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Psoriasis is a complex, chronic relapsing and inflammatory skin disorder with a prevalence
of approximately 2% in the general population worldwide. Psoriasis can be triggered
by infections, physical injury and certain drugs. The most common type of psoriasis is
psoriasis vulgaris, which primarily features dry, well-demarcated, raised red lesions with
adherent silvery scales on the skin and joints. Over the past few decades, scientific
research has helped us reveal that innate and adaptive immune cells contribute to the
chronic inflammatory pathological process of psoriasis. In particular, dysfunctional helper
T cells (Th1, Th17, Th22, and Treg cells) are indispensable factors in psoriasis
development. When stimulated by certain triggers, antigen-presenting cells (APCs) can
release pro-inflammatory factors (IL-23, IFN-a and IL-12), which further activate naive T
cells and polarize them into distinct helper T cell subsets that produce numerous
cytokines, such as TNF, IFN-g, IL-17 and IL-22, which act on keratinocytes to amplify
psoriatic inflammation. In this review, we describe the function of helper T cells in psoriasis
and summarize currently targeted anti-psoriatic therapies.
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INTRODUCTION

Psoriasis is a complex, chronic relapsing and inflammatory skin disorder with an overall prevalence
of 2% in the general population worldwide (1). The most common type of psoriasis is psoriasis
vulgaris, which primarily manifests as dry, well-demarcated, raised red lesions with adherent silvery
scales on the skin and joints and accounts for nearly 90% of all psoriasis cases. Psoriasis is also
associated with multiple comorbidities, such as arthritis, obesity, diabetes mellitus, depression,
hypertension, cardiovascular disease, and reduced quality of life (2).

Although the exact mechanism that triggers psoriasis remains unclear, it is currently accepted
that psoriasis is induced or exacerbated by either nonspecific triggers, such as infections [such as
Streptococcus (3)], physical injury [such as scratching and tattoos (4)], drugs [such as b blockers,
lithium and antimalarials (5, 6)] or some specific autoantigens [such as cathelicidin LL-37,
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melanocytic ADAMTSL5, lipid antigen PLA2G4D and keratin
17 (7)]. Pathologically, psoriasis is characterized by epidermal
acanthosis (thickening of the viable layers), hyperkeratosis
(thickened cornified layer), and parakeratosis (cell nuclei
present in the cornified layer) (8). Over the past 50
years, researchers have performed substantial work to explore
the underlying mechanism of the link between skin injury and
keratinocyte dysfunction, which drives the development and
progression of psoriasis. A series of basic and clinical studies
has shown that psoriasis is mediated by components of both the
innate and adaptive immune systems. It was reported that innate
immune cells such as natural killer (NK) cells, NKT cells,
neutrophils, mast cells, gd T cells, and dendritic cells (DCs)
were significantly increased in psoriatic lesions and could
frequently release pathogenic mediators such as TNF-a and
interleukin 23 (IL-23) (9–13). As another important source of
cytokines, adaptive immune cells have been the subject of
academic interest since 1979. A variety of studies showed that
several related cytokines, such as tumor necrosis factor-a (TNF-
a), interferon g (IFN-g), interleukin 23 (IL-23), interleukin 17
(IL-17), and interleukin 22 (IL-22), were highly correlated with
psoriasis. Recently, autoreactive T cells against specific
autoantigens were also found to produce related pathogenic
cytokines, especially IFN-g and IL-17. Lande et al.
demonstrated specific CD4 and CD8 T-cell responses and
increased IFN-g and IL-17 production to LL37 in psoriatic
patients (14), while Arakwa et al. identified ADAMTSL5 as an
autoantigen recognized by specific CD8 T-cells (15). Specially,
for CD8 T cells, both autoantigens were showed to be presented
in the peptide-binding groove of the human leukocyte antigen
(HLA)-class I molecule encoded by the major psoriasis risk gene,
HLA-Cw*06:02 (14, 15). Consistently, keratin peptides that share
sequences with Streptococcal M-protein can be recognized by T
cells from psoriatic patients (16–18). Subsequent evidences
showed that full-length keratin 17 and its peptide fragments
induce T cell proliferation and IFN-g production, particularly in
patients with the HLA-Cw*06:02 allele (19, 20). Furthermore,
clinic studies showed that matched biological agents against
these cytokines could also induce effective therapeutic results.
Moreover, among them, IL-17, which is mainly produced by gd T
cells, CD4+ helper T cells (Th17 cells), and CD8+ cytotoxic T
cells (Tc17 cells), seems to be most strongly implicated in
psoriasis; thus, T cells, especially helper T (Th) cells, have
become a hot topic in psoriasis pathogenesis. Here, we
reviewed the biogenesis and function of helper T cells in
psoriasis and briefly summarized currently targeted therapies.
ROLE OF HELPER T CELLS IN PSORIASIS

When Mueller et al. used cyclosporine A, an immunosuppressive
agent that inhibits T cell proliferation and cytokine production,
to treat psoriasis and then observed surprising therapeutic
efficacy, researchers realized the potential role of T cells in
psoriasis pathogenesis (21). Later, Prinz et al. isolated 10 T cell
lines and 105 T cell clones from the dermis and epidermis of
Frontiers in Immunology | www.frontiersin.org 2
psoriatic skin specimens and subsequently found that T cells and
their secreted products, such as IFN-g, could contribute to
keratinocyte proliferation (22). Then, Baker et al. showed that the
initial phase of psoriasis was dominated by epidermal infiltration of
activatedCD4+T cells, indicating a primary immune trigger for the
inflammatory and hyper-proliferative processes (23). In the current
model, the crosstalk between keratinocytes and various immune
cells, especially helper T cells, plays a central role in the progression
of psoriasis (Figure 1).

Th1/Th17/Th22 Cells in Psoriasis
A study from the University of Mainz investigated cytokines
secreted by T cells obtained from epidermal specimens of
psoriatic patients and showed that nearly all T cells tested
produced Th1-related cytokines (IFN-g, TNF-a, and IL-2),
whereas only a minority of cells secreted Th2-related cytokines
(IL-4 and IL-10) (24). In the same year, another study suggested
that IFN-g, which is produced mainly by Th1 cells, is capable of
enhancing keratinocyte proliferation in vitro (22). These results
defined psoriasis as a Th1 cell-mediated disease. However, the
administration of humanized monoclonal antibodies against
IFN-g and TNF-a does not significantly improve psoriasis,
suggesting that Th1 cells or their related cytokines may not be
critical in the pathogenesis of psoriasis (25).

While assessing the involvement of IL-23 in the induction and
maintenance of chronic inflammatory diseases, Harrington et al.
first recognized the distinct CD4+ T cells - known as Th17 cells
(26, 27). IL-23, a heterodimeric cytokine composed of a unique
p19 chain and a p40 chain that is shared with IL-12, is essential
for the survival and development of Th17 cells (28). There is
growing evidence to suggest that the IL-23/Th17 axis and the
related cytokines have critical roles in psoriasis. Enhanced
expression of IL-23 at the mRNA and protein levels could be
detected in psoriatic skin compared with healthy skin. Moreover,
intradermal injection of IL-23 in murine models can stimulate
keratinocyte proliferation and cause epidermal hyperplasia, and
anti-IL-12/IL-23 and anti-IL-23 agents have shown highly
effective therapeutic effects in clinical trials (29–32). In 2007,
Wilson et al. found that Th17 cells may participate in the
pathological processes of psoriasis through the coordinated
expression of IL-17A, IL-17F, IL-22, IL-21 and IL-26 (33).
Both IL-17A and IL-17F are subtypes of IL-17, and they have
been shown to be elevated in psoriatic lesions and the peripheral
blood of psoriatic patients (34). Clinical randomized trials have
shown beneficial effects of IL-17A and IL-17F antibodies,
validating IL-17A and IL-17F as potential therapeutic targets
(35–38). Further studies demonstrated that IL-22 also mediates
IL-23/Th17 axis-induced psoriasis-like skin inflammation (39).
Zheng et al. suggested that IL-22, which acts in synergy with IL-
17, might play an essential role in the pathogenesis of
autoimmune diseases such as psoriasis (39). Subsequently,
scientific research highlighted that IL-17 and IL-22 may
mediate distinct downstream pathways that contribute to the
psoriatic phenotype: IL-17 is more pro-inflammatory than IL-22,
while IL-22 impairs keratinocyte differentiation (40). In addition,
Van Belle et al. showed that IL-22 played major roles not only in
the development of pustules and acanthosis but also in
December 2021 | Volume 12 | Article 788940
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neutrophil infiltration in a mouse model triggered by the Toll-
like receptor (TLR) 7/8 agonist imiquimod (41). The IL-23/Th17
axis and the related cytokines could further amplify keratinocyte
proliferation and cause epidermal hyperplasia (42).

Later, Nograles et al. discovered a new subtype of T cells by
analyzing the T cell subsets in skin biopsies and peripheral blood
collected from psoriatic patients by intracellular cytokine staining
and flow cytometry, and these cells were called Th22 cells (43).
Moreover, research from Trifari et al. solidified this view. The
researchers identified another population of human helper T cells
that produced abundant IL-22 and IL-13 but no IFN-g, IL-4 or IL-
17. IL-22, as we described above, is required for the pathogenesis
and development ofmany autoimmune diseases (44). Kagami et al.
analyzed T cell numbers in the circulation of psoriatic patients and
showed that in addition to Th1 and Th17 cells, Th22 cells were also
increased in psoriatic patients (45). Notably, IL-22 deficiency
caused a significant decrease in epidermal acanthosis and dermal
inflammation induced by IL-23 (39). These studies established the
crucial role of the IL-23/Th17 axis and the IL-22/Th22 pathway in
the pathogenesis and development of psoriasis. However, it has
been reported that Th1 and Th17 cells may contribute to the
pathogenesis and development of psoriasis. Researchers argued
that IFN-g secretedmainly by Th1 cells could induce Th17 cells via
IL-1 and IL-23. Furthermore, IFN-g can also stimulate antigen-
presenting cells (APCs) to produce CCL20, which is responsible for
themigration of IL-17+T cells (46). Considering the role of IL-22, it
can no longer be denied that psoriasis is a Th1/Th17/Th22-
mediated autoimmune disease.

Treg Cells in Psoriasis
Treg cells are a special subset of helper T cells that are
characterized by high expression of the CD25, alpha-chain of
Frontiers in Immunology | www.frontiersin.org 3
IL-2 receptor. Then Foxp3 (Forkhead Box P3), a transcription
factor of the fork head/winged-helix family, was found as the
most important transcription factor for controlling the
development and function of Treg cells. Treg cells can
suppress the activities of other effector immune cells mainly by
direct contact and/or the secretion of suppressive cytokines, such
as IL-10 and transforming growth factor (TGF)-b (47). Hence,
Treg cells are prominently associated with peripheral tolerance,
autoimmune diseases and chronic inflammatory diseases,
including psoriasis (48).

Studies investigating the percentage of Treg cells in lesional
skin or peripheral blood have contradictory evidence, which
varied in different psoriasis subtypes, disease states, Treg
definition, and types of samples (49–55). Interestingly, the
function of Treg cells was consistently demonstrated to be
impaired (56). Both Sugiyama et al. and Li B et al. observed
that circulating CD4+CD25+ Treg cells in psoriatic patients
failed to suppress the proliferation of normal CD4+CD25-
responder T cells during co-culture (56, 57). Similar results
were reported in pediatric patients (58).

The unstable expression (downregulation) of Foxp3 reflects
the dysfunction of Treg cells in psoriasis, and numerous
upstream regulators have been reported. One of these
regulators is the pro-inflammatory cytokine milieu, especially
high levels of IL-6. Indeed, IL-6 was highly expressed in the
plasma and lesional skin of psoriatic patients (59). In an in vitro
model, Goodman et al. reported that human Treg cell-mediated
suppression of responder T cell proliferation could be reversed
by culture with rhIL6 (recombinant human IL-6) or activated
DCs, which highly express IL-6 (59). Furthermore, under IL-6
stimulation, elevated phosphorylation of the transcription factor
Stat3 was noted in dysfunctional Treg cells (60). Stat3 acts as a
FIGURE 1 | Immune dysfunction of psoriasis. Psoriasis is driven by many nonspecific triggers. Triggers such as infections and physical injury stimulate DCs to
release pro-inflammatory factors (IL-23, TNF-a and IL-12). These cytokines in turn activate the IL-23 and/or IL-22 pathway to induce Th17 and/or Th22 cell
differentiation, resulting in the production of numerous psoriatic cytokines, such as TNF-a, IFN-g, IL-17 and IL-22, which act on keratinocytes to amplify psoriatic
inflammation. In addition, skin infiltrating cells, such as gdT cells, contribute to the disease development via producing IL-17, and Treg cells and the Th17/Treg
balance also play important roles in the pathogenesis of psoriasis.
December 2021 | Volume 12 | Article 788940
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downstream molecule of IL-6R and can bind to a silencing
element within the Foxp3 locus, leading to a reduction in the
expression of Foxp3. Furthermore, Zhao et al. reported that
increased expression of microRNA-210 in CD4+ T cells from
patients with psoriasis vulgaris repressed Foxp3 expression and
subsequently inhibited the production of IL-10 and TGF-b (61).
In addition, in a CD18-knockout mouse model, a spontaneous
psoriasiform phenotype was observed, accompanied by Treg cell
dysfunction. Adoptive transfer of wild-type Treg cells into
CD18-knockout mice markedly reduced the psoriasis area and
severity index (PASI) scores. Wang et al. revealed that reduced
CD18 expression on CD4+CD25+CD127– Tregs resulted in
deceased expression of TGF-b1 by disrupting their cell-cell
contact with DCs (62).

Because the differentiation of Th17 and Treg cells is
reciprocally regulated by shared and different cytokines, it is
not surprising that the cytokine milieu of the psoriatic skin
microenvironment may cause an imbalance. Zhang et al. and
Wang et al. independently reported a positive association
between the ratio of Th17 cells to Treg cells in peripheral
blood and PASI scores (51, 61). As mentioned previously, IL-6,
which is a critical cytokine for Th17 differentiation, inhibits Treg
cells by inhibiting the expression of Foxp3 in psoriasis
pathogenesis (63). Furthermore, a group of IL-17A+/Foxp3
+/CD4+ triple-positive cells were identified in the lesional skin
of psoriasis patients (64). These cells maintain a high RORgt/
Foxp3 ratio to promote the production of IL-17A. This evidence
suggests important plasticity between Th17 and Treg cells in
psoriasis (64). Specifically, Singh et al. reported a mechanism by
which reduced CD18 levels could promote the conversion of
Treg cells to Th17 cells in a CD18-knockout mouse model of
psoriasis (65). In addition, Ma et al. showed that the Th17/Treg
imbalance was also regulated by the Notch1 signaling pathway,
which is known to be a conserved signaling pathway involved in
cell development and differentiation of multiple organisms and
tissues (66). In their experiments, the expression of Notch1 and
its target gene Hes-1 were positively correlated with PASI scores
and the ratios of Th17/Treg cells. Correspondingly, Notch
receptor inhibitors reduced the percentage of Th17 cells and
the Th17/Treg ratio (66).

Currently, it is relatively clear that Treg cells and the Th17/
Treg balance play important roles in the pathogenesis of
psoriasis; however, the underlying mechanisms that drive Treg
cell dysfunction and the imbalance in Th17/Treg cells still need
to be further investigated.

T Follicular Helper Cells
T follicular helper (Tfh) cells, characterized by the high
expression of chemokine CXC receptor 5 (CXCR5), are
another specialized subset of CD4+ T cells. With expression of
IL-21, CXCL13 and PD-1, they exert B helper activities in a
manner primarily dependent on IL-21 (67). Tfh cells can be
further classified as three subpopulations, including Type 17
(CXCR3-CCR6+), Type 1 (CXCR3 + CCR6-), and Type 2
(CXCR3-CCR6-) cells. Recently, Tfh cells have been shown to
be involved in the pathogenesis of psoriasis. Niu et al. and Wang
et al. demonstrated that the frequency of circulating Tfh were
Frontiers in Immunology | www.frontiersin.org 4
elevated in psoriasis and positively correlated with serum IL-21
levels and PASI scores (68, 69), suggesting Tfh cells as potential
contributors to psoriasis pathogenesis. Moreover, Caruso et al.
reported that increased IL-21 was produced primarily by CD4+
T cells in psoriatic lesions (70). Although other markers, like
CXCR5, were not analyzed to define CD4+ T cell subsets, a part
of the IL-21-producing CD4 T cells were co-producing IFN-g or
IL-17. Consistently, Wang et al. observed that CXCR3−CCR6+
Tfh type 17 subset, which secrete the Th17 cytokines IL-17A
and IL-22, increased and correlated with PASI score in
psoriasis (71).
TARGETED PSORIASIS THERAPIES

Recognition of the IL-23/Th17 axis and IL-22/Th22 pathway
vigorously promoted the development of targeted therapies. To
date, targeted therapies that have been approved by the Food and
Drug Administration (FDA) for psoriasis treatment have shown
promising effects (72, 73). There are also various new biologic
agents that exhibit promising therapeutic efficacy in clinical trials
(72, 73). Table 1 shows the targeted agents for psoriasis
treatment, and we briefly discuss the agents targeting the IL-
23/Th17 axis and IL-22/Th22 pathway in the treatment
of psoriasis.

Targeting IL-23
IL-23 is a heterodimeric cytokine composed of a unique p19
chain and a p40 chain shared with IL-12. Targeted drugs include
antibodies that inhibit the p19 subunit of IL-23 and the p40
subunit of both IL-12 and IL-23. Ustekinumab and Briakinumab,
which are human interleukin-12/23 monoclonal antibodies, have
been approved by the FDA and have shown significant efficacy in
patients with moderate to severe plaque psoriasis (29, 32).
Risankizumab and Tildrakizumab are agents that target the
unique IL-23 subunit p19. The results of randomized
controlled, phase 3 trials showed that these agents have
superior efficacy to placebo or Ustekinumab in the treatment
of moderate-to-severe plaque psoriasis (30, 31). Data from
clinical trials have shown that IL-23 inhibitors have convincing
safety profiles; however, long-term observations indicate that
adverse events still occur during the treatment. A multicentre,
randomized, double-blind, placebo-controlled clinical trial of
Ustekinumab showed that adverse events were observed in 217
(53·1%) patients in the 45 mg group, 197 (47·9%) in the 90 mg
group and 204 (49·8%) in the placebo group (80). The most
common adverse effects included infections, headache and
injection-site reactions (98).

Targeting IL-17
Additional categories of biologic agents include fully human
interleukin-17A/F monoclonal antibodies. Secukinumab and
Ixekizumab can directly neutralize IL-17A and have excellent
and sustained efficacy for psoriatic patients with or without PsA
and nail psoriasis (37, 38, 90, 99–101). Bimekizumab, a human
anti-IL-17 drug that inhibits both IL-17A and IL-17F, induced
convincing clinical improvements in psoriatic patients with or
December 2021 | Volume 12 | Article 788940
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without psoriatic arthritis (35, 102). Brodalumab is a human
anti-IL-17 receptor antagonist (IL-17RA) (36). The feature that
broadly blocks IL-17A, IL-17F, IL-17C and IL-17E enables IL-
17RA to rapidly improve the clinical and histological features of
psoriasis (103). It was shown that Brodalumab may even be
effective in those who failed to respond to Secukinumab and
Ixekizumab (103, 104). Although all these antagonists showed
robust efficacy, unexpected side effects have also been reported.
The most common adverse effects are infections, such as
Frontiers in Immunology | www.frontiersin.org 5
bacterial infection and tuberculosis; others, such as headache
and diarrhea, are less common (73).

Targeting IL-22
IL-22 is an essential cytokine for psoriasis development. ILV-
095, an IL-22 receptor antagonist that was developed to treat
psoriasis, failed in a phase I clinical trial because the expected
endpoints could not be met (105). Another humanized
monoclonal antibody against the IL-22 receptor, IL-094, was
TABLE 1 | US food and drug administration–approved biologic treatments for psoriasis.

Biologics Drug Main Trials (Reference) N Control Intervention Efficacy (VS Control Intervention)

PASI 75 PASI 90

Anti-TNF Etanercept Papp et al. (74) 583 PBO 49% at week 12 (VS 3%) 21% at week 12 (VS 1%)
Infliximab Reich et al. (75) 378 PBO 80% at week 10 (VS 3%)

82% at week 24 (VS 4%)
61% at week 50 (VS N/A)

57% at week 10 (VS 1%)
58% at week 24 (VS 1%)
45% at week 50 (VS N/A)

Barker et al. (76) 868 MTX 78% at week 16 (VS 42%)
76.9% at week 26 (VS 30.7%)

54.5% at week 16 (VS 19.1%)
51.0% at week 26 (VS 14.9%)

Adalimumab Menter et al. (77) 1212 PBO 71% at week 16 (VS 7%) N/A
Certolizumab
pegol

Gottlieb et al. (78) 461 PBO 82% at week 16 (VS 9.9%)
83.6% at week 48 (VS N/A)

52.2% at week 16 (VS 2.5%)

Lebwohl et al. (79) 224 Etanercept 66.7% at week 12 (VS 53.3%) N/A
Anti-IL-23 Ustekinumab Leonardi et al. (32) 511 PBO 66.4% at week 12 (VS 3.1%)

78.6% at week 28 (VS N/A)
36.7% at week 12 (VS 2.0%)
55.6% at week 28 (VS N/A)

Papp et al. (80) 821 PBO 75.7% at week 12 (VS 3.7%)
78.5% at week 28 (VS N/A)

50.9% at week 12 (VS 0.7%)
54.3% at week 28 (VS N/A)

Briakinumab Gottlieb et al. (81) 347 Etanercept/PBO 81.9% at week 12 (VS 56.0%/7.4%) N/A
Strober et al. (29) 350 Etanercept/PBO 80.6% at week 12 (VS 39.6%/6.9%) 55.4% at week 12 (VS 13.7%/4.2%)

Tildrakizumab Reich et al. (31) 463 PBO 62% at week 12 (VS 6%) 35% at week 12 (VS 3%)
783 Etanercept/PBO 66% at week 12 (VS 48%/6%) 37% at week 12 (VS 21%/1%)

Guselkumab Blauvelt et al. (82) 663 Adalimumab 91.2% at week 16 (VS 73.1%)
91.2% at week 24 (VS 72.2%)
87.8% at week 48 (VS 62.6%)

73.3% at week 16 (VS 49.7%)
80.2% at week 24 (VS 53.0%)
76.3% at week 48 (VS 47.9%)

Reich et al. (83) 1048 Secukinumab 85% at week 48 (VS 80%) 84% at week 48 (VS 70%)
Thaçi et al. (84) 119 FAE 90.0% at week 24 (VS 27.1%) 81.7% at week 24 (VS 13.6%)

Risankizumab Gordon et al. (30) 506 Ustekinumab/PBO N/A 75.3% at week 16 (VS 42%/4.9%)
491 Ustekinumab/PBO N/A 74.8% at week 16 (VS 47.5%/2.0%)

Reich et al. (85) 605 Adalimumab 91% at week 16 (VS 72%) 72% at week 16 (VS 47%)
Warren et al. (86) 327 Secukinumab 92% at week 16 (VS 80%)

90% at week 52 (VS 70%)
74% at week 16 (VS 66%)
87% at week 52 (VS 57%)

Anti-IL-17 Secukinumab Langley et al. (38) 493 PBO 81.6% at week 12 (VS 4.5%) 59.2% at week 12 (VS 1.2%)
979 Etanercept/PBO 77.1% at week 12 (VS 44%/4.9%) 54.2% at week 12 (VS 20.7%/1.5%)

Thaçi et al. (87) 676 Ustekinumab 93.1% at week 16 (VS 82.7%) 79.0% at week 16 (VS 57.6%)
Blauvelt 2017 (88) 676 Ustekinumab 92.5% at week 24 (VS 83.6%)

91.6% at week 52 (VS 78.2%)
80.8% at week 24 (VS 66.3%)
74.9% at week 52 (VS 60.6%)

Bagel et al. (89) 1102 Ustekinumab 89.0% at week 52 (VS 82.1%) 73.2% at week 52 (VS 59.8%)
Ixekizumab Griffiths et al. (90) 877 Etanercept/PBO 89.7% at week 12 (VS 41.6%/2.4%) 70.7% at week 12 (VS 18.7%/0.6%)

960 Etanercept/PBO 87.3% at week 12 (VS 53.4%/7.3%) 68.1% at week 12 (VS 25.7%/3.1%)
Gordon et al. (91) 864 PBO 89.1% at week 12 (VS 3.9%) 70.9% at week 12 (VS 0.5%)

385 N/A 83% at week 60 73% at week 60
Blauvelt et al. (92) 385 N/A 83.6% at week 108 70.3% at week 108
Lebwohl et al. (93) 385 N/A 82.8% at week 204 48.3% at week 204
Reich et al. (94) 162 MTX/FAE 91% at week 24 (VS 70%/22%) 80% at week 24 (VS 39%/9%)
Blauvelt et al. (95) 1027 Guselkumab 23% at week 2 (VS 5%)

No statistically difference at week 24
58% at week 8 (VS 36%)
No statistically difference at week 24

Brodalumab Lebwohl et al. (96) 1221 Ustekinumab/PBO 86% at week 12 (VS 70%/8%) N/A
Papp et al. (36) 1252 Ustekinumab/PBO 85% at week 12 (VS 69%/6%) N/A

441 PBO 83.3% at week 12 (VS 2.7%) 70.3% at week 12 (VS 0.9%)
Pinter et al. (97) 149 FAE 81.0% at week 24 (VS 38.1%) 65.7% at week 12 (VS 21.9%)
December
TNF, tumor necrosis factor; N, Number of participants; PASI 75/90, a 75%/90% reduction in Psoriasis Area Severity Index (PASI) score compared with baseline; N/A, Not Applicable; MTX,
Methotrexate; FAE, fumaric acid esters; PBO, Placebo.
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suspended for similar reasons (105). Thus far, biological
therapies against the IL-22 receptor need to be further
investigated in the future.

Targeting JAK/STAT Pathway
The Janus kinase (JAK) signal transducer and activator of
transcription (STAT) signaling pathway (JAK/STAT pathway)
transduce signals from multitudes of cytokines and growth
factors and plays a major role in the pathogenesis of many
inflammatory and autoimmune diseases. Due to the essential role
in forwarding the IL-23/Th17 axis and IL-22/Th22 pathway
signals into cell, JAK/STAT pathway has received increasing
attention recently in psoriasis (106). Furthermore, it is an
attractive idea that to blockade multiple psoriasis related
cytokines rather than specific to one signaling pathway by
inhibiting of JAKs. Indeed, there are already several biologic
agents that target JAK/STAT pathway in clinical trials:
Tofacitinib (NCT01241591) for JAK1 and JAK3 (107);
Baricitinib (NCT01490632) for JAK1 and JAK2 (108);
Itacitinib (NCT01634087) and Solcitinib (NCT01782664) for
JAK1 (109, 110); PF-06700841 (NCT02969018) for JAK1 and
TYK2 (111); and PF-06826647 (NCT03895372) and
Deucravacitinib (NCT03924427) for TYK2 (112, 113). Many of
them have shown promising efficacy, especially selective TYK2
inhibitors, whereas the adverse effect and long-term safety still
need to be emphasized.
CONCLUSIONS

Over the past 50 years, substantial scientific research has suggested
that T cells are closely associated with the pathogenesis of
psoriasis. These cells serve as a link connecting nonspecific
triggers and keratinocyte dysfunction. Triggers such as
infections and physical injury stimulate antigen-presenting cells
(APCs) to release pro-inflammatory factors (IL-23, IFN-a and
IL-12). These cytokines in turn activate the IL-23 and/or IL-22
pathway to induce Th17 and/or Th22 cell differentiation, resulting
in the production of numerous psoriatic cytokines, such as TNF,
IFN-g, IL-17 and IL-22, which act on keratinocytes to amplify
psoriatic inflammation. Nowadays, on the one hand, the
observation that Treg and/or Th17/Treg balance is frequently
dysregulated in psoriatic patients hints at the critical role of
Treg cells in controlling psoriatic inflammation. One possible
mechanism by which the Th17/Treg balance is disturbed in
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psoriatic lesions attributes to the high levels of IL-6. And Tfh
cells, which has been proved to be one of the major sources of IL-
21, are also involve in the pathogenesis of psoriasis. Additionally,
it has been reported that gdT cells, which are the major IL-17-
producing cells in the skin, also play critical roles in psoriasis
pathogenesis. On the other hand, biological agents targeting TNF,
IL-23 and IL-17 have shown promising efficacy during the clinical
treatment of psoriasis, while IL-6 inhibitors, IL-21 inhibitors and
recombinant human IL-10 treatment didn’t attain the results as
expected. Moreover, many clinical trials are ongoing to uncover
new targets in psoriasis. For example, JAK inhibitors paved the
way of inhibiting multiple pro-inflammatory cytokines together
and have shown clinical efficacy in both phase II and III
trials. All these advancements are ascribed to the continuous
exploration of the pathogenesis of psoriasis. However, there
are still some issues that need to be addressed. First, adverse
events cannot be ignored during treatment, which may be
feasibly due to the broad biological effects of these cytokines.
In addition, several limitations, such as the difficulty of effecting
a cure, the need for long-term medication and ease
of recurrence after drug withdrawal, still exist. All this evidence
highlights that our understanding of psoriasis is insufficient,
especially the crosstalk of multiple immune cells and cytokines
in psoriasis, which still needs to be studied in depth. Further
studies should focus on identifying current therapeutic
approaches and novel, efficient targets to help overcome the
adverse effects and limitations.
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84. Thaçi D, Pinter A, Sebastian M, Termeer C, Sticherling M, Gerdes S, et al.
Guselkumab Is Superior to Fumaric Acid Esters in Patients With Moderate-
to-Severe Plaque Psoriasis Who Are Naive to Systemic Treatment: Results
From a Randomized, Active-Comparator-Controlled Phase IIIb Trial
(POLARIS). Br J Dermatol (2020) 183(2):265–75. doi: 10.1111/bjd.18696
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