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Abstract

Background Pediatric hematopoietic stem cell transplan-

tation (HSCT) allows the treatment of numerous diseases,

both malignant and non-malignant. Cyclosporine, a narrow

therapeutic index drug, is the major immunosuppressant

used to prevent graft-versus-host disease (GVHD), but may

also cause severe adverse effects in case of overdosing.

Objective The objective of this study is to predict the

initial cyclosporine residual blood concentration value after

pediatric HSCT, and consequently the dose necessary to

reach the therapeutic range, using a mathematical indi-

vidual predictive model.

Methods Clinical and biological data collected from the

graft infusion for 2 months after transplantation in 155

pediatric patients undergoing HSCT between 2008 and 2016

were used to generate synthetic data for 1000 subjects which

were used to build a Bayesian network model. We compared

the characteristics and sensitivity to clinical or biological

missing data of this model with four other methods.

Results The tree-augmented Naı̈ve Bayesian network

showed the best characteristics, with no missing data (area

under the curve of the receiving operator characteristics

curve [AUC-ROC] of 0.89± 0.02), 18.9± 2.6% of patients

misclassified, and positive and negative predictive values of

85.9± 3.4% and 74.2± 5.1%, respectively, and this trend is

found in the synthetic dataset from no to 10% missing data.

The most relevant variables that could influence whether the

initial residual cyclosporine concentration is in the thera-

peutic range are the last dose before measurement and the

mean dose before measurement.

Conclusions We developed and cross-validated an online

Bayesian network to predict the first cyclosporine con-

centration after pediatric HSCT. This model allows simu-

lation of different dosing regimens, and enables the best

dosing regimen to reach the therapeutic range immediately

after transplantation to be found, minimizing the risk of

adverse effects and GVHD occurrence.

Key Points

Bayesian network as a new approach for therapeutic

targetting.

Individual prediction of first cyclosporine

therapeutic range achievement after pediatric HSCT.

Inclusion of many clinical and biological variables,

including inflammation level through CRP value in a

cycloporine concentration predictive model after

pediatric HSCT.

1 Introduction

Hematopoietic stem cell transplantation (HSCT) allows the

treatment of numerous diseases in both children and adults,

such as hematologic malignancies, non-malignant
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hemopathies, and severe immunodeficiencies [1, 2]. HSCT

became possible in the 1960s, after identification and

typing of the human leukocyte antigen (HLA) [3].

In 2015 in France, 5099 HSCTs were performed in 78

centers, and this number has been constantly growing in the

last ten years (from 4201 HSCTs in 2006) [4]. Immuno-

suppressive drugs including cyclosporine are given to

prevent graft-versus-host disease (GVHD) [5].

Cyclosporine is a drug with narrow therapeutic index:

underdosing may lead to severe GVHD, and overdosing to

toxic events or poor graft-versus-leukemia (GVL) effect

[5–7]. Thus, therapeutic drug monitoring (TDM) is

required and dosage regimens are adapted to reach a target

cyclosporine minimal blood concentration value, chosen

according to patient’s characteristics and disease [6, 8].

Many studies have been published on inter-individual

pharmacokinetic variability of cyclosporine and Bayesian

methods used to optimize dosing regimens. In all cases,

population pharmacokinetic models were built, not indi-

vidual predictive models [5, 6, 8]. To date, no studies have

been conducted to predict the achievement of the thera-

peutic target of the initial cyclosporine blood concentration

after HSCT.

In medicine, many methods have been used to predict

the value of a target variable, for example, logistic

regression in dementia diagnosis [9], Bayesian network

models to understand visual field deterioration [10], sup-

port vector machines (SVM) for cancer detection [11], and

random forest analysis to predict FOLFOX (folinic acid,

fluorouracil, and oxaliplatin) responders in colorectal can-

cer [12]. These new methods seem promising in many

fields, but they have scarcely been explored in dosing

regimen forecasting [13].

In this study, our objective was to predict whether the

initial cyclosporine residual blood concentration after

pediatric HSCT will be in the therapeutic range using a

mathematical individual predictive model.

2 Patients and Methods

The National Committee of Informatics and Liberty

approved the current study.

Clinical and biological data were collected from the day

of graft infusion to 2 months after transplantation in 155

pediatric patients undergoing HSCT both for malignant and

non-malignant diseases between 2008 and 2016. Cyclos-

porine was given via a 2-h infusion twice daily, initially

3 mg/kg for malignant diseases and 5 mg/kg for non-ma-

lignant diseases, starting the day before HSCT. The first

measure of cyclosporine trough concentration was per-

formed on whole blood around the third day after the graft

infusion (D? 3) (varying between day 0 [D0] and the

seventh day after graft infusion [D? 7]; median D? 3;

83.2% of measurements taken on D? 3).

Six patients were excluded from the study as they were

given cyclosporine for several weeks before transplantation

or took it orally. Fourteen relevant variables that could

have possibly influenced cyclosporine concentrations after

the first dose post-transplantation were recorded: death,

sex, weight, post-transplant day, age, mean dose before

measurement, last dose before measurement, HSCT indi-

cation, documented infection or not, drugs interacting with

cyclosporine, cholestasis, C-reactive protein (CRP) above

15 mg/L, mean hemoglobin, and mean creatinine (see

Fig. 1).

All continuous variables were discretized from the lit-

erature (initial concentration after transplant, age, hemo-

globin, creatinine, and CRP) or from machine learning

(other variables such as standard deviations and weight;

Netica software version 5.23 [Norsys Software Corp.,

Vancouver, BC, USA]). The initial cyclosporine residual

concentration after transplant was discretized in or out of

the therapeutic range, according to the graft indication

(malignant or not). The interval retained was 120± 20 mg/

L for malignant disease and 150± 20 mg/L for non-ma-

lignant disease [2]. Age was separated into four classes

(from 0 to 2, 2 to 8, 8 to 14, and[14 years) in accordance

with cytochrome P450 (CYP) 3A4 maturation [14–20].

Hemoglobin was discretized into three classes (\80, from

80 to 110, and[110 g/L) [21]. Serum creatinine was

separated into three classes (high, normal, low) according

to the patient age and sex. Values considered as normal

were 18–26 lmol/L for patients less than 3 years old,

26–44 lmol/L in patients between 4 and 7 years old,

53–71 lmol/L in patients between 8 and 10 years old,

71–80 lmol/L in females 11 years or older, and

80–106 lmol/L in males aged 13 years and older [22].

Plasma CRP values above 15 mg/L signaled inflammation

[23, 24]. Cholestasis was defined by a bilirubin plasma

concentration above 50 lmol/L [25]. The interacting drugs

considered were those that are most used in HSCT: all

proton pump inhibitors (PPIs), macrolide antibiotics (in-

cluding pristinamycine and quinupristine, but excluding

spiramycine), all azole antifungals, and calcium channel

blockers (nicardipine and amlodipine, but not lacidipine)

[26, 27].

To generate synthetic data, we used multiple imputation

models and, more precisely, data augmentation methods

developed by Schafer [28] and Little and Rubin [29]. We

generated a dataset of 1000 virtual subjects from the

available patients’ data (n = 105) with Bayesian multiple

imputation [30, 31]. We also performed Chi-square tests

for categorical variables and t tests for continuous variables

to assess if the synthetic data were representative for our

database. To assess the performance and the robustness of
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the tree-augmented Naı̈ve (TAN) Bayes algorithm, we

compared it to four other methods: logistic regression,

Naı̈ve Bayes, SVM, and random forest. The criteria

retained for comparison were the area under the curve of

the receiving operator characteristics curve (AUC-ROC),

the percentage of incorrect patient classification, the posi-

tive predictive value, and the negative predictive value,

both on training data and after a ten-fold cross-validation.

To test the sensitivity of these methods to missing data,

we created different ranges of randomized missing data in

the synthetic population: 1, 3, 5, 7, 10, 15, and 20%.

The software used for logistic regression, Naı̈ve Bayes

network, SVM, and random forest was Orange (version

3.8.1; https://orange.biolab.si/), whereas RapidMiner (ver-

sion 7.4; RapidMiner, Inc., Boston, MA, USA) was used

for TAN Bayes network.

The final TAN Bayesian network model to predict

whether the initial CsA residual trough blood concentration

after HSCT will be in the therapeutic range was built using

Netica software (version 5.23).

To explore the modalities of use of the online model, we

performed an analysis of sensitivity to our findings to

assess the network ability, as a result of shared information,

to compensate for missing variables such as cyclosporine

residual concentration, mean dose, mean hemoglobin,

mean creatinine, CRP, interacting drugs, cholestasis, doc-

umented infection, and weight (Netica software version

5.23).

3 Results

Of the 155 patients in total, six were excluded as they were

given cyclosporine for several weeks before HSCT or they

took cyclosporine orally. Forty-four patients were also

excluded from the generation of synthetic data due to one

or several missing data at the time of blood sampling for

the initial determination of the cyclosporine residual blood

concentration following HSCT. A final total of 105 patients

without missing data at this time were retained (see Fig. 2).

The characteristics of the 105 patients are summarized in

Table 1.

Of these 105 patients, 37 had initial cyclosporine con-

centration values within the therapeutic interval, and 41

and 27 had sub-therapeutic and over-therapeutic cyclos-

porine residual concentration values, respectively. The

HSCT indication was acute lymphoid leukemia (34%),

inborn error (18%), immune deficiency (16%), severe

aplastic anemia (9%), acute myeloid leukemia (6%), lym-

phoma (6%), myelodysplastic syndrome (6%), severe

hemoglobinopathies (3%), and chronic myeloid leukemia

(2%). Only one patient presented a cholestasis (total

bilirubin over 50 lmol/L) at this time. Thirty-eight patients

took interacting medications: two took azole antifungals,

two macrolides, 32 PPIs, one a calcium channel blocker,

and one both a PPI and a calcium channel blocker. The

youngest patient was 5 months old, the oldest was 21 years

old, and the median age was 7 years.

Fig. 1 Bayesian network model

to predict the ability of the

initial residual blood

concentration of cyclosporine

after hematopoietic stem cell

transplantation to be in the

therapeutic range. CsA

cyclosporine, CYP cytochrome

P450, F female, HSCT

hematopoietic stem cell

transplantation, M male
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3.1 Modelling Procedure

We assessed that the synthetic dataset was representative

for our database by a visual check of the probability den-

sities distribution, and by comparing the variables of

interest (Table 1).

Sensitivity for missing data of the synthetic dataset was

evaluated for the five methods and illustrated with AUC-

ROC evolution after a ten-fold cross-validation. With no

missing data, the TAN Bayesian network was the best

method (AUC-ROC 0.893), and SVM was the worst

(AUC-ROC 0.673) (Table 2). The TAN Bayesian network

was the least robust (AUC-ROC from 0.893 with no

missing data to 0.7 with 20% of missing data, resulting in a

loss of 0.193 points), but presented the best characteristics

since 10% of missing data in the synthetic dataset (AUC-

ROC 0.785, 25.8% incorrectly classified patients, and a

predictive positive value of 0.74).

3.2 Validation of the Predictive Model

The final predictive model for the ability of the initial

cyclosporine trough blood concentration after HSCT to be

in the therapeutic range, after a tenfold cross-validation,

presented good validation characteristics with an AUC-

ROC of 0.89± 0.02 (see Fig. 3), 18.9± 2.6% of incor-

rectly classified patients, a positive predictive value of

85.9± 3.4% and a negative predictive value of

74.2± 5.1%.

3.3 Sensitivity to Missing Data of the Final Tree-

Augmented Naı̈ve (TAN) Bayesian Network

The results of the analysis of sensitivity to findings that was

performed on the synthetic population are shown in Fig. 4.

The most relevant variables that could influence whether

the initial residual blood cyclosporine concentration was in

the therapeutic range were the last dose before measure-

ment, the mean dose before measurement, and the day of

blood sampling after HSCT. Some variables were required

for the prediction and could not be derived from other ones.

This was especially the case for interacting drugs, mean

hemoglobin, and mean creatinine, whereas a missing

weight could adequately be replaced by information on the

last administered dose, mean dose before measurement,

age versus CYP3A4 maturation, mean hemoglobin, and

mean creatinine versus age category.

The final model can be found at https://www.hed.cc/?s=

HSCTCsApredictor&t=HSCT CsA predictor.

4 Discussion

In our pediatric population undergoing HSCT who were

receiving cyclosporine to prevent GVHD, TAN Bayesian

network was the best method to predict whether the initial

cyclosporine concentration after HSCT will be in the

therapeutic range. The therapeutic range of the cyclospor-

ine blood concentration rather than cyclosporine blood

Fig. 2 Flow chart. CsA

cyclosporine, HSCT

hematopoietic stem cell

transplantation
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concentration itself was chosen as the endpoint because it

seemed the most clinically relevant and simplest to handle

for clinicians while using an online Bayesian network. This

tool will allow them to find the best cyclosporine dosing

regimen to reach the therapeutic interval right after trans-

plantation, using a simple method, provided that further

external validation is satisfactory.

Table 1 Population characteristics at initial time blood sampling for cyclosporine residual concentration after hematopoietic stem cell

transplantation

Variable Available patients

(n = 105)

Virtual subjects

(n = 1000)

Chi-square test

(a = 0.05)

t test

(a = 0.05)

Sex (%)

Male 63.8 61.2 NS

Female 36.2 38.8 NS

Age (years)

0–2 15.2 15.9 NS

2–8 37.1 37.1 NS

8–14 25.7 26.7 NS

[14 21.9 20.3 NS

Weight (kg) 30.1± 19 29.5± 19 NS

Initial CsA residual trough blood concentration after HSCT (%)

Within therapeutic interval 35.2 36.6 NS

Out of therapeutic interval 64.8 63.4 NS

HSCT indication (%)

Malignant 56.2 58.2 NS

Non-malignant 43.8 41.8 NS

Mean hemoglobin (g/L)

\80 9.5 9.2 NS

80–110 71.4 71.4 NS

[110 19.1 19.4 NS

Mean creatinine versus age category (lmol/L)

Low 54.3 52.3 NS

Normal 31.4 32.7 NS

High 14.3 15 NS

CRP[15 mg/L (%)

Yes 48.6 48.5 NS

No 51.4 51.5 NS

Mean dose before measurement

(mg)

56.9± 37 56± 36 NS

Last dose before measurement (mg) 63.9± 39 63.2± 39 NS

Cholestasis (%)

Yes 0.9 0.6 NS

No 99.1 99.4 NS

Interacting drug (%)

Yes 36.2 37.7 NS

No 63.8 62.3 NS

Documented infection (%)

Yes 45.7 48 NS

No 53.3 52 NS

Death (%)

Yes 2.9 2.4 NS

No 97.1 97.6 NS

CRP C-reactive protein, CsA cyclosporine, HSCT hematopoietic stem cell transplantation, NS not significant
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Table 2 Characteristics of the five methods with no missing data after ten-fold cross-validation

Logistic regression Naı̈ve Bayes Tree-augmented Naı̈ve Bayes Support vector machines Random forest

AUC-ROC 0.84 0.78 0.89 0.67 0.85

% incorrect classification 23.6 28.5 18.9 32.1 23.2

Positive predictive value 0.70 0.64 0.86 0.55 0.70

Negative predictive value 0.79 0.75 0.74 0.78 0.80

AUC-ROC area under the curve of the receiving operator characteristics curve

Fig. 3 Receiving operator

characteristics curve of the final

Bayesian network

Fig. 4 Relative percentage of

missing information

compensated by the final

network. CRP C-reactive

protein, CsA cyclosporine,

HSCT hematopoietic stem cell

transplantation
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Many classification and prediction methods are used in

medicine, and we chose to limit our study to five that are

widely used: one parametric (logistic regression) and four

non-parametric (Naı̈ve Bayesian network, TAN Bayesian

network, SVM, and random forest).

Belief networks are directed acyclic graphs that repre-

sent a probabilistic structure. There is a direct relationship

between the graphical model and a particular probability

distribution form. They consist of vertices (or nodes) and

directed edges (arrows). Each edge points from one node

(called the parent node) to another node (the child node). In

a belief network each node is used to represent a random

variable, and each directed edge represents an immediate

dependence or direct influence. We used a learning algo-

rithm to create a TAN Bayes graph structure in which a

single-class variable has no parents and all other variables

have the class as a parent and at most one other attribute as

a parent. The probability tables are filled out using

Expectation Maximization, as previously described in

Sansot et al. [13].

Logistic regression, a widely used method in biology and

medicine, allows the association between several variables

to be quantified by estimating a probability. This technique

takes confounding factors into account but requires the

measures to be of good quality and may be disturbed by

interactions between variables. It also cannot deal with

missing data relating to continuous variables [32, 33].

SVM are learning algorithms with the ability to separate

several variables into classes, with an optimal hyper-plane

maximizing the margin. SVM are well-suited to work

involving high dimensional data, and have robust perfor-

mances when dealing with sparse and noisy data [34].

Random forest is a method based on the generation of

multiple trees by bootstrapping. For each node of each tree,

the best predictor is chosen. The final result given by

random forest is the mean of all the individual trees [35].

To compare these methods, we had to ensure optimal

conditions that avoided variance homogeneity issues, lack

of statistical power, and sensitivity towards missing data,

which can influence parametric methods. That is why an

approach based on synthetic data was preferred. After

cross-validation, TAN Bayesian network was the best

method according to the comparison of the AUC-ROC

curves and its very good positive predictive value.

Moreover, the synthetic data approach allowed us to test

the influence of missing data, taking of statistical power

issues into account. The trend in which TAN Bayesian

network is the best method was also verified even in the

context of 10% missing data.

Our approach testing the sensitivity of our method with

regards to missing data seems very important as data in

clinical practice are often incomplete because of real-life

conditions.

The TAN Bayesian network, in addition to its other

positive characteristics, is also easier to use and understand

by clinicians than other methods such as random forest.

Indeed, its representation as a directed acyclic graph allows

a quick and simple answer to a question, which is consis-

tent with what is required in clinical practice.

The final TAN Bayesian network shows, as it did in the

simulation approach, good validation characteristics.

This model is intended to be online, and thus it has to

respond to two major concerns: sensitivity for missing data

and external validation. The sensitivity analysis performed

informs us on the importance of the information provided

by some variables to the network.

Information on variables which cannot be compensated

for by other variables has to be filled in the online network;

these indispensable variables will be listed in the user

manual of the online model. This model seems very

interesting for clinicians as it would allow them to predict

whether patients will reach the therapeutic range of con-

centrations immediately after HSCT or not, and conse-

quently a priori change the cyclosporine dose regimen.

However, an external multicentric validation is warranted

for this model before its use in clinical practice.

Over the past 50 years HSCT has been a huge progress

in medicine, and consequently TDM of immunosuppres-

sants became a great concern. As cyclosporine is the main

immunosuppressant used after HSCT, many researchers

have worked on the link between the concentration of

cyclosporine and the onset of GVHD [36–39]. Malard et al.

[39] have shown that trough blood cyclosporine concen-

trations during the first week after HSCT were correlated

with the onset of grade III–IV acute GVHD, but no

increase in overall survival was found. However, in this

study, the cyclosporine target concentrations were high,

inhibiting a possible GVL effect, and exposing patients to

cyclosporine adverse effects [39]. Martin et al. [2] also

found this trend in a pediatric population. In this way, our

model could be useful, allowing the therapeutic interval to

be reached early after HSCT, and it could be evaluated for

its use in improving the onset of moderate acute GVHD in

malignant diseases (optimizing the GVL effect) or

decreasing the rate of severe GVHD in non-malignant

diseases.

The first studies only took into account the serum cre-

atinine and the trough blood cyclosporine concentration

when adapting the cyclosporine dosing regimen [37, 38],

but complex models taking into account many covariates

such as hemoglobin, hematocrit, hepatic functions (through

bilirubin, alanine aminotransferase [ALAT], aspartate

aminotransferase [ASAT], albumin), and creatinine have

been developed in more recent years [40]. However, to

date, our model is the first to include so many variables at

the same time to predict the achievement of the
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cyclosporine therapeutic index soon after HSCT. More-

over, the role of inflammation on cytochromes, notably

CYP3A4, and subsequent inhibition of metabolism of

drugs such as cyclosporine is well-known [41]. Inflam-

matory episodes are frequently associated with HSCT, for

example post-transplant infections. Consequently, the

inclusion of inflammation parameters in the model is rel-

evant. Nevertheless, our study is the first to take some of

these parameters into account.

4.1 Limitations

It should be noted that some other variables may influence

cyclosporine trough blood concentrations, but these are not

available nor considered in clinical practice, and thus this

model does not include them.

Cyclosporine trough blood concentrations present a high

inter- and intra-individual variability and their evolution

over the treatment period is a complex phenomenon. The

possibility to consider many variables at the same time

means that there is real hope that Bayesian networks will

aid establishment of useful models for clinicians.

This model is interesting but it concerns only the initial

cyclosporine concentration after pediatric HSCT. External

validation on another cohort of patients will be necessary

before it can be used in clinical practice.

Another limitation is the therapeutic range of cyclos-

porine considered in our study. Indeed, therapeutic

cyclosporine blood concentration target ranges have been

set only according to the graft indication, since the con-

centration of interest was the first one after transplantation.

If a longer period after HSCT is considered, occurrence of

GVHD and other target cyclosporine concentration values

will have to be taken into account. Moreover, Jacobson

et al. [42] have shown that the number of days post-

transplant influences cyclosporine pharmacokinetics,

which is why it would probably be interesting to develop a

model covering a larger duration after HSCT in order to

take into account the intra-individual variability of

cyclosporine pharmacokinetics.

5 Conclusion

In this study we have developed and validated an online

Bayesian network to assess the ability of the initial

cyclosporine blood concentration to be in the therapeutic

interval after pediatric HSCT. This model allows the sim-

ulation of different dosing regimens, finding the best to

enable the right cyclosporine residual concentration to be

reached immediately after transplantation, minimizing the

risk of adverse effects and GVHD occurrence. The char-

acteristics of this model are satisfactory but external

multicentric validation is needed before its use in clinical

practice.
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