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ABSTRACT: Molecular dynamics (MD) simulations based on coarse-
grained (CG) particle models of molecular liquids generally predict
accelerated dynamics and misrepresent the time scales for molecular
vibrations and diffusive motions. The parametrization of Generalized
Langevin Equation (GLE) thermostats based on the microscopic
dynamics of the fine-grained model provides a promising route to
address this issue, in conjunction with the conservative interactions of
the CG model obtained with standard coarse graining methods, such as
iterative Boltzmann inversion, force matching, or relative entropy
minimization. We report the application of a recently introduced
bottom-up dynamic coarse graining method, based on the Mori−
Zwanzig formalism, which provides accurate estimates of isotropic GLE
memory kernels for several CG models of liquid water. We demonstrate that, with an additional iterative optimization of the memory
kernels (IOMK) for the CG water models based on a practical iterative optimization technique, the velocity autocorrelation function
of liquid water can be represented very accurately within a few iterations. By considering the distinct Van Hove function, we
demonstrate that, with the presented methods, an accurate representation of structural relaxation can be achieved. We consider
several distinct CG potentials to study how the choice of the CG potential affects the performance of bottom-up informed and
iteratively optimized models.

■ INTRODUCTION
In the field of molecular simulations, methods that involve
systematic coarse-graining in space, i.e., structural coarse
graining, are well-established.1−4 The quality of the coarse-
grained (CG) models obtained by these methods depends on
how well they represent the multibody potential of the mean
force (MB-PMF) of the parent fine-grained (FG), often all-
atom (AA), model mapped in terms of the CG coordinates/
degrees of freedom (DoFs). Over the past two decades,
significant progress has been made in the development of
representative models for soft matter systems, opening up
possibilities for computer simulations at increasingly large
length scales and corresponding time scales.

Despite the progress made, molecular dynamics (MD)
simulations with CG models generally overestimate the
dynamic properties of the systems of interest.5−9 This occurs
because conservative interactions become ”softer” upon coarse
graining and (free) energy landscapes become smoother. While
this is beneficial for equilibration purposes and studies of
stationary structural properties, it often leads to a misrepre-
sentation of the characteristic time scales and the kinetic
properties that depend on them.

To overcome this shortcoming, methods for coarse graining
in time have been explored by different groups.10−27

Conceptually, the coarse graining of a FG model with time
reversible dynamics invariably leads to a CG model with time-

irreversible stochastic dynamics, which often includes memory.
The corresponding equation of motion (EoM) most
commonly takes the form of a non-Markovian generalized
Langevin equation (GLE) and is often motivated by the
Mori−Zwanzig theory.28

While, in principle, the Mori−Zwanzig theory allows one to
derive exact CG EoMs for an arbitrary choice of CG DoFs, its
derivation and exact parametrization in the context of CG MD
is often not feasible. Different approximations must be
employed to derive feasible CG models. A common approach
is to assume separation of time scales between FG and CG
DoFs, which allows one to render non-Markovian GLEs
Markovian. This assumption allows one to motivate the
parametrization of, e.g., Markovian Langevin11,14 or dissipative
particle dynamics (DPD) thermostats.13,17,18,29,30 These types
of Markovian dissipative models have been successfully applied
to improve the diffusive dynamics in CG models in both
generic systems13,14,31 and realistic, chemically specific
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systems.11,17,18,29,30 The Markovian approach has the advant-
age that the CG EoM is comparably inexpensive to evaluate
but it cannot represent the dynamics on all time scales if the
Markovian approximation is not well-justified.

To achieve consistency on all time scales, memory effects
must be introduced.7 In several studies, non-Markovian GLEs
have been used as the target CG EoM. The parametrization
strategies used therein were developed and tested on generic
models such as star-polymer melts with purely repulsive
interactions,15,19,25,32 or on Lennard-Jones fluids.16,21,22

If the aim is to retain a high degree of detail in the physical
description, memory effects can be encoded in configuration-
dependent memory kernels15,16,22,32 for example, by employing
non-Markovian DPD (NM-DPD) models.15,22,32 Both the
parametrization and numerical simulation of such models are
quite involved and computationally costly. This is particuarly
unfeasible if the degree of coarse graining is kept moderate, as
in the current work.

More-feasible, less-detailed non-Markovian modeling ap-
proaches have been proposed. A noteworthy example, not
explicitly based on a GLE, which allows one to mimic non-
Markovian friction in CG models, is the dynamic force
matching technique.26,27 Herein, the friction and memory lost
upon coarse-graining is reintroduced in CG models by
coupling fictitious Brownian particles to the CG DoFs via a
harmonic potential. This strategy has been applied in CG
models of liquid methanol and would, in principle, be
applicable to the system studied in the current work. Still, in
the original publication, a quantitative agreement with the fine-
grained reference simulations could not be achieved.26,27

The approach we focus on in the current work is based on
parametrizing a non-Markovian, isotropic, and configuration-
independent GLE thermostat, in combination with a CG
potential obtained with one of the established structural
coarse-graining methods.19,20,25

The corresponding EoM reads as follows:

F F P Ft t s K t s s t( ) ( ) d ( ) ( ) ( )I I
C

t

I I
R

0
= +

(1)

in which FI(t), FI
C(t), F̃I

R(t), and PI(t) are, respectively, the
total force, the force due to conservative interactions, the
random force, and the momentum of a CG particle I. The
integral term, involving the memory kernel K̃(t), represents a
non-Markovian, dissipative force. To achieve canonical
sampling at a constant temperature, the random force and
the memory kernel must fulfill the fluctuation dissipation
theorem,

F Ft M k TK t( ) (0) 3 ( )I
R

I
R

I B= (2)

in which MI, kB, and T are, respectively, the CG bead mass, the
Boltzmann constant, and the temperature.

This application of eq 1 allows one to introduce memory
effects in CG simulations while being computationally less
expensive than, for example, NM-DPD. In several studies, eq 1
has been used as target CG EoM. The used parametrization
strategies were developed and tested on generic models such as
star-polymer melts with purely repulsive interactions,19,25 or on
Lennard-Jones fluids.20,21 An exact parametrization of eq 1 in a
purely bottom-up approach is not generally possible and some
system-dependent deviations from the FG reference have to be
expected.20,33 We recently demonstrated that these deviations
can be kept small, with a judicious choice of K̃(t) (described
below) parametrized in combination with a structural CG

model, which closely represents the FG MB-PMF.20 Generally,
but, in particular, in systems with more-complicated directional
interactions (e.g., hydrogen bonding), we however expect that
this approach leads to larger discrepancies, in comparison with
the generic models studied so far.

In this paper, we, for the first time, apply the dynamic
coarse-graining strategies described in refs 19 and 20 to a
realistic molecular system. As a FG reference, we consider the
SPC/E water model, using a single-site center-of-mass
mapping scheme. The coarse graining of molecular water is a
prominent test case in the development of structural coarse-
graining methods.34−40 Also, in dynamic coarse-graining,
single-site CG models of water have been considered as a
test case for Markovian dissipative models.23,29,41,42

The coarse graining of water is a challenging task, because
the many-body correlations present in liquid water due to
strongly directed hydrogen bonds complicate an accurate
description of the MB-PMF based on simple pair potentials,37

and the implications of the choice of the CG potential on
dynamic properties are not assessable a priori.

We will examine the accuracy of the memory kernel
parametrized with the approach described in ref 19 and with
improvements thereof achieved by iteratively optimizing the
memory kernel.20 Jung et al. proposed an iterative optimization
scheme for memory kernels with the velocity autocorrelation
function (VACF) as the target (iterative memory reconstruc-
tion from VACF (IMRV)).16,43 While, in principle, applicable
to the current task, the IMRV method can suffer from the need
for many iterations or instabilities if the step size of the
optimization scheme is not well tuned. In ref 20, we proposed
three novel iterative optimization schemes in which the
integrated single-particle memory kernel, G(t) = ∫ 0

t dsK(s)
(see eq 3 below), was used as a target. In this paper, we apply
the most promising of these schemes, which we now refer to as
iterative optimization of memory kernels (IOMK). We also
compare the performance of this scheme to the IMRV method.

While the VACF is the most prominent measure to assess
dynamic consistency in CG models over different time scales,
it ultimately is a descriptor for the dynamics of single particles
and neglects details on collective behavior. The target model
given by eq 1 introduces independent friction and noise for
every DoF. This approach by construction can only be
approximate20,33 and, thus, it is not evident a priori if collective
behavior can be correctly modeled.

This is why we also study the distinct Van Hove function
(VHF), which is a measure for the relaxation of pair-structure
and is accessible through experiments by, e.g., inelastic X-ray
scattering experiments.44−48 Iwashita et al.44 and Matsumoto
et al.48 concluded that classical MD water models as SPC/E
qualitatively reproduce the pair-structure relaxation in space
and time quite well. This makes the SPC/E model a good
reference target and a CG water model reproducing the VHF
of SPC/E water accurately will simultaneously keep a close link
to the dynamics of real water.

To further the understanding of the relevance of the choice
of the CG potential on the dynamic properties of CG GLE
models based on eq 1, we study four different CG potentials.
We consider two two-body potentials derived based on force-
matching49 (FM) and iterative Boltzmann inversion50 (IBI).
We also consider two models which include three-body
interactions, to more accurately represent the tetrahedral
structure of water. These models are based on the Stillinger−
Weber (SW) potential.51 We consider the bottom-up derived
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SW model based on the relative entropy52 method (SW-RE)53

and a bottom-up derived SW model based on the FM method
(SW-FM).37

■ THEORETICAL BACKGROUND
Memory Kernels in the Single-Particle Representa-

tion. Before we introduce the parametrization schemes for the
memory kernel in eq 1, it is instructive to first consider an
(numerically) exactly solvable case. The Mori−Zwanzig
theory, by applying a linear projection operator, allows one
to derive an exact CG EoM for a single freely diffusing particle
from Hamiltonian dynamics, which takes the form of the
following GLE:7,28,54

F P Ft s K t s s t( ) d ( ) ( ) ( )I

t

I I
0

= +
(3)

In eq 3, K(t) = F Ft
M k T
( ) (0)

3
I I

I B
denotes the single-particle

memory kernel describing the dynamics of a CG DoF from an
all-atom (AA) reference. The -projected force F t( )I has an
exact relationship to the microscopic dynamics. We will not
reiterate the derivation and refer the interested reader to the
well-established literature on that topic.28,54,55

For our purpose, the relevant property of the -projected
forces is its orthogonality (its statistical independence) to the
relevant CG DoF, which is the momentum PI(0) of a particle I,
which can be expressed as

F Pt( ) (0) 0I I = (4)

This allows one to derive the relationships between the
memory kernel K(t), which is related to the orthogonal
dynamics, and readily accessible time-correlation functions,
which can be expressed in a Volterra equation of the form

C t s M K t s C s( ) d ( ) ( )
t

IFV
0

VV=
(5)

where we defined the VACF CVV(t) = ⟨VI(t)VI(0)⟩/3 and the
force−velocity autocorrelation function CFV(t) = ⟨FI(t)VI(0)⟩/
3.

Equation 5 establishes the connection between the single-
particle memory kernel K(t) and all single-particle time-
correlation functions. For example, K(t) is related to the long-
time diffusion coefficient D via

D
k T
MI

B=
(6)

where

G tlim ( )
t

=
(7)

with G(t) = ∫ 0
t dsK(s). The integrated memory kernel G(t) can

also be uniquely related to the VACF, by integration of eq 5,
which yields

C t C s G t s C s( ) (0) d ( ) ( )
t

VV VV
0

VV=
(8)

Equation 8 can be numerically inverted56 to determine G(t)
directly from a measured VACF.
Memory and Friction due to Conservative Interac-

tions in Many-Body Coarse-Grained Simulations. In the
previous section, we discussed how the single-particle memory
kernel can be evaluated from Hamiltonian reference

simulations. In CG GLE models, following eq 1, the total
memory and friction exerted on some tagged particle I consists
of the memory explicitly introduced through the GLE-
thermostat (K̃(t)) and an additional contribution due to the
effective particle−particle interaction, as implicitly introduced
due to the conservative interactions FI

C(t). The memory kernel
due to conservative interactions (ΔKCG(t)) can be evaluated
from CG simulations through a relationship analogous to eq 8,
which reads20

C t s M K t s C s( ) d ( ) ( )F V

t

I
CG

0

CG
VV
CG

C =
(9)

Here, we define the conservative force−velocity correlation
function CFCV

CG = ⟨FI
C(t)VI(0)⟩/3. We use the superscript CG to

denote correlation functions from CG simulations. The explicit
evaluation of ΔKCG(t) from eq 9 is not needed in the
application of the proposed CG schemes, but it allows to
numerically test the validity of certain assumptions made in the
following sections.
Parameterizing Generalized Langevin Thermostats

from -Projected Correlation Functions. In our previous
work,19,20 we used the backward orthogonal dynamics (BOD)
method proposed by Carof et al.57 to compute the memory
kernel in eq 1 from -projected force−force time correlation
functions. As discussed in ref 19., this approach should yield
the best results when the conservative CG potential (which
gives rise to FI

C(t) in eq 1) accurately represents the MB-PMF,
even though the target EoM eq 1 by itself comes with
limitations.20,33 The idea behind the parametrization scheme is
the following: in eq 1 the overall dynamics of particle I is
governed by two contributions, the friction and memory
induced by the interaction with other particles encoded in
FI
C(t) and the friction and memory explicitly included through

K̃(t). The dynamics of a diffusive DoF in CG simulations can
always be mapped onto a simple single-particle GLE of the
form

F P Ft s K t s s t( ) d ( ) ( ) ( )I

t

I I
R

0

CG= +
(10)

where, with KCG(t), we denote the effective single-particle
memory kernel of a particle following the CG EoM (eq 1). In
KCG(t), both K̃(t) and the additional contribution through
FI
C(t) are included, which we denote as ΔKCG(t), so we can

write

K t K t K t( ) ( ) ( )CG CG= + (11)

The relevant conclusion from this discussion is that the
many-body EoM given by eq 1 will yield the same single-
particle time correlation functions, for example, the VACF, if,
and only if, the effective single-particle memory kernel from
the CG simulation (KCG(t)) and the single-particle memory
kernel from the AA reference (K(t)) coincide. To be able to
optimally parametrize K̃(t) in a purely bottom-up way, a good
a priori estimate of ΔKCG(t) is needed. Here, we employ a
strategy often used in bottom-up dynamic coarse grain-
ing.11,14,18−22,30−32,58 That is, we first derive CG conservative
interactions determining FI

C(t) and governing the equilibrium
structure in CG simulations, and split the total forces FI(t) in a
mapped AA reference simulation into the CG conservative
force FI

C(t) and a residual force δFI(t), such that

F F Ft t t( ) ( ) ( )I I
C

I= + (12)
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The BOD method allows one to directly evaluate K(t) based
on a mapped rerun of a AA simulation, but also to split the
memory kernel into different contributions. Based on the
splitting of forces in eq 12, the memory kernel can then be
separated according to

K t K t K t K t( ) ( ) ( ) 2 ( )C X= + + (13)

in which the three kernels on the right-hand side are defined as
KC(t) = F Ft( ) (0)I

C
I
C, , , Kδ(t) = F Ft( ) (0)I I , and

KX(t) = F Ft( ) (0)I
C

I
, with α = (3MIkBT)−1.

In the AA reference, KC(t) is related to the conservative
forces, which suggests the approximate relation

K t K t( ) ( )C
CG (14)

implying

K t K t K t( ) ( ) 2 ( )X+ (15)

as an optimal a priori choice for the parametrization of eq 1.
Since this procedure relies on the analysis of mapped AA
trajectories, the implicit assumption, of course, is that the CG
model samples the same configurations as the mapped
reference model, as the fluctuations of FI

C(t) are both related
to KC(t) and ΔKCG(t). A sampling of different configurations
in the CG model and the mapped AA reference will introduce
errors. To some extent, this is a limitation that applies to all
bottom-up derived dynamic CG models.
Iterative Optimization of Memory Kernels (IOMK). It

is generally a nontrivial task to parametrize eq 1 such that the
VACF is reproduced on all time scales. Different iterative
optimization schemes to achieve an accurate representation of
the VACF have been proposed in the literature.16,25,43 We
recently proposed three optimization schemes that use the
integrated effective single-particle memory kernel Gtgt(t) =
G(t) = ∫ 0

t dsK(s) as the target function.20Gtgt(t) can be easily
obtained from the VACF (eq 8) of the mapped AA reference
simulation and accordingly Gi

CG(t) for every iteration can be
derived from the VACF of the ith iteration. Considering that
the effective integrated memory kernel for any iteration
(Gi

CG(t)) is composed of the contribution from the GLE
thermostat (G̃i(t)) and some residual friction due to the
conservative interactions (ΔGi

CG(t)) suggests that one account
for any deviations from the target by a corresponding change
in G̃i(t).

20 While this ansatz is applicable in principle,20 it
assumes that ΔGi

CG(t) is independent of the parametrization of
the GLE thermostat. This is generally not the case, as the
thermostat affects the relaxation of CG particle configurations
and, thus, indirectly affects the relaxation of the conservative
interactions, which can lead to oscillatory behavior or slow
convergence in naive approaches for optimizing the memory
kernel.20 This is why we proposed a more promising iterative
optimization scheme20 which previously has shown to be both
quite stable and fastly converging.20 For the justification of this
scheme (to which we will now refer to as iterative optimization
of memory kernels (IOMK)), the dependence of ΔGCG(t) on
the parametrization of the thermostat must be established. We
will demonstrate by a numerical experiment that the linear
relation

G t a t b t G t( ) ( ) ( ) ( )i i
CG + (16)

is a reasonable ansatz. Note that, in eq 16, the parameters a(t)
and b(t) are functions of time. In this approximation, a(t) is
given by the integrated memory kernel from standard CG-MD

simulation and must be predetermined. From eq 16, the
following update scheme can be derived:20

G t
G t a t
G t a t

G t( )
( ) ( )
( ) ( )

( )i
i

i1

tgt

CG=+
(17)

Equation 17 can be understood as a quasi-Newton method
using an approximate Jacobian. We provide a derivation and
analysis of eq 17, in terms of a quasi-Newton method in the
Supporting Information (SI). If eq 16 were exact, the IOMK
method would be an exact Newton method applied to a linear
problem and thus converge within a single step, even when a
significant fraction of the total friction is due to conservative
interactions. The interplay of the thermostat parametrization
and the friction due to conservative interactions might
generally be more complex in more-complicated systems and
is also complicated through the application to non-Markovian
thermostats. This makes it crucial to evaluate the applicability
of the IOMK method to different systems and in particular to
compare it to other proposed methods.

This is why we also study an alternative approach, proposed
by Jung et al.,43 and called IMRV, which is analogous to the
IBI method in structural coarse graining, and utilizes the VACF
directly as target property. The IMRV method was originally
proposed for the reconstruction of single-particle memory
kernels,43 instead for the parametrization of multiparticle
models. In a later study, Jung et al. observed that the original
IMRV method has a tendency to be unstable for multiparticle
models with conservative pair potentials16 and proposed an
improved version. In the following, we will refer to the original
version as “IMRV-1” and to the improved version as “IMRV-
2”. Technical details on the IMRV method are described in the
section on computational details. From a practical point of
view, the main difference between the IOMK method and the
IMRV methods is that the IMRV methods rely on hyper-
parameters to stabilize the optimization procedure and for
which the optimal values are not known a priori. To achieve
good results, these parameters must be manually predeter-
mined. In the IOMK method, a(t) must be predetermined, but
since a(t) has a clear physical interpretation, it can be
unambiguously fixed from a single inexpensive CG simulation
by utilizing eq 8.

■ RESULTS AND DISCUSSION
Dynamics of the Bottom-up Parametrized IBI Model.

To test the capability of the bottom-up scheme based on the
BOD method, we start by considering the IBI water model.
Figure 1 shows the VACF of the CG GLE thermostat
simulations, parametrized with K̃(t) (eq 15), in comparison to
the reference AA and the standard CG-MD simulations. As
one would expect, the CG-MD VACF decays much slower
than the AA VACF, indicating the expected increased
diffusivity. Applying a GLE thermostat with K̃(t) leads to a
considerable improvement in the representation of the VACF.
In particular, the initial decay is perfectly matched. Also, the
first local minimum and maximum is qualitatively well
represented. The AA VACF exhibits a broad local well,
between ∼200 and 300 fs. This region cannot be fully captured
by the GLE model. Overall, this leads to a residual
overestimation of the diffusivity in the GLE model.

The main assumption of the applied parametrization scheme
lies in eq 14. In the inset of Figure 1, we show that KC(t) from
the reference model and ΔKCG(t) from the CG GLE
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simulation indeed coincide very well on short time scales, but
KC(t) exhibits a long positive tail, which is not captured by
ΔKCG(t). This explains the residual deviations in the VACF on
longer time scales. If eq 14 would strictly hold, the target
VACF would trivially match exactly. Still, combined with the
results of earlier studies,19,20 the overall well match between
KC(t) and ΔKCG(t) underscores the general soundness of the
applied approach, at least as an a priori approximation.

The origin of the residual deviations can generally be 2-fold.
First, at t = 0, both KC(t) and ΔKCG(t) are proportional to the
variance of the CG conservative forces acting upon a CG DoF.
This variance is determined by the CG potential and the
sampled configurations. As the same CG potential in
determining KC(t) and ΔKCG(t) is used, deviations at t = 0
can only arise due to deviations in the static structure between
the AA reference and the CG model. Second, on long time
scales, the EoM given by eq 1 poses inherent limitations, as the
noise and friction on any CG DoF is modeled independently.
In reality, the CG DoFs exchange momentum via the neglected
DoFs, which cannot be captured in terms of eq 1. This, in turn,
can affect the structural relaxation, which respectively induces
deviations in ΔKCG(t). Any deviation at times t > 0 cannot be
exactly assigned to one of the two mechanisms, except for well-
controlled model systems.20

Still, despite these limitations, we find that this approach
yields good results in conjunction with the IBI potential,
without additional optimization of the parametrization.
Dynamics of the Iteratively Optimized IBI Model.

Residual deviations of CG models from the AA reference due
to the inherent approximations of the pure bottom-up
approach can be reduced by iterative optimization of the
parametrization of the GLE thermostat. Here, we apply the
iterative optimization schemes (IOMK, IMRV-1, and IMRV-2)
to optimize the parametrization of the memory kernel for the
IBI model. But first, to justify the IOMK method given by eq
17, we will demonstrate the validity of the assumption given by
eq 16. To do so, we performed CG simulations using the IBI
potential by applying a Markovian Langevin thermostat with
varying friction coefficients (γlang). By evaluating the integrated
memory added through conservative interactions (ΔGCG(t) =
∫ 0

t ds ΔKCG(s)), eq 16 can be tested.
In Figure 2, we show the result of this analysis. We find that

the friction due to conservative interactions does span over a

full order of magnitude for the tested values of γlang. The
relationship between ΔGCG(t = 10 ps) and γlang is found to be
well-described by the linear fit

G t a b( 10 ps)CG
lang= + (18)

where a can be interpreted as the single-particle friction
coefficient in standard CG-MD simulations in the absence of a
Langevin thermostat and b encodes the dependence of the
friction due to conservative interactions on the friction
coefficient applied through the thermostat. For the IOMK
method, we extrapolate this finding to eq 16, assuming that the
linear relation holds true on all time scales.

In Figure 3, we compare the results of the three iterative
schemes, while starting from G̃0(t) = G̃(t) = ∫ 0

t dsK̃(s) as an
initial guess. We first note that the IMRV-1 method does not
yield any significant improvement in the representation of the
VACF, while the IMRV-2 method allows one to achieve good
results. This is consistent with the findings in the original
publication.16 The IOMK method yields satisfying results
within 2−3 iterations, while the IMRV-2 method requires
∼30−40 iterations to match the target.

This indicates that the IOMK method converges fast,
compared to the IMRV-2 method. To further test the
reliability of the IOMK method, we also applied two different
initial guesses: G̃0(t) = ∫ 0

t dsCδF δF(s)/kBT and G̃0(t) = 0.1 ∫ 0
t

dsCδF δF(s)/kBT. These data are presented in Figures S13 and
S14 in the SI. In the former case, the initial guess slightly
overestimates optimal friction, yielding too slow dynamics.
Herein, the IOMK method converges within 3−4 iterations,
while the IMRV-2 method requires ten times more iterations.
In the latter case, the initial guess strongly underestimates the
optimal friction, yielding too fast dynamics. Here, the IOMK
method also converges within 3−4 steps, while the IMRV-2
method again requires ten times more iterations. For the
presented system, the IOMK method is shown to be very
stable and fast-converging, independent of the initial guess for
the memory kernel.
Structural Relaxation: The Distinct Van Hove

Function. Both the bottom-up parametrization approach
and the IOMK method are motivated by the goal to match
dynamic properties of single particles. No information on
multibody correlations are considered in the parametrization of
the memory kernels. Thus, it is not a priori clear inhowfar
collective dynamic properties involving multiple particles can
be captured by applying independent thermostatting to every
CG DoF, as, e.g., interparticle correlations can be altered due

Figure 1. VACFs of the IBI water model, parametrized with K̃(t) (eq
15) calculated based on the BOD method, compared to the AA
reference. For comparison we also show the result of nondissipative
CG-MD simulations. Inset shows the memory kernel contribution
KC(t) from the reference simulation compared to the memory due to
conservative interactions (ΔKCG(t)) in CG GLE simulations
parametrized with K̃(t).

Figure 2. Friction introduced by conservative interactions in NVT
simulations using a Langevin thermostat, as a function of the applied
friction coefficient. The data shown are based on simulations of the
IBI model. An almost-perfect linear dependence is found, which is
emphasized by the linear fit, shown as a black dotted line.
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to the independent thermostatting of every DoF.20 In this
section, we want to study the collective dynamics of the CG
systems by evaluating the distinct VHF,

R Rg R t
NR

R t( , )
1

4
( (0) ( ) )

I

N

J I

N

I J2= | |

(19)

In Figure 4, we compare the distinct VHF of the IBI water
model with standard CG-MD, the GLE with K̃(t) and the GLE
optimized using the IOMK method. In CG-MD simulations
without a GLE thermostat, structural correlations relax faster
than in the AA reference. Especially in the short distance
region, the value of the VHF increases too fast, which is
expected, since, with an increased diffusivity, a particle can be
more readily displaced and, consequently, be replaced by its
neighbors. Additionally, we also find that the pair structure,
especially the first peak, relaxes faster than in the AA reference.
By introducing friction through the GLE thermostat, the
structural relaxation is slowed and the pair structure is
preserved for longer time scales. The K̃ model overall
reproduces the VHF quite accurately at least up to 400 fs.
The increased long time diffusivity of the K̃ model compared
to the AA reference on short length scales leads to an
acceleration in the relaxation beyond 400 fs. The optimization
of the memory kernel through the IOMK method does not
significantly alter the VHF for the first peak, but by matching
the long-time diffusivity, the relaxation on short length scales is
better reproduced.

In Figure 5a, we present a slice through the VHFs at R =
0.276 nm for a better time resolution of the relaxation of the
first peak. Here, we see more clearly that the VHF decays too
fast for CG-MD, which is improved with the GLE thermostat
for both the K̃ model and the IOMK model. We additionally
present the result of a Markovian Langevin-thermostat model,
in which we optimized the friction coefficient such the
diffusivity matches the AA reference. Herein, we find that, in
such a Markovian model, the relaxation of the pair structure is
too slow.

In Figure 5b, we present a slice through the VHF at R = 0.2
nm, where we again find that the CG-MD model yields too fast
relaxation. On short time scales, both the K̃ model and the
IOMK model match the reference significantly better, while
the Markovian model again relaxes too slowly. On long time
scales, the K̃-model relaxes too fast, while the AA reference, the
IOMK model, and the Markovian model converge onto each
other.

Figure 3. Results for iterative optimization of memory kernels for the IBI water model. (a, b, c) Comparison of the VACF for the IOMK method
(panel (a)), the IMRV-1 method (panel (b)), and the IMRV-2 method (panel (c)). (d−f) Comparison of D(t) = ∫ 0

t dsCVV(s) for the IOMK
method (panel (d)), the IMRV-1 method (panel (e)), and the IMRV-2 method (panel (f)).

Figure 4. Distinct VHF for (a) the AA reference, (b) the CG-MD IBI
model, (c) the K̃-model, and (d) the IOMK model.
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Comparison of the Different CG Water Models. Until
now, we have only discussed the dynamics of IBI water models.
We have shown that the purely bottom-up informed approach
allows a semiquantative representation of the reference
dynamics, while the IOMK method allows one to reproduce
the VACF quantitatively, while also the representation of
collective dynamics, in terms of the distinct VHF, is
significantly improved.

In this section, we will compare how the choice of the CG
potential influences the dynamic properties of purely bottom-
up informed water models. The properties of the memory
kernel contributions for the different conservative potentials
are shown and discussed in Figure S4 in the SI.
Dynamics of Generalized Langevin Models. In this

section, we study the dynamics of the different CG water
models by applying a GLE thermostat. The VACFs for the
two-body and three-body models are shown in Figures 6a and
6b, respectively. In Figure 6b, only the SW-FM model is
considered, since, for the SW-RE model, the bottom-up
approach predicts a nonphysical memory kernel K̃(t) (see
Section S6 in the SI for a discussion on the origin of this
behavior). We also studied GLE models parametrized with
Kδ,X(t) = Kδ(t) + KX(t) and Kδ(t), to study the relevance of the
cross-correlation term KX(t). Note that Kδ,X(t) is equivalent to
a memory kernel which can be evaluated from a Volterra
equation derived from eq 119 and has been proposed as a
straightforward parametrization for both Markovian Lange-
vin11 and non-Markovian GLE thermostats.21 Using Kδ(t),
thus neglecting cross-correlations all together, can be under-
stood as a non-Markovian variant of the approach proposed in
ref 14. The data on these models can be found in Figures S6
and S7 in the SI.

In all shown cases in Figure 6, the GLE model yields a
significant improvement of the representation of the reference
dynamics, when compared to the standard CG-MD
simulations (Figure S5 in the Supporting Information). The

FM model cannot fully capture the fast initial decay of the
VACF. The SW-FM model and the IBI model captures the
initial decay quantitatively. The local features around 75−150
fs are qualitatively well-matched for the IBI models and the
SW-FM models, while the depth of the broad negative valley
200−300 fs is underestimated in all cases, indicating again too
fast overall mobility.

A comparison of KC(t) and ΔKCG(t) (as shown in the insets
of Figures 6a and 6b) again reveals the origin of the remaining
discrepancies. In the FM model, the onset of the memory
kernel due to conservative forces in CG simulations is lower
than KC(t) would predict. This is due to mismatch of the pair
structure in the FM model, which yields a reduction in the
variance of conservative forces. This discrepancy on short time
scales leads to the too slow initial decay on small time scales.
Also the valley of KC(t) is not as well reproduced as in the IBI
model, leading to larger discrepancies in the VACF on similar
time scales. For the SW-FM model, the assumption of eq 14 is
well-justified up to 100 fs.

In all cases, the overall mobility is overpredicted with K̃(t).
The origin trivially arises from deviation from the assumption
of eq 14.

In addition to the bottom-up approach, we also applied the
IOMK method to optimize the parametrization of the SW-FM
and the SW-RE model. We find that the IOMK method can
also be successfully applied to optimize the memory kernels in
SW-type models. Figure 7 shows an overview over all studied
CG models, by defining an error measure as

N
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N
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Figure 5. Distinct VHF at (a) R = 0.276 nm and (b) R = 0.2 nm, for
different CG IBI models, compared to the AA reference.

Figure 6. VACFs from GLE simulations of CG models with a) two-
body potentials b) three-body potentials, parametrized with K̃(t),
compared to the AA reference.
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with N = 1000 and Δt = 2 fs.

For the pure bottom-up approach, K̃(t) yields the best
results for both CG pair potentials while Kδ,X(t) yields better
results for the three-body potentials.
Structural Relaxation. We calculated the distinct VHF for

all combinations of CG potentials and GLE thermostat
parametrizations. A prerequisite for reproducing the VHF on
all time scales is that the static pair structure is reproduced.
Because the FM model does not reproduce the static pair
structure (see Figure S3 in the SI), we only consider the IBI,
SW-FM, and SW-RE models in this section. Additionally, to
single out the influence of the choice of the CG potential, we
first consider the simulations optimized through the IOMK
method. This allows one to study the influence of the CG
potential on structural relaxation, given that the static structure
and the single-particle dynamics is accurately represented. In
Figure 8a, we show the VHF for the first peak for the described
systems, compared to the AA reference. For the relaxation of
the first peak, all three models match the AA almost
quantitatively. Still, the SW-RE model matches the reference
data best, which can be seen by amplifying the plot, as shown
in the inset. A more significant deviation between the different
models is found for shorter length scales (R = 0.2 nm) in
Figure 8b. Here, the IBI model deviates significantly from the
AA reference, while both SW-type models reproduce the
structural relaxation almost quantitatively.

To compare the performance of all different combinations of
CG potentials and thermostats, we define the error measure as

NN
g R i R j t g R i R j t1

( ( , ) ( , ))
i j i j

ref

VH

0 0
2

=

+ +

(21)

where Ni and Nj are the considered number of distance bins
and time steps, respectively, R0 is the minimal considered
distance, δR is the bin width, and δt is the spacing is the
resolution in time.

In Figure 9, we summarize the estimated deviations from the
reference for the considered CG potentials for all thermostat
parametrizations. This allows to draw the following con-
clusions:
(1) In all cases, introducing a dissipative thermostat

improves the representation of the VHF.

(2) For the IBI potential, the IOMK model performs better
than the Markovian model, while having the same
diffusivity. One can conclude that matching the
diffusivity is not sufficient to correctly model structural
relaxation and memory effects must be taken into
account.

(3. For all CG potentials, the optimization of the VACF via
the IOMK method leads to an improved representation
of the VHF.

(4) Given that the single-particle dynamics is well matched,
as ensured by the IOMK method, and the static
structure is well-reproduced, the representation of the
structural relaxation is still dependent on the choice of
the CG potential. The introduction of an angular
potential for coarse-graining SPC/E water, improves,
under the stated conditions, the representation of the
VHF. Additionally, the SW-RE model performs better
than the SW-FM model.

Figure 7. Error estimate of the VACF based on eq 20, for all CG
simulations.

Figure 8. VHF for the IOMK models with the IBI, the SW-FM and
the SW-RE model, compared to the AA reference, for (a) R = 0.276
nm and (b) R = 0.2 nm.

Figure 9. Error estimate for the distinct VHF for all studied IBI, SW-
FM, and SW-RE models.
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■ SUMMARY AND OUTLOOK
We have demonstrated that the previously proposed bottom-
up approach for the parametrization of GLE thermostats based
on the BOD method is applicable to molecular systems with
complex interactions by coarse-graining SPC/E water, using
effective single-site interactions. In conjunction with pairwise
conservative interactions, the proposed parametrization of the
GLE thermostat yields good results for most CG potentials. In
particular, in accordance with previous studies,19,20 taking into
account the -projected cross-correlations is necessary to
correctly reproduce the VACF on short time scales, and its
neglect typically yields too slow dynamics. At the same time,
we found that, for coarse-graining SPC/E water on a single
interaction site, considering the cross-correlation term twice
(using K̃(t) for the parametrization of the GLE thermostat)
tends to overpredict the diffusivity. This is consistent with our
findings in ref 20. and is due to the independent thermostatting
of every CG DoF, which leads to a reduction of the correlation
of the dynamics between different CG DoFs.

Using the example of the IBI potential, we have
demonstrated the applicability of the IOMK method to
optimize the VACF for molecular liquids and have
demonstrated its stability and good convergence properties
compared to previously proposed iterative optimization
schemes. Our results indicate that the IOMK method
converges fast, even when the initial guess is far from optimal.
An additional benefit, compared to other methods, is that the
IOMK method does not rely on any parameters that have to be
manually predetermined to improve convergence behavior,
which significantly increases its applicability as an out of the
box tool for dynamic coarse-graining.

By studying the distinct VHF, we have demonstrated that,
despite the conceptional limitation of an isotropic and
configuration-independent thermostat, the application of a
GLE thermostat in CG models allows one to model structural
relaxation quite accurately. This is a nontrivial finding, as
nowhere in the parametrization process collective dynamics is
considered and indicates that a faithful connection to the
underlying AA reference can be established under certain
conditions. Of course, the prerequisite is that at least the pair
structure is well-reproduced by the CG potential. By
comparing the pairwise IBI potential with two three-body
Stillinger-Weber type potentials (SW-FM and SW-RE) we
found that an accurate representation of three-body
correlations can further improve the accuracy of the distinct
VHF, given an accurate representation of single-particle
dynamics.

In principle, the choice of the target for the IOMK method
is not limited to FG MD models. The single-particle memory
kernel is accessible from the mean-squared displacement,59

which by itself can be calculated from the self-part of the VHF
from experiments.47 This would allow to use the IOMK
method in combination with top-down parametrized CG
potentials, to improve the representation of dynamic properties
in empirical CG models as for example the Molinero-Water
model.60 This would necessitate high quality experimental data
with a high resolution in space and time, and methods to
accurately extract the center of mass dynamics from
experimental measurements. In practice such an approach
has to to evaluated carefully, as it is unclear if current
experimental data is sufficiently reliable to be used as
quantitative reference. For example, the reported VHF in ref

48 does not quantitatively agree with earlier results in refs44,
45.

In summary, we have shown that it is possible to derive good
estimates of memory kernels in a purely bottom-up approach,
which allow one to maintain a direct link between the
parametrization of the GLE thermostat and the underlying AA
reference. For the considered system, the bottom-up approach
performs more reliably for CG pair potentials than for three-
body potentials. Arguably, this is due to the increased
complexity of the CG energy landscape, because, in such a
case, even small discrepancies in the sampling of configuration
space between AA and CG models can lead to significant
errors in the prediction of memory due to conservative forces.
The IOMK method allows to efficiently circumvent these
issues by allowing to derive CG models which exactly
reproduce the single-particle dynamics. Our results indicate
that also collective dynamics can be accurately described by
applying optimized memory kernels as long as the CG
potential accurately reproduces the pair structure.

■ METHODS
All-Atom Water Simulations. As a FG reference, we

consider atomistic water under ambient conditions, applying
the SPC/E model.61 The atomistic simulations were
performed with the GROMACS package,62,63 using a time
step of 2 fs integrated via the velocity Verlet method. We use a
cutoff of 1.2 nm for short-range van der Waals and electrostatic
interactions and long-range dispersion corrections for energy
and pressure. Long-range electrostatic interactions are treated
with the particle mesh Ewald method with a grid spacing of
0.12 nm. The reference system was set up by preparing a cubic
simulation box with 3000 water molecules. The box was
equilibrated under NPT conditions at 1 bar and 298 K using
the velocity-rescale thermostat with a time constant of 1 ps and
the Berendsen barostat with a time constant 2 ps and
compressibility parameter of experimental water of 4.5 ×
10−5 bar−1. The average box-length of a NPT simulation was
chosen to fix the box length to 4.47934 nm for further
simulations.

For the evaluation of structural properties (the radial
distribution function, RDF), an NVT run was performed for
200 ps. Snapshots were stored every 20 fs. To efficiently obtain
sufficiently uncorrelated snapshots, a stochastic dynamics
integrator was applied with a time constant of 1 ps.

For the evaluation of dynamic properties (VACF, memory
kernels, distinct VHF), 10 independent NVE simulations were
determined from different initial conditions drawn from a
sample of NVT snapshots. Here, every run was performed for
50 ps, using the velocity Verlet integrator. Frames were stored
every time step.
CG Simulations. We derived all tabular CG pair potentials

using the VOTCA-CSG35 package. We applied a center of
mass mapping scheme for the CG representation.

For the IBI model, we set a cutoff distance of 1 nm for the
CG pair potential. For every IBI iteration, simulations were
performed for 120 ps under NVT conditions, using the
stochastic integrator with a time constant of 0.5 ps. Snapshots
for the evaluation of the RDF were taken every 20 fs. We
stopped the optimization process after 300 iterations. For the
derivation of the FM potential, we set the range of the
potential to 0.24−0.9 nm, with a spacing of 0.012 nm. The
three-body SW-type potentials were obtained from the
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literature. (See ref 37 for details on the SW-FM potential and
ref 53 for details on the SW-RE potential.)

CG simulations were performed using the LAMMPS
package.64 All CG simulations were performed under NVT
conditions, with 3000 CG beads, at 298 K, a box length of
4.47934 nm, and a time step of 2 fs.

For every CG system, we generated ten 20-ps trajectories.
Dynamic properties were evaluated for every distinct
trajectory, and values were averaged to reduce statistical
uncertainty.

For standard CG-MD simulations the Nose−́Hoover
thermostat was applied with a time constant of 2000 fs. For
GLE simulations, the GLE thermostat due to Ceriotti65 was
applied. This thermostat is based on an auxiliary variable
approach, which allows one to simulate non-Markovian
dynamics by applying a Markovian EoM in extended phase
space. For its application in the context of CG, the coupling
between the CG momenta and the auxiliary momenta must be
defined in terms of a coupling matrix. This matrix can be
determined from a given memory kernel, by fitting with
exponentially dampened oscillators. For all CG GLE models,
we chose to fit six exponentially dampened oscillators, yielding
12 auxiliary momenta for the Markovian embedding. In
practice we fitted the integrals of the memory kernels. For all
BOD method based parametrizations the memory kernels were
fitted up to t = 800 fs. For the IOMK method, we fitted the
memory kernels up to t = 2000 fs, to better capture the
hydrodynamic tail of the VACF. Further details on the
Markovian embedding of GLEs can be found in our earlier
publications7,20 or, for example, in refs 15, 25, 66, and 67.
Bottom-Up Derivation of Memory Kernels from

Backward-Orthogonal Dynamics. Details on the BOD
method can be found in refs 19, 20, 43, and 57, so we will only
shortly summarize the overall workflow. The first step is always
to perform FG (AA) simulations, where frames are stored
sufficiently frequently (every time step in the current work) to
reduce numerical errors in the BOD method. Both velocities
and total forces for every DoF must be stored. Next, we apply
the center of mass mapping on the AA trajectory (using the
VOTCA-CSG software35) to obtain a mapped reference
trajectory. Based on this mapped trajectory, a rerun is
performed using the required CG potential to obtain a
trajectory for the conservative interactions FI

C(t), which,
through δFI(t) = FI (t) − FI

C(t) also yield a time series for
the residual forces. From the time series of FI(t), FI

C(t), δFI(t),
and VI(t), the respective projected force-correlation
functions can be obtained applying the BOD method. As a
numerical scheme, we utilize the second-order scheme
proposed by Jung et al.19,20,43

The IMRV Method. The update scheme for the IMRV-1
method and the IMRV-2 method is given by

K t K t h t t( ) ( ) ( ) ( )i i i i1 = ++ (22)

The update function Δϕi(t) is given by

t t t( ) ( ) ( )i i
tgt= (23)

where the superscript “tgt” denotes the target function and the
subscript “i” denotes the current iteration. For IMRV-1, the
function ϕi(t) is defined by the respective VACF CVV,i(t) as

t M
C t t C t C t t

k T t
( )

( ) 2 ( ) ( )
i I

i i iVV, VV, VV,

B
2=

+ +

(24)

and analogously for ϕtgt(t). The function hi(t) defines the step
size for the iterations and can be tuned to improve the stability
of the scheme. Jung et al.43 proposed
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The IMRV-2 method defines a different function ϕi(t) (and,
accordingly, ϕtgt(t)), which reads16

t M
C t t C t

k T t
( )

( ) ( )
i I

i iVV, VV,

B
=

+
(26)

Note that, for the IMRV2 method, an additional constant α
must be set. After manual optimization, we applied tcorr = 80 fs
and α = 0.05 fs−1.
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Discussion of the relation of the IOMK and the IMRV-2
to the Newton method; presentation of most of the data
shown in the main text, alongside the results for two
additional CG potentials, which is an IBI potential where
we applied a pressure ramp (IBI-p) and the well-known
SW-type model due to Molinero et al.60 (MW); CG pair
potentials derived for this study (Figure S2); comparison
of the structure (in terms of the RDF and the angular
distribution function) of all CG water models with SPC/
E water (Figure S3); memory kernels derived from the
BOD-method and, where applicable, the optimized
IOMK memory kernels (Figure S4); VACFs from CG-
MD simulations for all CG potentials (Figure S5);
VACFs from CG GLE thermostat simulations, including
parametrizations of the GLE thermostat with Kδ(t) and
Kδ,X(t) = Kδ(t) + KX(t) (Figures S6−S8); memory due
to conservative interactions in the SW-RE and the MW
model to the predictions (KC(t)) due to the BOD-
method, to demonstrate why for these models a
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meaningful parametrization of the GLE thermostat,
using K̃(t) is not possible (Figure S9); VACFs and the
corresponding integrals (D(t) = ∫ 0

t dsCVV(s)) to
compare long time diffusion coefficients (Figure S10);
the modeling errors of all CG models, including the IBI-
p and the MW models (Figure S11); visualization of the
convergence of the IOMK, IMRV-1, and IMRV-2
methods (Figure S12); results for the IOMK and
IMRV-2 method with alternative initial guesses (Figures
S13 and S14); results for the IOMK method for the SW-
type potentials (Figures S15−S17); all VHFs (Figures
S18−S29); and a summary of the modeling errors of the
VHFs for all models, including the results for the IBI-p
and MW models (Figure S30) (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Viktor Klippenstein − Eduard-Zintl-Institut für Anorganische
und Physikalische Chemie, Technische Universität
Darmstadt, 64287 Darmstadt, Germany; orcid.org/
0000-0002-4553-9881; Email: klippenstein@cpc.tu-
darmstadt.de

Nico F. A. van der Vegt − Eduard-Zintl-Institut für
Anorganische und Physikalische Chemie, Technische
Universität Darmstadt, 64287 Darmstadt, Germany;

orcid.org/0000-0003-2880-6383; Email: vandervegt@
cpc.tu-darmstadt.de

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.2c00871

Funding
Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), Project No. 233630050-TRR
146.
Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Müller-Plathe, F. Coarse-Graining in Polymer Simulation: From

the Atomistic to the Mesoscopic Scale and Back. ChemPhysChem
2002, 3, 754−769.
(2) Noid, W. G. In Biomolecular Simulations: Methods and Protocols;

Monticelli, L., Salonen, E., Eds.; Methods in Molecular Biology, Vol.
924; Humana Press: Totowa, NJ, 2013; pp 487−531.
(3) Dhamankar, S.; Webb, M. A. Chemically Specific Coarse-

Graining of Polymers: Methods and Prospects. J. Polym. Sci. 2021, 59,
2613−2643.
(4) Brini, E.; Algaer, E. A.; Ganguly, P.; Li, C.; Rodríguez-Ropero,

F.; van der Vegt, N. F. A. Systematic Coarse-Graining Methods for
Soft Matter Simulations-a Review. Soft Matter 2013, 9, 2108−2119.
(5) Fritz, D.; Koschke, K.; Harmandaris, V. A.; van der Vegt, N. F.

A.; Kremer, K. Multiscale Modeling of Soft Matter: Scaling of
Dynamics. Phys. Chem. Chem. Phys. 2011, 13, 10412−10420.
(6) Rudzinski, J. F. Recent Progress towards Chemically-Specific

Coarse-Grained Simulation Models with Consistent Dynamical
Properties. Computation 2019, 7, 42.
(7) Klippenstein, V.; Tripathy, M.; Jung, G.; Schmid, F.; van der

Vegt, N. F. A. Introducing Memory in Coarse-Grained Molecular
Simulations. J. Phys. Chem. B 2021, 125, 4931−4954.
(8) Meinel, M. K.; Müller-Plathe, F. Loss of Molecular Roughness

upon Coarse-Graining Predicts the Artificially Accelerated Mobility of
Coarse-Grained Molecular Simulation Models. J. Chem. Theory
Comput. 2020, 16, 1411−1419.

(9) Meinel, M. K.; Müller-Plathe, F. Roughness Volumes: An
Improved RoughMob Concept for Predicting the Increase of
Molecular Mobility upon Coarse-Graining. J. Phys. Chem. B 2022,
126, 3737−3747.
(10) Akkermans, R. L.; Briels, W. J. Coarse-Grained Dynamics of

One Chain in a Polymer Melt. J. Chem. Phys. 2000, 113, 6409−6422.
(11) Izvekov, S.; Voth, G. A. Modeling Real Dynamics in the

Coarse-Grained Representation of Condensed Phase Systems. J.
Chem. Phys. 2006, 125, 151101.
(12) Izvekov, S. Mori-Zwanzig Theory for Dissipative Forces in

Coarse-Grained Dynamics in the Markov Limit. Phys. Rev. E 2017, 95,
013303.
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