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Combining metabolome and clinical 
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Abstract 

Background: Tuberculosis (TB) had been the leading lethal infectious disease worldwide for a long time (2014–2019) 
until the COVID-19 global pandemic, and it is still one of the top 10 death causes worldwide. One important reason 
why there are so many TB patients and death cases in the world is because of the difficulties in precise diagnosis of 
TB using common detection methods, especially for some smear-negative pulmonary tuberculosis (SNPT) cases. The 
rapid development of metabolome and machine learning offers a great opportunity for precision diagnosis of TB. 
However, the metabolite biomarkers for the precision diagnosis of smear-positive and smear-negative pulmonary 
tuberculosis (SPPT/SNPT) remain to be uncovered. In this study, we combined metabolomics and clinical indicators 
with machine learning to screen out newly diagnostic biomarkers for the precise identification of SPPT and SNPT 
patients.

Methods: Untargeted plasma metabolomic profiling was performed for 27 SPPT patients, 37 SNPT patients and 
controls. The orthogonal partial least squares-discriminant analysis (OPLS-DA) was then conducted to screen differen-
tial metabolites among the three groups. Metabolite enriched pathways, random forest (RF), support vector machines 
(SVM) and multilayer perceptron neural network (MLP) were performed using Metaboanalyst 5.0, “caret” R package, 
“e1071” R package and “Tensorflow” Python package, respectively.
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Background
According to WHO reports, tuberculosis (TB) caused by 
mycobacterium tuberculosis (Mtb) had been the leading 
lethal infectious disease worldwide for a long time (2014–
2019) until the COVID-19 global pandemic (2020–2021) 
[1], and there were ∼ 10 million new TB cases every year 
[2, 3]. According to the data collected from the National 
Notifiable Disease Reporting System (NNDRS), the 
annual incidence of Xinjiang is 169.05/100,000 and the 
mean annual rate of reported PTB (pulmonary tubercu-
losis) in Kashgar was 450.91/100,000 from 2011 to 2020 
[4]. Why are there so many TB patients and death cases 
around the world? One reason is because of the difficul-
ties in precise diagnosis of TB, especially for some smear-
negative pulmonary tuberculosis (SNPT) cases that 
usually show similar symptoms to other lung diseases 
[5, 6]. In some countries/regions, SNPT patients even 
account for more than 50% of all TB cases [7].

At present, although three common methods (spu-
tum-smear microscopy, sputum culture tests and Xpert 
MTB/RIF assays) can achieve relatively precise diagno-
sis for most TB patients, they still have some disadvan-
tages (such as relatively low sensitivity for sputum-smear 
microscopy, time-consuming for sputum culture, and rel-
atively high cost for Xpert), further leading to some false 
negative/positive cases [1, 6, 8–10]. The failure diagnosis 
may result in delayed treatment, poor therapeutic effect 
and higher treatment costs [11, 12]. Nowadays, how to 
timely and accurately detect various types of TB remains 
a substantial challenge for global TB control.

The rapid development of various omics technolo-
gies offers a great opportunity for precision diagnosis of 
various types of diseases [13–16]. Among them, metabo-
lome has been widely applied in biomarker discovery for 
the detection, diagnosis and treatment of various dis-
eases, since they have been reported to be closely asso-
ciated with disease genotypes and phenotypes [17]. In 
the TB research field, Deng et  al. reported significantly 

changed glutathione and histamine in the urine of active 
TB patients, which could distinguish them from latent 
tuberculosis infected patients [18]; Huang et al.provided 
some potential plasma metabolite biomarkers (Xanthine, 
4-Pyridoxate, and d-glutamic acid) for TB diagnosis [19]; 
Sun et  al.revealed some potential metabolite biomark-
ers for pediatric TB diagnosis by l-valine, pyruvic acid 
and betaine in plasma [20]. However, the metabolite bio-
markers for precision diagnosis of smear-positive and 
smear-negative tuberculosis (SPPT and SNPT) remain to 
be uncovered.

In our study, we performed plasma metabolomic analy-
ses from 27 SPPT patients, 37 SNPT patients and 36 con-
trols. Metabolomic profiling revealed dysfunctional fatty 
acid and amino acid metabolisms in SPPT and SNPT 
patients. Four optimized diagnostic biomarker combina-
tions (two lipid/lipid-like molecules and seven organic 
acids/derivatives, and one clinical indicator) were then 
screened out for precise diagnosis of SPPT and SNPT 
patients and controls through the random forest (RF). 
The classification performance of the four combinations 
was further verified by other two machine learning meth-
ods: support vector machines (SVM) and multilayer per-
ceptron neural network (MLP). Our findings revealed the 
metabolomic characteristics of SPPT and SNPT patients, 
provided some promising diagnostic markers for pre-
cision diagnosis of various types of TB patients, and 
showed the potential of machine learning in the detec-
tion of diagnostic biomarkers.

Methods
Study participates
In our study, all the TB patients (including 27 SPPT and 
37 SNPT patients) were recruited from the Tuberculo-
sis Prevention and Treatment Institute of Kashgar, the 
Second People’s Hospital of Aksu, and the Kuqa County 
Infectious Disease Hospital during October 2017 to 
October 2018. 36 control people (Ctrl) without TB 

Results: Metabolomic analysis revealed significant enrichment of fatty acid and amino acid metabolites in the 
plasma of SPPT and SNPT patients, where SPPT samples showed a more serious dysfunction in fatty acid and amino 
acid metabolisms. Further RF analysis revealed four optimized diagnostic biomarker combinations including ten 
features (two lipid/lipid-like molecules and seven organic acids/derivatives, and one clinical indicator) for the identifi-
cation of SPPT, SNPT patients and controls with high accuracy (83–93%), which were further verified by SVM and MLP. 
Among them, MLP displayed the best classification performance on simultaneously precise identification of the three 
groups (94.74%), suggesting the advantage of MLP over RF/SVM to some extent.

Conclusions: Our findings reveal plasma metabolomic characteristics of SPPT and SNPT patients, provide some 
novel promising diagnostic markers for precision diagnosis of various types of TB, and show the potential of machine 
learning in screening out biomarkers from big data.

Keywords: Tuberculosis (TB), Mycobacterium tuberculosis (Mtb), Smear-positive/negative pulmonary tuberculosis, 
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infection from the First Affiliated Hospital of Xinjiang 
Medical University were also enrolled (Table  1, Addi-
tional file 1: Fig. S1). The diagnosis of TB was based on 
clinical symptoms and microbiological evidence accord-
ing to Diagnosis for Pulmonary Tuberculosis (WS 288-
2017). SPPT patients were diagnosed when one of the 
following microbiological evidence was obtained: (1) 
positive stain for acid-fast bacilli, (2) positive culture for 
Mtb, (3) positive Xpert test. SNPT patients were diag-
nosed based on the classical clinical symptoms although 
acid-fast bacilli were negative. The exclusion criteria 
included: (1) the TB patients in treatment period; (2) the 
TB patients with other chronic or acute diseases such 
as pregnancy complications, cardiac dysfunction, renal 
disease, psychiatric disease, gastrointestinal disease, 
uncontrolled hypertension, and some severe stress states 
(including cardiovascular and cerebrovascular events, 
severe infection, traumatic surgery, and severe wasting 
diseases). This study was approved by the Ethical Com-
mittee of First Affiliated Hospital of Xinjiang Medical 
University (20171123-06-1908A).

Plasma sample preparation
A total of 0.5–1  mL of the whole blood sample from 
each participant was collected by cubital vein phle-
botomy using a heparin anticoagulation collection tube. 
The blood samples were then centrifuged for 10  min 
(1500 rpm/min, 4 °C) to remove the blood cells, and the 
supernatants were immediately frozen in liquid nitrogen 
and stored at − 80  °C until use. Frozen plasma samples 
were slowly thawed at 4 °C, and each 100 μL aliquot was 
mixed with 400 μL of pre-cooled methanol/acetonitrile 
(1:1, v/v) solution. After the vortex, the mixture was incu-
bated at −  20  °C for 10  min, and then centrifuged for 
15 min (14,000 rcf, 4 °C). The supernatants were freeze-
dried and reconstituted in 100 μL acetonitrile/water (1:1, 
v/v) solution for LC–MS/MS analysis (Shanghai Applied 
protein technology Co., Ltd, Shanghai, China).

Metabolite measurement
Metabolites were extracted from plasma samples. Untar-
geted metabolomics analysis was conducted by using 
ultra-high-performance liquid chromatography (UHPLC, 
1290 Infinity LC, Agilent Technologies, Palo Alto, CA, 
USA) and a quadrupole time-of-flight mass spectrometer 
(TripleTOF 6600; AB Sciex, Framingham, MA, USA). 
The separation was performed using a 2.1 mm × 100 mm 
ACQUITY UPLC BEH 1.7  μm column (Waters, Wex-
ford, Ireland). The mobile phase consisted of A. 25 mM 
ammonium acetate with 25  mM ammonium hydroxide; 
B. acetonitrile. Gradient elution was performed as fol-
lows: 95% B for 0.5 min, and was reduced linearly to 65% 
in 7 min, next, the gradient was reduced to 40% in 2 min, 

increased to 95% in 0.1  min, then with a re-equilibra-
tion period employed for 3 min. The flow rate was set to 
0.3 mL  min−1, column temperature at 25 °C and injection 
volume of 2 µL. The ESI conditions were as follows: Ion 
Source Gas1(Gas1): 40 psi; Ion Source Gas2 (Gas2): 80 
psi; curtain gas (CUR): 30 psi; source temperature: 650℃; 
IonSpray Voltage Floating (ISVF) ± 5500 V. The raw data 
were converted to MzXML by MSconventer (ProteoWiz-
ard, Palo Alto, CA, USA), and imported into XCMS soft-
ware (Scripps Research Institute, La Jolla, CA, USA) for 
alignment, feature detection, retention time correction, 
and data filtering.

Bioinformatics analysis
Multivariable analysis was conducted using SIMCA-P 
software (version 14.1 Umetrics, Umea, Sweden). The 
orthogonal partial least squares-discriminant analysis 
(OPLS-DA, Umetrics, Umea, Sweden) was then per-
formed to screen the differential metabolites, and the 
robustness of the OPLS-DA model was evaluated by 
using the sevenfold cross-validation and response per-
mutation testing. Differentially abundant metabolites 
(DAMs) were confirmed based on variable importance in 
projection (VIP) > 1 obtained from the OPLS-DA model 
and Student’s t-test p values (p < 0.05). The chemical 
taxonomy of DAMs was determined according to “The 
Human Metabolome Database (HMDB)” (https:// hmdb. 
ca/). Metabolite enriched pathway analysis was imple-
mented with the online software of Metaboanalyst 5.0 
[21].

Data preprocessing
After removing the indicators with a large propor-
tion of missing values (≥ 20%, for details see Additional 
file 1: Table S1), 24 remaining clinical indicators and 96 
DAMs were included to screen out potential diagnostic 
biomarkers. Categorical variables were then coded with 
dummy variables. A total of 100 individuals (27 SPPT 
patients, 37 SNPT patients and 36 controls) were then 
randomly separated into a training set (n = 81) and a 
test set (n = 19) using createDataPartition function in R 
caret package (http:// topepo. github. io/ caret/ data- split 
ting. html). Further K-Nearest Neighbor was adopted 
to impute the missing values of the remaining indica-
tors [22]. Specifically, a KNN model (http:// topepo. 
github. io/ caret/ pre- proce ssing. html) was created based 
on the training set, which was then applied to predict 
the missing values in the test set. As a result, the stand-
ardized data sets were obtained. Principal component 
analysis (PCA) was then applied to detect global clini-
cal indicators and metabolic alterations among differ-
ent samples [23]. Pearson correlation coefficients among 
the clinical indicators and DAMs were calculated by the 

https://hmdb.ca/
https://hmdb.ca/
http://topepo.github.io/caret/data-splitting.html
http://topepo.github.io/caret/data-splitting.html
http://topepo.github.io/caret/pre-processing.html
http://topepo.github.io/caret/pre-processing.html
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Table 1 Baseline characteristics of SPPT and SNPT patients

Total 
(N = 100)

SPPT 
(N = 27)

SNPT 
(N = 37)

Control 
(N = 36)

*Adjusted 
p-value 
(SPPT/Ctrl)

*Adjusted 
p-value 
(SNPT/Ctrl)

*Adjusted 
p-value 
(SPPT/SNPT)

χ2, F or H 
value (SPPT/
SNPT/Ctrl)

p-value 
(SPPT/
SNPT/
Ctrl)

Gender (%) 0.162 0.43 0.449 4.868$ 0.088

 Male 52 (52.0) 18 (66.7) 20 (54.1) 14 (38.9)

 Female 48 (48.0) 9 (33.3) 17 (45.9) 22 (61.1)

Age (years, 
median [Q1–
Q3])

53.50 
(35.00–67.25)

51.00 
(32.50–71.00)

60.00 
(49.00–71.00)

43.50 
(34.00–59.25)

0.087 0.011 0.315 6.369 0.041

Occupations 
(%)

– – 0.934 – –

 Farmer 54 (54.0) 23 (85.2) 31 (83.8) 0 (0.0)

 Retiree 11 (11.0) 1 (3.7) 1 (2.7) 9 (25.0)

 Student 4 (4.0) 1 (3.7) 3 (8.1) 0 (0.0)

 Other 6 (6.0) 2 (7.4) 2 (5.4) 2 (5.6)

 (Missing 
value)

25 (25.0) 0 (0.0) 0 (0.0) 25 (69.4)

Marital status 
(%)

– – 0.183 – –

 Single 7 (7.0) 5 (18.5) 2 (5.4) 0 (0.0)

 Married 92 (92.0) 22 (81.5) 35 (94.6) 35 (97.2)

 (Missing 
value)

1 (1.0) 0 (0.0) 0 (0.0) 1 (2.8)

BMI (kg/m2, 
mean[SD])

23.19 (4.44) 20.22 (3.95) 22.82 (3.93) 25.33 (4.13) < 0.001 0.022 0.027 10.02# < 0.001

Smoking 
status (%)

– – – – –

 Never 79 (79.0) 24 (88.9) 34 (91.9) 21 (58.3)

 Current 11 (11.0) 3 (11.1) 2 (5.4) 6 (16.7)

 Former 1 (1.0) 0 (0.0) 1 (2.7) 0 (0.0)

 (Missing 
value)

9 (9.0) 0 (0.0) 0 (0.0) 9 (25.0)

Drinking 
status (%)

– – – – –

 Never 80 (80.0) 25 (92.6) 37 (100.0) 18 (50.0)

 Current 11 (11.0) 2 (7.4) 0 (0.0) 9 (25.0)

 Former 1 (1.0) 0 (0.0) 0 (0.0) 1 (2.8)

 (Missing 
value)

8 (8.0) 0 (0.0) 0 (0.0) 8 (22.2)

TB contact 
(%)

– – < 0.001 – –

 Yes 44 (68.8) 8 (29.6) 36 (97.3) –

 No 16 (25.0) 16 (59.3) 0 (0.0) –

 (Missing 
value)

4 (6.3) 3 (11.1) 1 (2.7)

TB treatment 
(%)

– – 0.836 – –

 New cases 
of TB

17 (26.6) 7 (25.9) 10 (27.0) –

 Previously 
treated

41 (64.1) 14 (51.9) 27 (73.0) –

 (Missing 
value)

6 (9.4) 6 (22.2) 0 (0.0)
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findCorrelation function in R software (https:// github. 
com/ topepo/ caret/ blob/ master/ pkg/ caret/R/ findC orrel 
ation.R). The features with high mean absolute correla-
tions (≥ 0.7) were excluded (Additional file 2).

Biomarker detection and verification using three machine 
learning methods (RF, SVM and MLP)
First, the pre-select 20 clinical indicators and 58 identi-
fied DAMs (78 features, defined as  F0 set) were included 
for the classification of SPPT/Ctrl, SNPT/Ctrl, SPPT/
SNPT and SPPT/SNPT/Ctrl groups. RF was then 
adopted to evaluate the classification performance of 
the  F0 set. AUCs were calculated by receiver operating 
characteristic (ROC) analysis using the roc () function of 
pROC package in R [24].

We then used recursive feature elimination (R pack-
age caret) to decrease the number of features in the RF 
model (parameter use "rfFuncs” and “cv”) [25]. Mean 
decrease in Gini coefficient (MDG) was further used for 
measuring variable importance, and the combinations of 
important features with accuracy over 90% were finally 
selected for machine learning. Here, the selected features 
in SPPT/Ctrl, SNPT/Ctrl, SPPT/SNPT and SPPT/SNPT/
Ctrl groups were defined as  F1,  F2,  F3 and  F4, respectively. 
Ultimately, the classification accuracies of the above four 

feature sets were verified by other two machine learning 
methods: SVM and MLP. The SVM was realized using 
“e1071” R package. The MLP classification algorithm 
including two hidden layers (each layer consists of 15 
nodes) was completed using the “Tensorflow” package of 
Python [26]. To avoid overfitting, tenfold cross-validation 
(CV) was employed on the train set, which was further 
randomly split into 90% for “actual train set” and 10% 
for “validation set” for ten times. Ultimately, the test sets 
were used to evaluate the accuracy, sensitivity, specific-
ity, positive predictive value (PPV) and negative predic-
tive value (NPV) of each trained model. The codes were 
deposited on GitHub (https:// github. com/ ChenF- Lab/ 
SPPT. git).

Statistical analysis
The continuous variables were described using mean 
(standard deviation), median and interquartile ranges 
(Q1–Q3). The categorical variables were described as 
frequency rates and percentages. Independent samples 
t-test was used for comparing means of normally distrib-
uted variables while Mann Whitney U test for not nor-
mally distributed variables. One-Way ANOVA or Kruskal 
Wallis test were used to compare variables among three 
groups. Categorical variables were compared using the 

Table 1 (continued)

Total 
(N = 100)

SPPT 
(N = 27)

SNPT 
(N = 37)

Control 
(N = 36)

*Adjusted 
p-value 
(SPPT/Ctrl)

*Adjusted 
p-value 
(SNPT/Ctrl)

*Adjusted 
p-value 
(SPPT/SNPT)

χ2, F or H 
value (SPPT/
SNPT/Ctrl)

p-value 
(SPPT/
SNPT/
Ctrl)

Cavitary 
pulmonary 
TB (%)

33 (51.6) 19 (70.4) 14 (37.8) – – – 0.02 –

Symptoms 
(%)

 Cough 60 (92.3) 22 (81.5) 37 (100.0) – – – 0.024 – –

 Expectora-
tion

60 (92.3) 22 (81.5) 37 (100.0) – – – 0.024 – –

 Dyspnea 35 (54.7) 6 (22.2) 29 (78.4) – – – < 0.001 – –

 Chest dis-
comfort

13 (20.3) 5 (18.5) 8 (21.6) – – – 1 – –

 Fever 5 (7.8) 3 (11.1) 2 (5.4) – – – 0.713 – –

 Hemop-
tysis

2 (3.1) 1 (3.7) 1 (2.7) – – – 1 – –

 Chest pain 2 (3.1) 1 (3.7) 1 (2.7) – – – 1 – –

 Nausea 1 (1.6) 0 (0.0) 1 (2.7) – – – - – –

 Fatigue 2 (3.1) 2 (7.4) 0 (0.0) – – – 0.174 – –

 Night 
sweats

1 (1.6) 0 (0.0) 1 (2.7) – – – – – –

 Short of 
breath

3 (4.7) 3 (11.1) 0 (0.0) – – – – – –

BMI body mass index, Data are shown as n (%), mean (SD) or median (Q1–Q3). p-values are calculated after exclusion of missing data for that variable; *Adjusted 
p-value for multiple comparisons using Bonferroni-Holm correction. SD: standard deviation; (Q1–Q3): 25th Quartile–75th Quartile. $Chi aquare test; #One Way ANOVA;

https://github.com/topepo/caret/blob/master/pkg/caret/R/findCorrelation.R
https://github.com/topepo/caret/blob/master/pkg/caret/R/findCorrelation.R
https://github.com/topepo/caret/blob/master/pkg/caret/R/findCorrelation.R
https://github.com/ChenF-Lab/SPPT.git
https://github.com/ChenF-Lab/SPPT.git
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chi-square test. Bonferroni-Holm correction was applied 
to obtain the corrected p-value for multiple compari-
sons. All the statistical analyses were performed using R 
software (version 4.0.2; an open-source free software). 
Two-sided p values of less than 0.05 were considered sta-
tistically significant.

Results
Demographics and clinical characteristics of the SPPT 
and SNPT patients
In our study, 64 TB patients, including 27 SPPT patients 
and 37 SNPT patients, were enrolled to identify the bio-
marker candidates for tuberculosis diagnosis. 36 non-
TB individuals were also included as controls. Here, the 
majority of TB patients are males (59.4%), and more 
than 80% of TB patients are farmers. The median age of 
SNPT patients was 60.0 years old (Q1–Q3: 49.00–71.00), 
which was significantly higher than that of SPPT patients 
(51.0  years old, Q1–Q3: 32.50–71.00) and controls 
(43.5  years old, Q1–Q3: 34.00–59.25). The mean BMIs 
of SPPT and SNPT patients were 20.22 kg/m2 (SD: 3.95) 
and 22.82  kg/m2 (SD: 3.93), respectively, which were 
significantly lower than controls (p < 0.001). The com-
mon symptoms were cough (92.3%) and expectoration 
(92.3%), followed by dyspnea (54.7%) and chest discom-
fort (20.3%). Notably, 70.4% of SPPT patients belong to 
cavitary pulmonary TB which has been previously dem-
onstrated to be associated with higher bacterial load [27] 
(Table 1).

Clinical characteristic analysis showed significantly 
decreased albumin and serum creatinine, and increased 
erythrocyte sedimentation rate (ESR) for the TB patients 
(Table 2). Here, the albumin of SPPT patients was signifi-
cantly lower than that of SNPT patients (SPPT: 35.30 g/L; 
SNPT: 39.20  g/L; adjusted p = 0.002), indicating more 
serious chronic inflammation/malnutrition for the SPPT 
patients [28, 29]; the serum creatinine was significantly 
lower in TB patients compared with controls, but showed 
no difference between SPPT and SNPT patients, suggest-
ing renal injury induced by tuberculous drugs; the ESR 
of SPPT patients (67.50  mm/h) was significantly higher 
than that of SNPT patients (43.00 mm/h), and ESR had 
been reported to identify active tuberculosis and differ-
entiate pulmonary tuberculosis from bacterial commu-
nity-acquired pneumonia [30].

Additionally, neutrophils, C-reactive protein and proc-
alcitonin were significantly upregulated in SPPT patients 
than in SNPT ones, while the hemoglobin of SPPT 
patients was significantly downregulated than that of 
SNPT ones. These indicators were all in the normal range 
for the SNPT patients, reflecting stronger immune and 
inflammatory reactions of SPPT patients.

Plasma metabolomic analysis showing dysfunctional 
fatty acid and amino acid metabolisms in SPPT and SNPT 
patients
Metabolome analysis was performed on the plasma sam-
ples from SPPT, SNPT and Ctrl groups, and a total of 103 
DAMs were identified (Fig. 1A, B and Additional files 3, 
4, 5). The heatmap showed the DAM expression profiles 
for the three groups, and the metabolomic profiling of 
SPPT patients was more similar to that of SNPT patients 
rather than controls (Fig.  1A). We then classified all 
DAMs into nine categories based on their chemical tax-
onomy according to “The Human Metabolome Database” 
(https:// hmdb. ca/), including “Lipids and lipid-like mol-
ecules” (~ 44%), “Organic acids and derivatives” (~ 25%), 
“Organoheterocyclic compounds” (12%) and “Organic 
oxygen compounds” (~ 10%) (Fig. 1C).

In the SPPT/Ctrl group, 70 DAMs were identified, most 
of which were lipids/lipid-like molecules (31) and organic 
acids/derivatives (16) (Additional file 3). Compared with 
controls, 77% (24/31) of the lipids/lipid-like molecules 
(19 fatty acyls, 3 glycerophospholipids, etc.) and 81.5% 
(13/16) of the organic acids/derivatives showed signifi-
cantly down-regulated trend (FC < 1, p < 0.05) in the SPPT 
group, indicating the dysfunctional lipid and amino acid 
metabolisms in the SPPT patients as previously reported 
[31, 32].

In the SNPT/Ctrl group, 79 DAMs were obtained, most 
of which also belonged to lipid/lipid-like molecules (37, 
top-1) and organic acids/derivatives (16, top-2) (Addi-
tional file 4). Compared to controls, 73% (27/37) of lipids/
lipid-like molecules and 56% (9/16) organic acids/deriva-
tives showed significantly down-regulated trend in the 
SNPT samples, also indicating the dysfunctional lipid 
and amino acid metabolisms in the SNPT patients.

In the SPPT/SNPT group, 33 DAMs were identified, 
most of which also belonged to lipid/lipid-like mole-
cules (17) and organic acids/derivatives (10) (Additional 
file  5): 53% (9/17) of the lipid/lipid-like molecules were 
significantly downregulated (4 fatty acyls, 2 glycerophos-
pholipids, 2 prenol lipids, etc.), and 47% (8/17) of them 
were significantly up-regulated (5 fatty acyls and 3 ster-
oids/steroid derivatives); 90% (9/10) of the organic acids/
derivatives were significantly down-regulated (eight car-
boxylic acids and derivatives and one organic carbonic 
acid/derivative), and only one was significantly up-regu-
lated (hydroxy acid/derivative).

In all, the three groups (SPPT/Ctrl, SPPT/Ctrl and 
SPPT/SNPT) showed significant enrichments in lipids/
lipid-like molecules (top-1) and organic acids/derivatives 
(top-2).

To evaluate the metabolic characteristics of the three 
groups, we further performed the pathway analysis 
for these DAMs using MetaboAnalyst 5.0. The results 

https://hmdb.ca/
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showed significantly differential enrichment of lipid and 
amino acid metabolism related pathways among the three 
groups (Fig. 2 and Additional file 1: Table S2–S4). In the 
SPPT/Ctrl group, the DAMs were significantly enriched 
in two fatty acid metabolism related pathways (“Biosyn-
thesis of unsaturated fatty acids pathway”, “Linoleic acid 
metabolism pathway”) and one amino acid metabolism 
related pathway (“Valine, leucine and isoleucine biosyn-
thesis pathway”), indicating significantly unregulated 
unsaturated fatty acid and amino acid metabolisms in 
the SPPT samples as previously reported [32–35]. In the 
SNPT/Ctrl group, the DAMs were significantly enriched 
in the same two fatty acid-related pathways as those in 
the SPPT/Ctrl group. In the SPPT/SNPT group, four 
lipid-related metabolic pathways, including “Linoleic acid 
metabolism pathway”, “Glycerophospholipid metabolism 
pathway”, “alpha-Linolenic acid metabolism pathway” 
and “Biosynthesis of unsaturated fatty acids pathway”, 

were significantly enriched, indicating more serious dys-
function of fatty acid metabolisms in the SPPT patients 
than in the SNPT patients. Overall, the two significant 
enrichment unsaturated fatty acid metabolism related 
pathways were shared by the three groups (SPPT/Ctrl, 
SNPT/Ctrl and SPPT/SNPT), indicting similar dysfunc-
tional fatty acid metabolisms among the three groups; 
they should be associated with disease progress of TB.

Taken together, the above results showed the dysfunc-
tions of fatty acid and amino acid metabolisms in the 
SPPT and SNPT patients, where these dysfunctions in 
the SPPT patients were more serious than those in the 
SNPT patients.

Precise classification among the three groups using DAMs 
and clinical indicators
We then investigated the classification effect for the three 
groups (SPPT, SNPT patients and controls) using all the 

Fig. 1 Plasma metabolomic analysis for the SPPT patients, SNPT patients and controls. A Heatmap showing 103 differential abundant metabolites 
(DAMs, VIP > 1, p < 0.05) among the three groups. The colored bar above the heatmap represent the SPPT (red), SNPT (orange) and Ctrl (green) 
samples. The color key indicates the scaled expression levels of the 103 metabolites for the three groups. B Venn diagram showing the differential 
metabolites among the three groups. C Pie chart showing the chemical classification of the 103 significantly differentially abundant metabolites 
according to the HMDB database

Fig. 2 Scatter plots showing the significantly enriched metabolic pathways among the three groups. The size and color of circles indicate the 
impact score and p-value of the enriched pathways, respectively
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practicable clinical laboratory indicators (24) and DAMs 
(96). Here, seven drug-related metabolites (Dehydroabi-
etic acid, Dyphylline, EDTA, Levofloxacin, Norethin-
drone Acetate, Sunitinib and Thioetheramide-PC) were 
excluded to increase the general applicability of clas-
sification according to HMDB database [36, 37]. PCA 
analysis was first applied to explore whether clinical indi-
cators and DAMs could be used to distinguish the SPPT, 
SNPT and Control samples (Fig.  3): DAMs displayed 
obvious separation while clinical indicators showed poor 
separation among the three groups; clinical indicators 
combined with DAMs showed the best classification 
performance among the three groups. Here the top ten 
contributed variables of PC1 and PC2 are all belong to 
DAMs, indicating a greater contribution of DAMs than 
clinical indicators (Additional file 1: Fig. S2).

All the 120 features (24 clinical indicators and 96 
DAMs) were further calculated for correlation coeffi-
cients between pairwise features (Additional file  2). 42 
features were excluded due to their higher mean abso-
lute correlation coefficients (≥ 0.7), and the remaining 78 
features were denoted as  F0 set for classification analysis 
among the three groups. RF and ROC analyses were then 
used to evaluate the classification performance of the 78 
features for the SPPT/Ctrl, SNPT/Ctrl, SPPT/SNPT and 
SPPT/SNPT/Ctrl groups. The results showed the tenfold 
cross-validation average accuracy of 98% (SD: 0.06), 100% 
(SD: 0.00) and 92% (SD: 0.09) for the binary classifications 
of the SPPT/Ctrl, SNPT/Ctrl and SPPT/SNPT groups in 
validation sets, respectively (Additional file 1: Table S5). 
Further, 100% accuracy (AUC: 1.00) was obtained for all 
the binary classifications of in test sets (Additional file 1: 
Fig. S3). For the three-class classification of SPPT/SNPT/
Ctrl group, the 78 features also showed good classifica-
tion performance in validation sets (average accuracy: 

95% (SD: 0.09) and test set (accuracy: 94.74%; sensitivity: 
80%, 100% and 100% for SPPT, SNPT and control groups; 
and specificity: 100%, 91.67%, and 100% for SPPT, SNPT 
and control groups; PPV: 100%, 87.50% and 100% for 
SPPT, SNPT and control groups; NPV: 93.33%, 100% 
and 100% for SPPT, SNPT and control groups;). These 
indicated the precise classification among the SPPT and 
SNPT patients and controls using the combination of 
clinical indicators and DAMs  (F0).

Selecting the optimized biomarker combinations 
to precisely identify any one of the SPPT and SNPT patients 
and controls.
To explore the optimized diagnostic biomarker combi-
nations, we then evaluated the contribution of features 
to the classification using random forest algorithm. The 
results revealed the optimized biomarker combinations 
with higher accuracy (> 0.9, Additional file 1: Fig. S4) for 
precision binary and three-class classifications among the 
three groups in training sets, including a two biomarker 
combination (albumin and 9-OxoODE, defined as “F1 
set”) for precisely distinguishing SPPT from controls, 
a three biomarker combination (L-Pyroglutamic acid 
(PGA), Enterostatin human and 9-OxoODE, defined as 
“F2 set”) for precisely differentiating SNPT from controls, 
a three biomarker combination (Val-Ser, Methoxyacetic 
acid (MAA) and Ethyl 3-hydroxybutyrate, defined as “F3 
set”) for precisely distinguishing SPPT from SNPT, and 
a nine biomarker combination (9-OxoODE, PGA, Val-
Ser, Ethyl 3-hydroxybutyrate, MAA, Enterostatin human, 
DL-Norvaline, His-Pro and Eicosapentaenoic acid (EPA), 
defined as “F4 set”) for simultaneously precise identifi-
cation of SPPT and SNPT patients and controls (Fig.  4, 
Additional file 1: Table S6).

Fig. 3 Principal component analyses of clinical indicators (A), DAMs (B) and their combination (C) among SPPT, SNPT and controls. The color key 
indicates the contribution of the top 5 variables from high (reddish arrows) to low contribution (bluish arrows)
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The binary classification performance of the above bio-
marker combinations  (F1,  F2 and  F3) was further verified 
in test sets with high accuracy, sensitivity and specific-
ity (accuracy: 83.33% for SPPT/Ctrl classifier, 92.86% 
for SNPT/Ctrl classifier, 83.33% for SPPT/SNPT classi-
fier; sensitivity: 80.00% for SPPT/Ctrl classifier, 85.71% 
for SNPT/Ctrl classifier, 80.00% for SPPT/SNPT classi-
fier; specificity: 85.71% for SPPT/Ctrl classifier, 100% for 
SNPT/Ctrl classifier, 85.71% for SPPT/SNPT classifier; 
PPV: 80.00% for SPPT/Ctrl classifier, 100% for SNPT/Ctrl 
classifier, 80.00% for SPPT/SNPT classifier; NPV: 85.71% 
for SPPT/Ctrl classifier, 87.50% for SNPT/Ctrl classifier, 
85.71% for SPPT/SNPT classifier; Table 3). In the SPPT/
SNPT/Ctrl group, the optimized biomarker combination 
 (F4: 9 features) could achieve higher three-class classifica-
tion accuracy (89.47%), sensitivity (80%, 85.71% and 100% 
for SPPT, SNPT and control groups), specificity (100%, 
91.67%, and 91.67% for SPPT, SNPT and control groups), 
PPV (100%, 85.71% and 87.50% for SPPT, SNPT and 
control groups) and NPV (93.33%, 91.67% and 100% for 
SPPT, SNPT and control groups) (Fig.  5). These results 
demonstrated good performance of the four feature sets 
 (F1–F4) for precise identification of any one of the SPPT 
and SNPT patients and controls.

The other two machine learning methods (SVM and 
MLP) were further adopted to verify the classification 
performance of the above-mentioned four biomarker 
combinations. As expected, the above four biomarker 
combinations showed high classification accuracy in 

SVM and MLP methods as that in RF method (Table 3, 
Fig.  5). Especially, compared with RF and SVM meth-
ods, MLP displayed the best classification performance 

Fig. 4 Importance of the screened features for identifying SPPT, SNPT patients from controls. A Importance of the clinical and metabolic features 
from different optimized combinations for precisely binary classification of SPPT/Ctrl, SNPT/Ctrl and SPPT/SNPT groups (from top to bottom) using 
random forest model. B Importance of the clinical and metabolic features from the four optimized combinations for simultaneous classification of 
SPPT, SNPT and Ctrl groups

Table 3 Classification performance of binary classifications with 
selected feature combinations on test sets

F1 set: albumin and 9-OxoODE;  F2 set: l-Pyroglutamic acid, Enterostatin human 
and 9-OxoODE;  F3 set: Val-Ser, Methoxyacetic acid and Ethyl 3-hydroxybutyrate

Accuracy Sensitivity Specificity PPV NPV

RF

 SPPT/Ctrl 
 (F1)

83.33% 80.00% 85.71% 80.00% 85.71%

 SNPT/Ctrl 
 (F2)

92.86% 85.71% 100% 100% 87.50%

 SPPT/SNPT 
 (F3)

83.33% 80.00% 85.71% 80.00% 85.71%

SVM

 SPPT/Ctrl 
 (F1)

91.67% 80.00% 100% 100% 87.50%

 SNPT/Ctrl 
 (F2)

92.86% 85.71% 100% 100% 87.50%

 SPPT/SNPT 
 (F3)

91.67% 80.00% 100% 100% 87.50%

MLP

 SPPT/Ctrl 
 (F1)

83.33% 60.00% 100% 100% 77.78%

 SNPT/Ctrl 
 (F2)

92.86% 85.71% 100% 100% 87.50%

 SPPT/SNPT 
 (F3)

91.67% 80.00% 100% 100% 87.50%
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(accuracy: 94.74%; sensitivity: 100%, 85.71% and 100% 
for SPPT, SNPT and control groups, specificity: 100%, 
91.67%, and 100% for SPPT, SNPT and control groups, 
PPV: 100%, 100% and 87.50% for SPPT, SNPT and con-
trol groups and NPV: 100%, 92.31% and 100% for SPPT, 
SNPT and control groups) for simultaneously discrimi-
nating the SPPT and SNPT patients and controls (Fig. 5), 
indicating the potential in disease classification/diagnosis 
for MLP.

Discussion
Our study revealed significantly enrichment of lipid/
lipid-like molecules and organic acids/derivatives in the 
SPPT and SNPT patients, indicating the dysfunctional 
fatty acid and amino acid metabolisms, which is in agree-
ment with previous reports [32–35]. Here, the SPPT 
samples showed a more serious dysfunction in fatty acid 
and amino acid metabolisms. Further, four promising 
diagnostic marker combinations (including nine lipid/
lipid-like and organic acids/derivatives molecules and 
one clinical indicator) were screened out for precise clas-
sification of SPPT patients, SNPT patients and controls 
with high accuracy (83.33–92.86%): a lipid-like mol-
ecule combined with a clinical indicator (albumin and 
9-OxoODE) could precisely differentiate SPPT patients 
from controls (accuracy: 83.33%); two lipid/lipid-like and 
one organic acid molecules (PGA, Enterostatin human 
and 9-OxoODE) could precisely distinguish SNPT 
patients from controls (accuracy: 92.86%); three organic 
acid molecules (Val-Ser, MAA and Ethyl 3-hydroxybu-
tyrate) could precisely classify SPPT and SNPT patients 
(accuracy: 83.33%); two lipid/lipid-like and seven 
organic acid molecules (9-OxoODE, PGA, Val-Ser, Ethyl 

3-hydroxybutyrate, MAA, Enterostatin human, DL-
Norvaline, His-Pro and EPA) could simultaneously pre-
cise identify SPPT patients, SNPT patients and controls 
(accuracy: 89.47%).

As we know, lipids/lipid-like molecules are a type of 
important structural material of Mtb, especially in the 
bacterial cell wall [38], which possesses a rich repository 
of lipid remodeling enzymes to utilize host fatty acids 
for their survival in the harsh hypoxic microenviron-
ment [39], further, resulting in serious dysfunctional lipid 
metabolism in TB patients [40]. For amino acid metabo-
lism, since TB is a chronic consumptive disease, various 
types of amino acids and proteins are essential for Mtb 
to survive in the human body, thus leading to the dys-
functional amino acid metabolism for TB patients [32]. 
As expected, our study identified some significantly dif-
ferential (up-/down-regulated) lipid and amino acid 
metabolites to precisely discriminate SPPT patients, 
SNPT patients and controls through machine learning 
methods. Certainly, these markers and panels warrant 
further confirmation and optimization with larger sample 
size studies.

The nine lipid/lipid-like and organic acids/derivatives 
molecules from four potential diagnostic biomarker 
combinations include two lipid/lipid-like molecules 
(9-OxoODE and EPA), and seven organic acids/deriva-
tives (PGA, DL-Norvaline, MAA, His-Pro, Val-Ser, Ethyl 
3-hydroxybutyrate and Enterostatin human) (Additional 
files 3, 4, 5).

First, the two lipid/lipid-like molecules show sig-
nificant downregulation/inhibition in the SPPT 
and SNPT patients (Additional file  1: Fig. S5). Here, 
9-OxoODE ranks the first, the first and the third in the 

Fig. 5 Confusion matrixes for discriminating SPPT, SNPT and controls with  F4 set in the test sets. Confusion matrixes from left to right show the 
classification performance of SPPT/SNPT/Ctrl groups in the test sets using RF, SVM and MLP models, respectively.  F4 set: 9-OxoODE, PGA, Val-Ser, 
Ethyl 3-hydroxybutyrate, MAA, Enterostatin human, DL-Norvaline, His-Pro and Eicosapentaenoic acid
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classification biomarkers for SPPT/Ctrl, SPPT/SNPT/
Ctrl and SNPT/Ctrl groups, respectively (Fig. 4). A pre-
vious study has shown that the significantly inhibited 
9-OxoODE also reflects a negative regulation for lipoly-
sis induced inflammatory response in SPPT and SNPT 
patients, since 9-OxoODE (metabolite of linoleic acid) 
can activate the lipogenic machinery as a ligand nuclear 
receptor in PPAR-α and PPAR-γ [41–44]. Another 
lipid/lipid-like molecule, EPA ranks seventh in the 
classification biomarkers for SPPT/SNPT/Ctrl (Fig.  4). 
Previous studies have reported that significantly down-
regulated EPA can result in dysfunctional inflammatory 
responses in TB patients by downregulating the pro-
inflammatory cytokines and upregulating lipid synthe-
sis of immune cells [45].

For the abovementioned seven organic acids/deriva-
tives as potential classification biomarkers, compared 
with controls, three ones (PGA, MAA and DL-Nor-
valine) show significant downregulation and His-Pro 
shows significant upregulation in both SPPT and SNPT 
patients (Additional file  1: Fig. S5). Here, PGA ranks 
the first and fourth for the classification biomarkers for 
SNPT/Ctrl and SPPT/SNPT/Ctrl groups, respectively 
(Fig.  4). Significantly downregulated PGA has been 
reported to improve the Mtb growth by inhibiting the 
biosynthesis of glutathione in human bodies [46–49]. 
MAA ranks third and fifth among the classification bio-
markers for SPPT/SNPT and SPPT/SNPT/Ctrl groups, 
respectively (Fig. 4). Significantly downregulated MAA 
could result in a poor inhibition of mPTPB essential for 
the survival of Mtb, since it has been shown to catalyze 
the formation of an inhibitor of a Mycobacterium pro-
tein (tyrosine phosphatase B: mPTPB) [50]. In addi-
tion, DL-Norvaline and His-Pro rank the eighth and 
ninth among the classification biomarkers for SPPT/
SNPT/Ctrl group (Fig. 4), both of which showed simi-
lar expressed trends, suggesting the dysfunction in both 
SPPT and SNPT patients.

The remaining three organic acid biomarker mole-
cules (Val-Ser, Ethyl 3-hydroxybutyrate and Enterostatin 
human) show differential enrichment between the SPPT 
and SNPT patients. Here Val-Ser and Ethyl 3-hydroxybu-
tyrate show specifically downregulated and upregulated 
in SPPT patients, respectively (Additional file 1: Fig. S5). 
They rank the first and second among the features for the 
differentiation of SPPT/SNPT group, and rank the third 
and second among the features for the differentiation 
of SPPT/SNPT/Ctrl group, respectively (Fig.  4). “Enter-
ostatin human” was specifically upregulated in SNPT 
patients, and ranks the second and sixth among the 
selected features for the differentiation of SNPT/Ctrl and 
SPPT/SNPT/Ctrl groups, respectively (Fig. 4). The three 
organic acids/derivatives with specific changes in only 

one group display unique feature for the classification of 
various types of TB patients.

In addition, a clinical indicator of albumin ranks sec-
ond in the feature set for the differentiation of SPPT/
Ctrl group, indicating the better precision diagnosis of 
SPPT patients through combining metabolome and clini-
cal indicators (Fig. 4). Previous reports have indicated a 
prognostic marker of TB patients for albumin, which is a 
critical nutrient and inflammation related protein marker 
[51].

Our finding further shows the potential of machine 
learning in the precise diagnosis of SPPT and SNPT 
patients. Machine learning is becoming ubiquitous for 
analyzing multi-dimensional big data, and has been 
widely applied to many biological/medical fields, includ-
ing diagnostic biomarker identification [52], therapeutic 
targets detection [53], disease progression prediction 
[54], and causal relationship between phenotype and gen-
otype [55]. In our study, three machine learning methods 
are used to screen out potential biomarkers for precise 
classification of various types of TB from multidimen-
sional data. RF was first adopted to screen out precise 
classification biomarkers, since it has been widely applied 
to classification and feature selection for big data; we then 
obtained some important classification features accord-
ing to the ranks of variables and their predictive impor-
tance. Previous studies have also demonstrated the good 
performance of RF method for discriminating TB from 
Non-TB [56]. The other two machine learning methods 
(SVM and MLP) were further used to verify the classifi-
cation accuracy of the biomarker combinations. SVM is 
an ensemble machine learning to improve classification 
performance compared with a single classifier, which has 
also been applied in the prediction of disease progres-
sion such as breast cancer [57]. MLP is very famous for 
its autonomic learning capacity without the requirement 
of previous knowledge, which has also been used in the 
diagnosis of TB [58] and assessment of prognostic risk 
for SNPT patients [59]. Our research indicated the best 
classification performance of MLP for simultaneously 
identifying the SPPT, SNPT, and controls, with the high-
est accuracy of 94.74%, suggesting the advantage of MLP 
over RF and SVM to some extent.

There are also some limitations in our study. Although 
we have included all the TB patients meeting the inclu-
sion and exclusion criteria in the three hospitals during 
2017–2018 (the Tuberculosis Prevention and Treatment 
Institute of Kashgar, the Second People’s Hospital of 
Aksu, and the Kuqa County Infectious Disease Hospital), 
this is indeed a limitation of our study for not calculating 
the needed sample size as epidemiological survey. The 
relatively small training and test sets may decrease the 
statistical power of the results, and this point warrants 
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further confirmation and optimization with larger sample 
size studies in the future. In addition, we do not observe 
the impact of the demographic factors (age, occupation, 
BMI, etc.) on the metabolomic profiles (data not shown), 
but further confirmation with larger samples is also war-
ranted. Certainly, to translate our classification model 
into clinical practice, many standardized works about 
data/workflow/sampling are still required. Overall, all 
binary and three-class classifiers obtained from our study 
showed good performance for precisely identifying SPPT, 
SNPT and Ctrl groups in spite of some limitations, and 
some classification biomarkers have also been reported 
to be closely associated with TB [45, 49, 50].

Conclusions
Our current study not only screens out four biomarker 
combinations for precise detection of SPPT and SNPT 
patients through combining plasma metabolites with 
clinical indicators, but also shows promising application 
of machine learning on the identification of diagnostic 
biomarkers from multi-dimensional big data.

Over recent decades, despite the rapid advancement 
of various diagnostic technologies, diagnostic errors 
(missed, delayed, or wrong diagnoses) are still the most 
common problems for many important diseases, such 
as lung cancer [52]. Multi-omics and machine learning 
provide powerful tools for solving these problems, and 
researchers can achieve precise classifications/diagno-
ses for the misdiagnosed diseases through integrating 
multi-omics data with machine learning [15, 18, 52]. Our 
research presents a successful attempt to precisely detect 
various types of TBs by integrating multi-omics data with 
machine learning, and further provides a good example 
and workflow for future studies on the precision diagno-
sis of various misdiagnosed diseases.
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