the experimental conditions:  

SynRT_HCS = 2⋅95 × Hydrophobicity – 21⋅8                                     (1) 

We obtained the predicted standard retention times (PredSynRT) for 
all CandiSeqs using Eq. (2):  

PredSynRT = 2⋅95 × Hydrophobicity – 21⋅8                                       (2) 

and Eq. (3) was used to calculate the degree of deviation between 
ClinRT and PredSynRT (ClinPredSynRTRatio).  

ClinPredSynRTRatio = | (ClinRT – PredSynRT) / PredSynRT |              (3)  

3.3. Calculations for machine learning 

For CandiSeqs, 14 descriptors were collected and used as training 
features, whereas MS2 normalized by sequence length (MS2Norm) was 
used as the training target. MS2Norm was defined as MS2 divided by the 
length of the sequence (count of amino acids) Eq. (4):  

MS2Norm = MS2 / length of sequence (count of amino acids)               (4) 

All calculations were performed in R. CandiSeq data were randomly 
divided into a training set (80%, n = 245; Table S2) and a test set (20%, 

Fig. 1. Workflow of the present study. Tumor and normal tissues were collected from nine patients with renal cell carcinoma and nine patients with pancreatic 
cancer; HLA-peptide complexes were extracted by immunoprecipitation; LC-MS/MS was used to analyze the peptides and obtain tandem MS fingerprints for each 
HLA peptide; NGS was performed on tumor and normal tissues from each patient to construct a database of peptide sequences containing SNV mutations by 
comparison with the reference gene sequence; Mascot-based tandem MS spectral searching was used to obtain sequence assignment results corresponding to each 
tandem MS spectrum; all candidate sequences were synthesized, MS analyzed and evaluated by MS/MS spectral consistency; a machine learning-based filter biased 
towards HLA peptides was developed by incorporating peptide physicochemical information and experimental information. HLA, human leukocyte antigen; LC-MS/ 
MS, liquid chromatography-tandem mass spectrometry; NGS, next-generation sequencing; SNV, single nucleotide variations. 
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n = 61; Table S3). A random forest regression algorithm was used to 
build the model using the randomForest function in the R package of 
randomForest. Model performance was evaluated using k-fold (k = 5) 
cross-validation (CV) on the training set to average the biases introduced 
by sample split, and the predict function in the randomForest package was 
used to predict the completely independent test set. The model predic-
tion results were obtained using the leave-one-out (LOO) CV method to 
provide each Candiseq with a distinct and consistent score within the 
current dataset used for comparing with Mascot. This approach maxi-
mizes the utilization of existing dataset resources with all CandiSeqs. 
DeLong’s test for two correlated receiver operating characteristic (ROC) 
curves was performed using roc.test function in pROC package with the 
method of “delong.” The two-sided Wilcoxon signed-rank test was per-
formed using wilcox.exact R function, the Spearman’s rank correlation 
coefficient was calculated using cor R function, and the test for associ-
ation between paired samples was calculated using cor.test function with 
the method of “spearman.” 

3.4. Efficacy of Mascot-based immunopeptide identification 

As shown in Fig. 3a, a total of 306 CandiSeqs containing SNV mu-
tations were identified in the tumor tissues of 18 patients with cancer. 
The number of CandiSeqs per patient ranged from 2 to 16 for the nine 
patients with pancreatic cancer, and from 5 to 48 for the nine patients 
with renal cell carcinoma. According to the length distribution shown in 
Fig. 3b, 9mers constituted the majority, making up 45.42% of the total 
CandiSeq detections, whereas 12mers comprised the smallest proportion 

at 3.27%. To validate the identification efficacy of Mascot, 306 SynPeps 
were synthesized from all the CandiSeqs. Through a comparison of their 
tandem MS spectra, 24 reliable identifications with highly consistent 
MS/MS spectra, referred to as HCS, were selected among the total of 306 
CandiSeqs (Fig. 3c). The amount and proportion of HCS at different 
Mascot levels are shown in Figs. 3d and 3e. In Fig. 3d, eight CandiSeqs 
were identified by Mascot at levels greater than 30. However, only one 
of these identifications was verified as an HCS, resulting in a recall of 
0.12. In the Mascot range of 25 to 30, a set of 11 CandiSeqs was ob-
tained, out of which three were validated as HCS, yielding the highest 
identification rate of 0.27. An increase in both the amount and pro-
portion of false positives was observed within Mascot range below 25. 
However, it is crucial to highlight that even at lower Mascot range of 10 
to 15, a noteworthy number of 11 HCS (accounting for 45.83% of all 24 
HCS) persisted. This finding underscores the limited efficacy of Mascot- 
based immunopeptide identification for HLA peptides originating from 
SNVs. Information regarding the overall detected peptides was sum-
marized in Fig. S3. As observed in Fig. S3, the CandiSeq detection count 
exhibited a significant correlation with both overall and 8–12mer de-
tections, while showing no significant correlation with tumor tissue 
input, tumor purity or mutation number, which indicated that the 
variation in CandiSeq amount can be considered as a result of a 
comprehensive interplay with different factors, including the type and 
quantity of MHC-I, the number of mutations, as well as the amount of 
tumor tissue input. 

Get correlation between retention 
time of HCS in SynPeps 

(SynRT_HCS) and Hydrophobicity
(n = 24)

MS spectra of clinical 
samples

Candidate sequences 
(CandiSeqs)

(n = 306)

Database searching Synthesis MS observation

Synthetic peptides 
(SynPeps)
(n = 306)

MS spectra of SynPeps
(n = 306)
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MS/MS spectrum (HCS)
(n = 24)
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Fig. 2. Generation process of descriptors PredSynRT and ClinPredSynRTRatio for signifying retention time deviation. Standard retention time of CandiSeqs can be 
calculated using the robust linear correlation existing between hydrophobicity and retention time for reliable identifications of HCS. CI, confidence interval; 
ClinPredSynRTRatio, ratio between predicted standard and actual retention time; ClinRT, actual retention time; HCS, identifications with highly consistent MS/MS 
spectra; PI, prediction interval; PredSynRT, predicted standard retention time; R2, coefficient of determination. 
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3.5. Machine learning-based filter of immunopeptide identification 

A machine learning-based filter was developed to address the limi-
tation of Mascot in calculating the theoretical spectra for HLA peptides 
resulting from nonspecific protease cleavage. With details, 14 

descriptors related to accurate identification and HLA peptide properties 
were included as training features and the normalized MS2 values, 
referred to as MS2Norm, as training targets to construct random forest 
regression models. To account for the effect of peptide sequence length 
on the number of peaks in tandem MS measurements, MS2Norm 

Fig. 3. Results of Mascot-based immunopeptide identification from 18 patients with cancer. The (a) individual count of detected CandiSeqs in different cancer types; 
(b) the length distribution of CandiSeqs; (c) count of HCS in CandiSeqs; (d) count and (e) ratio of HCS in CandiSeq at different cutoff values of Mascot ion score. 
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represents the relative consistency between the clinical sample spectra 
and the assigned sequence spectra, considering the proportion of peaks 
that may match. Peptides with higher MS2Norm values were more likely 
to be assigned correctly. Fig. 4a illustrates the process of constructing 
the machine learning filter. The entire dataset of 306 CandiSeqs was 
randomly divided into an 80% training set (n = 245) and a 20% test set 
(n = 61). The training set was used for feature selection, model 

performance evaluation, and building a model for test. A completely 
independent test set is used to validate the model obtained from the 
training set. Regarding feature selection, a two-step approach was 
developed: firstly, all features were ranked according to importance; 
secondly, the features were sequentially incorporated into the model 
based on their important ranking, and the impact on the model’s mean 
squared error (MSE) was monitored. 

Feature selection

Candidate peptides
(n = 306)

Training set
(n = 245)

Test set
(n = 61)

80% 20%

a

Model performance 
evaluation

(Within-dataset)

Features used: selected
features
k-fold CV (k = 5, reps = 
100)
MSE (mean±SD, see d: 
training)

Features used: selected 
features
Samples used: all of 
training set (n = 245)

Model for test 
(MT)

Model performance 
evaluation

(Cross-dataset)

Features used: selected 
features
Samples used: all of test
set (n = 61)
Model used: MT
MSE (see d: test)

Training target: MS2Norm 
(MS/MS spectral consistency)
Training features: 14
Model type: random forest 
regression
k-fold CV (k = 5, reps = 100)

↓
Feature importance (mean 
Gini index of 100 reps) for 14 
features (see b)

↓
Features used: 1 ~ 14 (Add 
features to the model one at a 
time according to their order of 
importance)
k-fold CV (k = 5, reps = 100)

↓
Features selected in the 
model of minimal MSE (see c)

b c d

Fig. 4. (a) Development of machine learning models. Important features were selected by considering (b) the Gini indices for 14 descriptors, and (c) the MSE of 
models with a sequentially increasing number of features used: the model achieved its minimum MSE when using the top four features (MaxMascotIonScore, 
MinRank, AliphaticIndex, and ClinSynRTRatio) based on importance; (d) the MSE of training (height, mean MSE values; error bars, standard deviation) and test 
(height, the MSE value) sets. CV, cross-validation; MSE, mean squared error; MT, model for test. 
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As illustrated in Fig. 4a, a training set with 14 features was used, and 
a 5-fold CV was repeated 100 times, recording the Gini indices for each 
feature during this process. We scored the importance of each feature in 
the model based on the average of the Gini indices and ranked the 14 
features in descending order according to their importance (Fig. 4b). 
Starting with one feature and increasing one feature at a time in the 
order of Gini indices, we performed loop modeling and calculated the 
MSE for each model. If the addition of a feature results in an increase 
rather than a decrease in MSE, it is deemed unhelpful for prediction. 
Therefore, the combination of features yielding the minimum MSE will 
be selected as the ultimate set of the important features. As shown in 
Fig. 4c, four features (MaxMascotIonScore, MinRank, AliphaticIndex, 
and ClinPredSynRTRatio) used in the model with the minimal MSE were 
selected as critical features for building the prediction model and eval-
uating its prediction performance. A 5-fold CV was performed for all 
training set samples using the four critical features to evaluate the per-
formance of the within-training set prediction. As shown in Fig. 4d, for 
training set, the mean MSE was 0.0363 ± 0.0057 (mean ± standard 
deviation: SD), demonstrating effective regression performance. Next, 

we used all the samples in the training set to establish a model (model for 
test: MT) for predicting the MS2Norm values of the other independent 
dataset (test set). As shown in Fig. 4d, the predicted MSE for the test set 
was 0.0381, suggesting high performance as well as reproducibility in 
both the training and the test sets. To assess the influence of sequence 
overlap within the datasets on the evaluation of model performance, all 
peptide sequences that exhibit an overlap exceeding 8 amino acid resi-
dues in the complete CandiSeq dataset (both training and test datasets) 
were summarized in Table S4. As shown in Table S4, a collective 
occurrence of 16 subsequences (with amino acid residues ≥ 8) repeated 
two or more times throughout the entire dataset, which involved a total 
of 30 peptides, constituting 9.80% of the overall peptide count of 306. In 
cases where the sequence is entirely replicated (Pair No. 3, 4, 6 and 7), 
they share identical AliphaticIndex and MinRank values, but exhibit 
notable differences in MaxMascotIonScore and/or ClinSynRTRatio 
values, indicating that while certain features are identical for the same 
sequence, they were considered as distinct samples in the models; in 
cases where the sequences are not identical but have more than 8 
common subsequences, variations are observed not only in 

a

PWilcoxon = 0.01787

PWilcoxon = 8.2e-06

AUC of ROC
0.65 Mascot
0.77 PredMS2Norm

AUC of PR
0.18 Mascot
0.28 PredMS2Norm

PDeLong’s = 0.04445
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Fig. 5. Comparison of prediction performance before and after machine learning-based filtering. (a) The distributions of predicted MS2Norm score in HCS and not- 
HCS identifications: P value was calculated with a Wilcoxon signed-rank test. The (b) ROC and (c) PR curves regarding HCS or not-HCS before and after the machine 
learning-based filtering: P value was calculated with DeLong’s test. (d) The order of HCS identifications in all CandiSeqs before and after the machine learning-based 
filtering: P value was calculated with a two-sample paired Wilcoxon signed-rank test. AUC, area under the curve; HCS, identifications with highly consistent MS/MS 
spectra; PR, precision-recall; PredMS2Norm score, predicted MS2Norm score; ROC, receiver operating characteristic. 
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MaxMascotIonScore and ClinSynRTRatio but also in AliphaticIndex and 
MinRank predicted using the sequence information, which indicated 
that even with an overlap of more than 8 amino acid residues, specific 
segments continue to have a significant impact on the overall peptide’s 
aliphatic index and its affinity with HLA. In summary, our model 
incorporated both the sequence information of the CandiSeqs and the 
recorded parameters from the MS experiments and database searches, 
ensuring the absence of duplicate samples in either internal CV on the 
training set or when predicting the test set using the MT model built on 
the training set. While some sequence overlap may result in similar 
feature values, it can be considered that the performance evaluation of 
the current models was not significantly affected by repeated sequences. 

In order to conduct a comparative analysis with Mascot, the training 
and test sets were consolidated, and the outcomes were obtained 
through LOO CV methodology for all CandiSeqs. 

3.6. Comparison of prediction performance before and after machine 
learning-based filtering 

To further confirm the efficacy of machine learning-based filtering 
compared to Mascot in terms of filtering false positives and rescuing 
HCS, the distributions of predicted MS2Norm score in HCS and not-HCS 
identifications were illustrated in Fig. 5a. In Fig. 5a, 24 HCS identifi-
cations exhibited significantly higher predicted MS2Norm scores (0.35 
vs. 0.22 at median; P value < 0.001). As shown in Figs. 5b and 5c, the 
area under the curve (AUC) values for ROC and precision-recall (PR) 
after machine learning-based filtering were 0.77 and 0.28, whereas 
those for identifications based on Mascot were 0.65 and 0.18. We also 
compared the rankings of the 24 HCS before and after machine learning- 
based filtering. As shown in Fig. 5d, the ranking of HCS identifications 
after filtering exhibited a notably higher position compared to the 
ranking before filtering. We further validated the filtering effect by 
varying the cutoff threshold. As shown in Table S5, to detect 20% of the 
HCS peptides (n = 5), Mascot would require 23 screenings (identifica-
tion rate 21.7%), while ranking after machine learning-based filtering 
would require 10 screenings (identification rate 45.5%). To detect 50% 
of the HCS peptides (n = 12), Mascot would require 100 screenings 
(identification rate 12.0%), while ranking after filtering would require 
46 screenings (identification rate 26.1%); 80% of the HCS peptides 
(n = 19) would have been identified by screening 208 Mascot candidate 
sequences (identification rate 10.9%), while 125 rescored candidate 
sequences (identification rate 15.2%). Therefore, under various cutoff 
thresholds, the positive rate after machine learning-based filtering 
exhibited an approximate range of 1.5 to twice the corresponding rate 

observed for Mascot, indicating that machine learning can effectively 
filter false positives and rescue positives such as HCS peptides in the 
identification of HLA peptides. 

3.7. Critical features and the direction of their bias correction effects 

Finally, the relationship between critical features and the prediction 
scores after filtering was represented in Fig. 6. The median MaxMasco-
tIonScore for the high prediction score group was 16.4, while the me-
dian value for the low prediction score group was 11.8 indicating a 
significant positive impact of Mascot on the prediction results; the me-
dian value of MinRank in the high score group was 2.87 indicating a 
relatively high ranking and robust affinity to HLA, whereas it was 9.94 
in the low score group, which suggested a reverse effect on the predic-
tion score; in the high score group, the aliphatic index was 130.0 at 
median, while it was 97.5 in the low score group, indicating a significant 
positive effect; the logarithm of ClinSynRTRatio in the high score group 
was 0.26, where a value closer to zero suggests a smaller deviation be-
tween the actual and predicted standard retention time, and it was 0.46 
in the low score group, indicating a greater degree of deviation in 
retention time. 

4. Discussion 

MS-based immunopeptidomics play a central role in neoantigen 
identification. However, the conventional proteomics workflows face 
significant challenges in identifying HLA peptides from real clinical 
tumor samples. 

As an after-processing method, the machine learning-based filter was 
developed by introducing predictive descriptors, including MaxMasco-
tIonScore, MinRank, AliphaticIndex, and ClinPredSynRTRatio, to filter 
out false positives without complex modifications to the conventional 
MS-based peptidomics workflow. In the four critical features, the Mascot 
score, calculated based on the similarity between the experimental and 
theoretical MS spectra, remains an essential factor for positive identifi-
cation, with a higher ion score indicating greater confidence in peptide 
identification [14]. Our results indicate that Mascot has reliable peptide 
identification ability for immunopeptides, where paired ion fragments 
are relatively fully detected. 

However, for immunopeptides that cannot be well identified using 
the Mascot scoring algorithm, the combination of MinRank, Aliphati-
cIndex, and ClinPredSynRTRatio provides a valuable addition to 
improve identification efficacy. MinRank was obtained from the pre-
dicted peptide-MHC binding affinity from NetMHCPan4.1 model, which 

Fig. 6. Level distribution of important features between groups with high or low predicted MS2Norm scores. The groups were divided based on the median value of 
predicted MS2Norm. Yellow dots indicate the median value of each group; P value was calculated with a Wilcoxon signed-rank test. 
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was independent of the MS measurement and spectral searching process 
[22]. Previous reports have shown that evaluating the binding affinity of 
a candidate sequence to the corresponding HLA type of a patient may 
effectively filter out false positives [17,23]. Our study showed that a 
combination of MinRank and other features enabled the filtering of false 
positives. Aliphatic index, which measures the relative volume occupied 
by aliphatic side chains in a peptide or protein sequence [24], is crucial 
for correctly identifying HLA peptides. Sequences that were correctly 
identified often had a relatively higher aliphatic index than negative 
sequences, indicating that sequences that were not sufficiently stable 
and could not resist hydrophobic environmental stress were more prone 
to false positives. Hydrophobicity and stability in hydrophobic envi-
ronments have consistently been significant characteristics of HLA 
peptides, as the binding energy of protein-peptide interactions required 
to generate an immune response is directly related to the buried hy-
drophobic area [25,26]. The significance of hydrophobic interactions is 
emphasized by a different investigation on T cell antigen receptor (TCR) 
sequence features, which found that the destiny of T cells during thymic 
selection is determined by the percentage of hydrophobic amino acids 
present in the third complementarity-determining region (CDR3β) [27]. 
Our data revealed that the strength of hydrophobic interactions and the 
stability of peptides in hydrophobic environments are crucial for 
correctly identifying HLA peptides in MS-based immunopeptidomics. 
ClinPredSynRTRatio represents the degree of deviation between the 
actual retention time of the peptides in the clinical samples and the 
predicted standard retention time of the assigned sequences. Retention 
time is an essential reference in MS identification but is not fully utilized 
in existing workflows. When a peptide is incorrectly assigned, there may 
be a significant difference between predicted and actual retention times. 
In our study, ClinPredSynRTRatio showed a significant negative corre-
lation with the score after filtering, confirming and quantifying this 
trend. 

Our results have some limitations, including a small sample size of 
participants and candidate peptides, a limited number of cancer types, 
and a single variation database. Therefore, further validation is required 
to identify HLA peptides with more human tumor samples. Moreover, 
considering the significance of HLA affinity in our prediction model, it is 
conceivable that degraded accuracy in NetMHCpan4.1 predictions for 
rare HLA-I alleles will impact the overall performance of our model. 
Additionally, because it is a filter based on Mascot identification results, 
it can only evaluate and correct the sequences proposed by Mascot, 
which means that the screening ability cannot be validated for non- 
tryptic peptides not included in the present MS spectral library or 
sequence database, or in cases where Mascot itself cannot provide 
optimal prediction. Several recent studies have reported improvements 
in workflows to enhance immunopeptide identification, e.g., approaches 
to create new specialized databases for immunopeptides, including non- 
tryptic peptides, and to develop more powerful MS spectral search en-
gines to handle much larger search spaces [28–31]. Nevertheless, there 
is still controversy about the enhancement of the new tools in identifying 
immunopeptides derived from actual physiological samples [32]. 
Additionally, optimization at the pipeline level can improve overall 
performance [33]. We anticipate that our machine learning-based 
approach, which integrated physicochemical factors and experimental 
parameters linked to HLA peptide properties, can enhance the precision 
of emerging immunopeptidomics identification databases and work-
flows, and ultimately, can provide advantages for the analysis of real 
clinical tumor samples. 

5. Conclusions 

Our study comprehensively assessed the precision of conventional 
proteomics method in the examination of genuine clinical tumor sam-
ples, and developed a machine learning-based and after-processing filter 
biased towards HLA peptides by incorporating peptide physicochemical 
information and experimental information. The machine learning-based 

filter with four critical features: MaxMascotIonScore, MinRank, Ali-
phaticIndex, and ClinPredSynRTRatio, can effectively filter out false 
positive as well as rescue HCS peptides from Mascot identification re-
sults, resulting in a two-fold increase in the identification rate of HLA 
peptides compared to Mascot. 
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