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ABSTRACT: Laser-induced breakdown spectroscopy (LIBS) is a remarkable elemental identification and quantification technique
used in multiple sectors, including science, engineering, and medicine. Machine learning techniques have recently sparked
widespread interest in the development of calibration-free LIBS due to their ability to generate a defined pattern for complex
systems. In geotechnical engineering, understanding soil mechanics in relation to the applications is of paramount importance. The
knowledge of soil unconfined compressive strength (UCS) enables engineers to identify the behaviors of a particular soil and
propose effective solutions to given geotechnical problems. However, the experimental techniques involved in the measurements of
soil UCS are incredibly expensive and time-consuming. In this work, we develop a pioneering technique to estimate the soil
unconfined compressive strength using artificial intelligent methods based on the spectra obtained from the LIBS system. Decision
tree regression (DTR) and support vector regression learners were initially employed, and consequently, the adaptive boosting
method was applied to improve the performance of the two single learners. The prediction power of the established models was
determined using the standard performance evaluation metrics such as the root-mean-square error, CC between the predicted and
actual soil UCS values, mean absolute error, and R2 score. Our results revealed that the boosted DTR exhibited the highest
coefficient of correlation of 99.52% and an R2 value of 99.03% during the testing phase. To validate the models, the UCS values of
soils stabilized with lime and cement were predicted with an optimum degree of accuracy, confirming the models’ suitability and
generalization strength for soil UCS investigations.

1. INTRODUCTION
Laser-induced breakdown spectroscopy is a robust elemental
identification and quantification technique employed in various
sectors, including science, engineering, medicine, and industry.1

The technique has been widely adopted to investigate materials
composition and the proportion of different elemental contents.
For example, the food processing industries have used the
method to investigate the presence of radioactive elements in
food items.2 Also, the technique has been used to detect and
quantify elements in cancerous specimens to develop an
effective correlation between the constituent elements and the
disease.3 In construction industries, the technique has been

employed to investigate different types of cementitious, soil, and
concrete samples to identify the role of the constituent elements
on the materials’ properties, such as compressive strength,
corrosion rate, and moisture absorption capacity.4
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The material to be investigated under LIBS could be in any
state, i.e., the solid, liquid, or gaseous form. Themethod involves
concentrating high-energy laser pulses on the surface of the
uniformly prepared sample. The laser−material interactions
create a plasma plume constituting the atomic emission
information of the constituent elements. The emission
signatures are captured in a spectrometer in the form of light
with varying intensities and wavelengths.5 Principally, the LIBS
operation requires matching the elements to their emission lines.
However, the elements do not have a unique emission line since
more than one electron can be excited within the same or
varying energy states during plasma generation.
Soil science is an outstanding field that constitutes the

fundamentals of soil chemistry, physics, and biology.6 The soil
UCS is a fundamental structural parameter that finds many
applications in the audit and design of many environmental and
geotechnical structures such as earth dams, bridges, railways,
tunnels, buildings, pavements, and road foundations.7 Soil
unconfined compressive strength is one of the essential
properties of soil that determines its behavior under loading
conditions. Estimating soil UCS is a crucial task in soil
mechanics and geotechnical engineering, and it is essential to
ensure the stability and safety of civil engineering structures built
on the soil. The UCS can be harnessed to determine the soil
compaction ability. The common way to estimate such a
quantity is through a physical property measurement setup in
the laboratory. However, this method is relatively expensive and
consumes a lot of time, which might add up to the overall
construction expenses. Furthermore, several parameters, such as
equipment quality and the technical expertise of the
experimenter, significantly affect the accuracy of the measure-
ments. Therefore, finding alternative means of determining the
soil UCS is imperative.
The field of soil mechanics has recently witnessed a

remarkable development, especially regarding testing techni-
ques.8 Many laboratory tests and in situ mechanisms were
adopted and enhanced, leading to an overwhelming advance-
ment in the geotechnical research of soils. The testing
mechanisms provide quantitative results of soil properties used
for design and condition assessment. However, most of these
testing techniques are time-consuming and expensive and
require laborious experimental work. For example, Hakan et
al. demonstrated how the length-to-diameter ratio can affect the
unconfined compressive strength of materials.9

Owing to the shortcomings of the existing methods and the
importance of calculating soil properties, several works were
reported in which soil properties were obtained using empirical
techniques.10,11 These methods, often based on statistical
relationships between soil properties, are commonly used to
estimate the soil unconfined compressive strength of materials.
However, these equations are often limited by oversimplifica-
tion, assumptions, and dependencies on specific soil types or
conditions.12 It is important to note the difficulty of employing
numerical and empirical methods to model the indirect
relationship between the chemical properties of the soil and
the UCS, which is a physical property. These methods may not
produce the desired target with a reasonable degree of
accuracy.10 On the other hand, chemometric techniques, such
as multivariate regression, have been applied to analyze
spectroscopic data for predicting soil properties.13 While these
methods have shown promise, they often rely on assumptions
about linearity and may struggle to capture complex nonlinear
relationships present in the soil data. Additionally, their

interpretability is limited, making it challenging to gain insights
into the underlying soil composition and its impact on
unconfined compressive strength. This calls for implementing
more sophisticated and intelligent techniques that can predict
the soil UCS based on the easily obtainable elemental intensities
from the LIBS system.
Recently, there has been increased interest in the use of

machine learning techniques in geotechnical engineering
applications. Machine learning is an advanced method used in
predicting unknown quantities from known datasets. The
algorithms are trained based on the available data of the input
and target variables.14 The input features, otherwise called
descriptors, generally represent some inherent features of the
desired variable and therefore exhibit a certain degree of
correlation with the target variable.15 The ability of such
techniques to map the input features of a complex problem to
the desired quantity, using a high-dimensional feature space
without necessarily utilizing the initial explicit relationship
between them, makes it an outstanding tool for contemporary
research works. Multiple studies have demonstrated the
effectiveness of machine learning techniques in various geo-
technical applications. For instance, hybrid artificial neural
network (ANN)-based techniques have been successfully
employed to predict the cohesion of sandy soil combined with
fiber.16 Another study introduced a novel approach for soil
classification based on laboratory tests using Adaboost and ANN
modeling.17 Furthermore, an efficient optimal neural network
based on the gravitational search algorithm was proposed for
predicting the deformation of geogrid-reinforced soil struc-
tures.18 Genetic algorithms and gray wolf optimizer were utilized
to optimize random forest models for evaluating soil liquefaction
potential.19 Additionally, evolutionary polynomial regression
was applied to develop predictive models of the collapse
settlement and the coefficient of stress release of sandy-gravel
soil.20

Additionally, machine learning has been employed to solve
problems in engineering, sciences, energy, construction, busi-
ness, and medicine, to mention a few.14,21−24 A couple of works
exist where machine learning techniques were used to conduct a
calibration-free LIBS study.25,26 This was supported by the
ability of the laser-induced spectroscopy device to produce
sufficient input datasets and the capacity of machine learning
algorithms to process them.27−31 Studying the physical
properties of soils under LIBS is utterly cumbersome. However,
considering the built-in capability of machine learning
techniques to map complex patterns, it can be trained using
the acquired chemical properties to predict the physical
properties, such as soil UCS, as conducted in the current work.
Herein, several soil samples were extracted from multiple

locations within the Kingdom of Saudi Arabia and investigated
using the LIBS system. The spectral emission intensities of the
constituent elements, together with the measured soil moisture
content and bulk density, were employed to develop robust
artificial intelligence algorithms that can estimate the soil UCS
with a high degree of accuracy. The samples were also stabilized
with lime and cement materials and studied under the LIBS
system to validate the models. The strength of the developed
method in predicting the unconfined compressive strength of
the cement and lime-treated samples justifies the generalization
strength and prediction accuracy of the models.
The rest of the sections are organized as follows: Section 2

presents the model descriptions together with brief mathemat-
ical expressions describing the algorithms. Section 3 presents the
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parameter optimization strategies employed in this work as well
as the description and statistical analysis of the input dataset.
The prediction results, model performance evaluations, and
model validations and applications are concisely presented in
the upcoming sections.

2. OVERVIEW OF THE DEVELOPED ALGORITHMS
This section summarizes the description of the DTR and SVR
models with their mathematical framework. The scikit-learn
library was used in model implementation.32 The flow of the
research work carried out in this paper from the experimental
process to the results analysis is schematically presented in
Figure 1.
2.1. Decision Tree Regression. As the name suggests, this

is a representation of data in a tree-structured form that is largely
utilized to solve machine learning problems for regression and
classification. The tree consists of branches, leaves, and multiple
internal nodes based on the available dataset. Existing classes are
used to divide occurrences and features by the DT algorithm
equally. The application of DT as a tool is mostly seen inmedical
diagnosis, where clinicians get information on the best time to
administer treatment to patients with prevailing diseases.33

The given occurrences are created by stimulating the DT, and
when the fitness function is minimized, it produces the optimal
decision tree. Parameters such as the feature number, split
sample, leaf sample, fitness function, number of features, and
depth of the tree affect the accuracy of the DT models.34 The
number of required presents at a leaf node is referred to as a leaf
sample. The lowest number of needed samples to split an
internal node is depicted by the split sample. The depth of the
tree is described by how deep it can go, and as the depth
increases, the tree acquires information on the data. Meanwhile,

the fitness error reduces the error between the experimental and
predicted results.
2.2. Support Vector Regression. Support vector regres-

sion is a robust ML technique used in modeling and prediction
in a continuous space that depends on the projected pattern
between the target variable and the descriptors.35 The method
separates the data class by utilizing the ε-insensitive loss function
to influence the hyperplane, which ignores the difference
between the predicted values from the actual values at a certain
distance. The main idea is to construct a hyperplane that
optimizes the margin and decreases the error. SVR can make
predictions based on a small training set, making it attractive and
computationally less expensive.36 Support vector machine
(SVM) and SVR utilize the same principle of Vapnik’s support
vectors. However, the latter does not use the regular empirical
risk minimization of artificial neural networks but rather the
basics of structural risk minimization. Meanwhile, the former is
used as a classification tool, and its margin of tolerance ε is not
explicit but rather extracted from the problem.15

In SVR, the input features are mapped out into a high-
dimensional feature space using a nonlinear transformation
function, making it possible to rightly apply a linear regression
function in the new feature space.37 An insensitive loss function
that has the property ε > 0 is considered when applying the
support vector regression algorithm, and also, errors below ε are
not taken into consideration by the model.
2.3. Adaptive Boosting of Weak Regressors. The

adaptive boosting technique is one of the versatile ML
algorithms used for its high prediction efficiency.38 It is
otherwise called Adaboost. It can be applied to both
classification and regression problems. Adaboost is an
ensemble-based learning strategy where the algorithm starts

Figure 1. Schematic figure depicting the modeling schema.
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the training by creating a weak learner and figuring out how
accurate their predictions are. The samples with poor predicting
performance are given greater weight in the succeeding runs. A
strong learner, or the boosted ensemble, is created by repeating
this process until numerous weak learners with different weights
are generated. Below are the learners’ brief mathematical
descriptions:38,39

Let eq 1 represent a general problem within a training dataset

= { }X Y X Y X Y( , ),( , ),...;, ( )m m1 1 2 2 (1)

where Xi and Yi respectively represent the input data vectors and
output value; the total number of the samples and the ith sample
in the training dataset are denoted by m and (XiYi) (i = 1, ...;m),
respectively. Subsequently, the regression tool is applied to train
a weak learner (base learner) G(X) using the accepted base
learning algorithm, thereby approximating the relative estima-
tion error using eq 2. L() is a loss function that cannot be a linear,
exponential, or square loss function.

=e L Y G X( , ( ))i i i (2)

A single base learner may not perform well enough to achieve
the requisite prediction efficiency. Because of this, the purpose
of employing Adaboost is to develop a framework where a series
of weak learners may be joined to generate a powerful ensemble
learner H(x) by utilizing some tactics. A regression problem’s
combination strategy is

=H X v g X( ) ln
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where k = 1,2, ...;,N; v∈ (0,1] is the regularization parameter, δk
is the allocated weight of the base learner G(Xi), and g(X) is the
median of all the δkδGk(X).
Since no specific algorithm is indicated in eq 4 and, instead, a

dummy variable G(x) is provided, which might represent any
base learning regression algorithm, it is crucial to note the
generality of the adaptive boosting technique.40 The Adaboost
ensemble approach is a reliable method that offers a framework
for combining a variety of base learning algorithms to accurately
forecast the goal quantity. Support vector machines, decision
trees, linear regression, and artificial neural networks are some
well-known base learning methods.41 Thus, we employed the
SVR and DTR base learning algorithms for this study.

In summary, the Adaboost technique consists of four key
steps: (1) data collection, (2) creation of strong learners from
base learners, (3) testing and validation of the boosted
algorithms, and (4) application of the strong learners to real-
world issues. The main levels involved in the boosting process
are the integration of weak learners into strong learners and the
instruction of weak learners using training data.42 The base
learner parameters and those of the Adaboost framework make
up the main Adaboost parameters. While the latter considers the
number of estimators and the learning rate, the former depends
on the employed base learners.
2.4. Empirical Study and Computational Method-

ologies. This section presents the empirical studies and
computational methodologies used to estimate the soil
unconfined compressive strength. The statistical analysis of
the utilized dataset and the justification of the chosen descriptors
were also discussed. The models’ hyperparameter optimization
strategy has also been highlighted. The used dataset comprises
elemental intensities generated using the LIBS system. The
scikit-learn library was used for the computation, which is a
powerful and widely used machine learning library in Python.
To ensure that the model was not overfitting, 10-fold cross-

validation was used to optimize the model’s hyperparameters. In
10-fold cross-validation, the data are divided into 10 parts, and
each part is used as a test set, while the remaining nine parts are
used as training sets. This process is repeated 10 times, with each
part being used as the test set once. GridSearchCV function
from scikit-learn was used to search for the optimal hyper-
parameters. GridSearchCV tests all possible combinations of
hyperparameters and selects the one that gives the best
performance. By doing this, the model’s performance on unseen
data could be assessed and ensure that the model was not
overfitting. Different combinations of hyperparameters, such as
the number of estimators, the learning rate, and the maximum
depth of the decision trees, have been tested.
To select the optimal descriptors to estimate the soil

unconfined compressive strength, the statistical analysis of the
dataset was used. The correlation between the elemental
intensities and the soil unconfined compressive strength was
analyzed using a correlation matrix depicted by the heat map in
Figure 5.
2.5. Statistics and Characteristics of the Employed

Dataset.The data used in this work can be categorized into two

Figure 2. Representative laser-induced breakdown spectra highlighting the elements present in the soil samples within certain wavelengths.
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parts: physical and chemical features. The chemical features, i.e.,
the emission signatures of the constituent elements were
extracted from the LIBS system, while the physical quantities
were measured in the laboratory. Figure 2 presents the LIBS
spectra showing the constituent elements within the given
wavelength range for both the stabilized and unstabilized
representative samples. Specifically, the dataset constitutes the
persistent lines of Si, Fe, Mg, Ca, Na, Al, Zn, In, Ti, O, and K, as
well as two physical quantities, i.e., the water content of the soil
sample and bulk density. To ensure the generalization of the

model, several soil samples collected from different locations
were considered during the input data processing phase. The
statistical description of the data is presented in Tables 1a and
1b. Overall, the models were built based on 450 data points. To
understand the distribution of the descriptors over the full
spectrum, Figures 3 and 4 present histograms showing the
relative frequencies of the input features and the target variable.
The choice of the input parameters, otherwise called domain

variables, is a crucial step in obtaining efficient machine learning
models.43 Here, we analyzed the Pearson correlation coefficients

Table 1a. The Statistics of the Used Data

Si-I (a.u.) Fe-I (a.u.) Mg-I (a.u.) Ca-I (a.u.) Na-I (a.u.) Al-I (a.u.) Zn-II (a.u.)

count 450 450 450 450 450 450 450
mean 2011.53 3472.19 2545.34 4348.18 3052.15 2357.13 2302.82
std 2310.70 4008.73 2459.58 3686.11 3349.30 2027.71 2522.
minimum 7.120 7.340 7.260 30.510 54.210 8.940 97.380
maximum 13,569.2 38,302.4 20,496.9 23,850.1 22,487.0 12,691.9 13,182.7

Table 1b. The Statistics of the Employed Data (Cont.)

In-II (a.u.) Ti-I (a.u.) O-I (a.u.) K-I (a.u.) bulk density (g/cm3) water con. (%) UCS (kPa)

count 450 450 450 450 450 450 450
mean 2011.53 3472.19 2545.34 4348.18 3052.15 2357.13 2302.82
std 2310.70 4008.73 2459.58 3686.11 3349.30 2027.71 2522.
minimum 7.120 7.340 7.260 30.510 54.210 8.940 97.380
maximum 13,569.2 38,302.4 20,496.9 23,850.1 22,487.0 12,691.9 13,182.7

Figure 3. Histogram representation of the extracted dataset depicting the statistical distribution of the model descriptors for (a) Mg, (b) Fe, (c) Na,
(d) Ca, (e) Al, (f) Zn, (g) In, (h) Ti, and (i) Si.
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between each domain variable and the soil UCS to determine
the strongly correlated features. Figure 5 presents a heat map

illustrating the correlation coefficients between the descriptors
and the unconfined soil strength. It also highlights the
dependence of the model descriptors among themselves and
how they affect the target variable. Meanwhile, the choice of the
elemental intensities, which subtly indicates that the elemental
concentration is a wise selection since the soil UCS will be
inherently affected by the material’s constitution.8 Furthermore,
it is obvious that the amount of water content and bulk density of
the soil samples would dictate their UCS. Therefore, based on
this assertion and the calculated correlation coefficients, the
choice of the domain variables is in order. Notably, some of the
input features, such as Na, Zn, and K, are negatively correlated
with the UCS, implying that their presence reduces the absolute
soil UCS value. On the other hand, a positive correlation

indicates that an increase in the input features would be in favor
of the soil UCS. In short, the higher the absolute correlation
coefficient between the input features and the soil UCS, the
better the performance of the models.
2.6. Optimizing Model Performance through Hyper-

parameter Tuning. The parameter optimization step is a
crucial phase in the establishment of an efficient machine
learning model. The optimization step allows the model to fit in
the input features with the soil UCS accurately and ensures the
generalization strength of the developed model.44 For SVR, the
selection of these parameters: epsilon, Kernel, gamma effects,
and the regularization parameter C affects the prediction
performance of the model.45 These parameters affect how well
the model performs in the following ways: The number of
support vectors and the margin of tolerance are determined by
epsilon. The application of linear regression methods is made
possible using a kernel to map a nonlinear function into a high-
dimensional feature space. The model may overfit when the
regularization parameter is large; thus, it should not be either
excessively large or small. On the contrary, a very small
regularization parameter does not sufficiently penalize the
training data. A trade-off between minimizing the model’s
intricacy and reducing the training error is ensured by the
regularization parameter. The simultaneous effect of varying
epsilon and the regularization parameter during the optimiza-
tion process on the R2 value of the UCS is presented as a contour
plot in Figure 6 for both the single and boosted SVR models.
For decision tree models, the tree’s depth is the most

significant component because it defines howmuch the tree may
subcategorize data according to the distinctive features of the
dataset. However, for the boosted SVR and DTR models, the
learning rates and the number of weak estimators are equally
important in building efficient models.46 This work employed
the test-set-cross-validation technique as the optimization
strategy. The method entails tracking each model parameter

Figure 4. Histogram representation of the remaining elements depicting the statistical distribution of the model descriptors for (a) O and (b) K, (c)
bulk density, and (d) water content.

Figure 5. Correlation strength between the input features and the soil
UCS represented by a heat map.
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separately and figuring out the RMSE in every situation. The
ideal values of the hyperparameters are the configurations with a
high correlation coefficient between the actual and predicted
values and the lowest RMSE values. The hyperparameters used
in the UCS prediction are given in Table 2. In each case, the
hyperparameters are the results of the cross-validation process
employed to determine the most suitable set of values.

3. RESULTS AND DISCUSSION
The results of the predicted soil UCS estimated using the two
weak learners and two strong learners are presented in this
section. The unconfined compressive strength of soils is an
important parameter used to determine the stability of earth
structures such as slopes, foundations, and retaining walls.
Machine learning and laser-induced breakdown spectroscopy
were simultaneously utilized to estimate the UCS of soils.
Specifically, two weak learners (SVR with a radial basis function
and DTR) and two strong learners (SVR-ADB and DTR-ADB)
were employed to develop the predictivemodels. The prediction

efficiency of the models was assessed using the correlation
coefficient, mean absolute error, mean squared error, and
coefficient of determination. Table 4 summarizes the perform-
ance metrics of the models. The results indicate that the DTR-
ADB model outperformed the other models, yielding the lowest
values of MAE (1.2834) and RMSE (3.98072) and the highest
R2 (0.9903). This suggests that the DTR-ADB model has
learned the pattern between the input descriptors and the target
variable, making it suitable for estimating UCS in the given soil
samples.
The influence of the model parameters on the overall model

performance was also investigated. The parameters considered
were the kernel type, epsilon, and regularization parameter for
the SVR-RBF models and the number of trees for the DTR
models as presented in Table 2. To validate the generalization
strength of the developed models, they were used to predict the
UCS of soils treated with cement and lime. The results showed
that the models were effective in predicting the UCS of the
treated soils, as evidenced by the low MAE and MSE values, as
presented in detail in the validation section of this paper. The
cross-plots between the actual and predicted UCS derived from
the SVR-RBF and decision tree models are shown in Figures 7
and 8, respectively. The plots show good agreement between the
predicted and actual UCS values, with most of the points lying
close to the 45-degree line. This further confirms the accuracy
and reliability of the developed models.
The two models show excellent agreement between the actual

UCS value and the predicted ones, as confirmed by the metric
performance indicators presented in the subsequent sections.
Furthermore, applying the concept of adaptive boosting

Figure 6. Variation of the R2 values with support vector regression hyperparameters epsilon and C represented by a contour map for (a) SVR testing,
(b) SVR training, (c) SVR-ADB testing, and (d) SVR-ADB training.

Table 2. Optimized Parameters for the Models

SVR SVR-ADB DTR DTR-ADB

C 1000 1000
epsilon 0.1 0.1
gamma 0.01 0.01
kernel RBF RBF
max depth 10 10
learning rate 0.1 1
estimators 25 50
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enhanced the performance of the DTR model as shown in
Figure 9. However, no significant improvement was observed
when the adaptive boosting method was applied to SVR, as
presented in Figure 10 and substantiated by the metric
performance indicators discussed in the subsequent sections.
The prediction accuracy and the generalization strength of the

four models developed in this paper were determined based on
acceptable metric performance indicators such as mean absolute
error, root-mean-square error, the correlation coefficient
between the predicted and experimental UCS, and the R2 value.

Equations 4−6 summarize the mathematical description of

such metric quantities:38

=
=N

Y YMSE
1

( )
i

N

1
act pred
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= | |
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Figure 7.Comparison of the soil UCS values predicted by the SVR-RBFmodel and experimentally measured values for (a) the testing part and (b) the
training part.

Figure 8. Comparison of the soil UCS values predicted by the DTR model and experimentally measured values for (a) the testing part and (b) the
training part.

Figure 9. Comparison of the soil UCS values predicted by the DTR-Adaboost model and experimentally measured values for (a) the testing part and
(b) the training part.
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N is the total number of data points, Yact represents the actual
value of the unconfined compressive strength, and Ypred
represents the predicted unconfined compressive strength.
The performance indicators (MAE, R2, CC, and RMSE) of

the four designed models are given in Table 3 for the testing

phase. It is worth noting that the boosted DTR model
outperformed the rest of the models in terms of the R2 value
and the correlation coefficient between the predicted and actual
UCS values. It also exhibited the lowest mean absolute error and
root-mean-square error values. This confirms its suitability for

the estimation of such a physical quantity owing to its ability to
efficiently model the complex relationship between the
elemental emission intensities (chemical property) and the
UCS. However, the performance of the boosted support vector
regression model is marginally less than that of the weak
learners, with R2 values of 0.9522 and 0.9528 for the SVR-ADB
and SVR, respectively. This simply shows that the inherent
complex relationships between the input features and the soil
UCS were adequately captured by the weak learner, thus the
marginal difference in performance and, therefore, needless to
implore the ensemble approach to save computational cost.
Both the SVR and DTR have performed excellently in
determining the unconfined compressive strength of the soil
based on the correlation between the experimental and
predicted data. Interestingly, all the metric performance
indicators follow a given pattern. For example, the DTR-ADB
exhibited the highest values ofR2 and correlation coefficient with
the lowest values of mean absolute error and root-mean-square
error as expected. On the contrary, the boosted SVR was
characterized by the lowest R2 and correlation coefficient with
the highest MAE and RMSE, as depicted in Figure 11.
The metric performance indicators for the training phase are

presented in Table 4. Interestingly, the weak support vector
regression learners exhibited the highest R2 value and coefficient
of correlation between the actual and estimated UCS values
during the training phase followed by the boosted SVR.
Although the DTR and DTR-ADB models performed less
than the SVR models during the training phase, their ability to
outperform the SVR models during the testing and validation
phases clearly demonstrates their generalization strength in

Figure 10.Comparison of the soil UCS values predicted by the SVR-Adaboost model and experimentally measured values for (a) the testing part and
(b) the training part.

Table 3. Model Performance Evaluators during Testing

SVR SVR-ADB DTR DTR-ADB

R2 0.9528 0.95228 0.98975 0.990396
MAE 2.4476 2.45238 1.5355 1.2834
RMSE 8.8229 8.87298 4.12494 3.98072
CC 0.97754 0.9773 0.99494 0.99519

Figure 11. Bar chart showing the measures of performance of the models during testing (a) and training (b).
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predicting the UCS of the unseen input dataset.47 The trend of
the model performance indicators at the training phase was
similar to the testing phase, with the SVR model exhibiting the
highest R2 value and CC with the lowest MAE and RMSE, while
on the other hand, the DTR model showed the lowest R2 value
and CC with the highest MAE and RMSE.
3.1. Validation and Applications of the Proposed

Models. In the previous sections, we discussed the develop-
ment of machine learning models using a dataset that was
divided into a ratio of 80:20. The larger portion of the
partitioned data was used to train the models, while the smaller
portion was used to test the models’ performance. To further
evaluate the developed models’ accuracy and generalization
strength, we applied the model to external soil samples that were
not previously consumed by the model. Specifically, we used
some cement-treated and lime-treated soil samples whose LIBS
emission intensities were not included in the training or testing
dataset. The application of the developedmodels to estimate the
UCS of the modified soil samples using the LIBS emission
intensities provided insights into the model’s generalization
strength. The models’ ability to accurately estimate the UCS of
treated specimens confirms their suitability to be employed in
estimating the UCS of any soil-related sample whose emission
intensities can be obtained under the LIBS system.
The results obtained from the external sample testing

indicated that the developed models could provide reliable

predictions of the UCS of treated soil samples. The models’
extrapolation ability beyond the training and testing dataset
confirmed their practical utility in soil mechanics and geo-
technical engineering applications.48 It is worth noting that the
external sample testing provided an opportunity to validate the
model’s performance under different soil conditions. The use of
cement and lime as stabilizers alters the soil’s characteristics and
behavior, making the estimation of UCS a challenging task.
Therefore, the ability of the developed models to estimate the
UCS of modified soil samples confirms their robustness and
reliability in estimating UCS under different soil conditions.
Furthermore, the external sample testing provided insights

into the factors that influence the models’ performance. The
analysis of the LIBS emission intensities of the treated soil
samples revealed that some emission lines were more
informative than others in estimating the UCS. The identi-
fication of the most informative emission lines can aid in the
selection of the appropriate spectral features to improve the
models’ performance. The developed models’ accuracy in
estimating the UCS of treated soil samples, as demonstrated
in the external sample testing, confirms their generalization
strength and suitability for use in estimatingUCS under different
soil conditions. This work highlights the potential of LIBS
emission intensities as a source of information for predicting soil
properties and provides a basis for further research in this area.

3.1.1. Investigating the Role of Cement as a Stabilizing
Agent. To study the impacts of soil stabilization with cement on
the model’s prediction capacity, some soil specimens were
treated with cement and passed to the LIBS system for elemental
spectral emissionmeasurements. Like the untreated samples, the
soil UCS was measured in the laboratory using the standard
procedure. On the other hand, the emission intensities of the
relevant elements, water content, and bulk density were
considered as input parameters to estimate the already

Table 4. Model Performance Evaluators during Training

SVR SVR-ADB DTR DTR-ADB

R2 0.999994 0.9989712 0.997748 0.999634
MAE 0.09944 0.1997737 0.713849 0.261605
RMSE 0.099709 1.3961107 2.065309 0.832292
CC 0.999999 0.99949 0.99887 0.999819

Figure 12. Validation plot comparing the soil UCS predicted by SVR (a,b) and SVR-ADB (c,d) models with the experimental values for different
concentrations of stabilizing agents.
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laboratory-measured UCS to validate the model. Figure 12b,d
shows the cross-plot between the estimated and actual UCS
values of cement-treated soil samples using SVR and SVR-ADB
models. Moreover, the cross-plots between the predicted and
experimental UCS values of cement-treated soil samples
obtained using DTR and DTR-ADB models are presented in
Figure 13b,d. It is interesting to note that all the models were
able to predict the unknown UCS values to an appreciable
degree of accuracy of more than 95% based on the correlation
coefficient between the predicted and experimental values. This
further demonstrates the suitability of the developed models in
predicting the soil unconfined compressive strength.

3.1.2. Investigating the Role of Lime as a Stabilizing Agent.
Investigating the physical properties of lime-treated soils using
artificial intelligence techniques is indeed crucial. This is because
such analysis is required to design and construct critical
infrastructures like dams, bridges, and residential buildings.
Lime-treated soils demonstrate improved stabilization, imper-
meability, load-bearing characteristics, and enhanced work-
ability, especially for soils beneath the road and similar works.
Lime is often employed at construction sites to dry wet soil to
improve the working surface and reduce downtime. It is,
therefore, imperative to develop an intelligent method like
machine learning to estimate the UCS properties of such
materials. Herein, the four developed models were individually
applied to predict the soil unconfined compressive strength of
the lime-stabilized samples. The input features were extracted
from the LIBS-generated elemental emission intensities of lime-
treated soil samples. The predicted soil unconfined compressive
strength exhibited high correlation coefficients with the actual
UCS values as depicted in Figure 12a,c for SVR and SVR-ADB
models. The predicted UCS values for the lime-treated soil
samples obtained from DTR and DTR-ADB are presented in
Figure 13a,c. The four models have shown great promise in

predicting the soil unconfined compressive strength of the lime-
stabilized soil samples based on the emission intensities
obtained from the LIBS system, water content, and bulk density
of the soil as input parameters.
3.2. Limitations of the Models. This section discusses

some limitations and challenges of the developed models for the
prediction of soil unconfined compressive strength based on the
LIBS emission spectra. Some of the limitations include the
following:

3.2.1. Dependency on Spectroscopy Data. The models rely
on laser-induced spectroscopy emission intensities as input
features. While spectroscopy data can provide valuable insights
into soil composition, it is important to note that the accuracy of
our predictions is contingent on the quality and representative-
ness of the spectroscopy measurements. Variations in the
measurement process, such as instrument calibration and data
preprocessing, can introduce uncertainties that may impact the
model’s performance.

3.2.2. Generalization to New Environments. The model’s
effectiveness in predicting soil unconfined compressive strength
may be influenced by the specific conditions and characteristics
of the training data. Generalizing the model to new environ-
ments or soil types that significantly differ from the training
dataset might require additional calibration or retraining to
ensure accurate predictions. The performance of the model in
such scenarios should be carefully validated.

3.2.3. Interpretability. While machine learning models offer
powerful predictive capabilities, some models, such as SVR and
Adaboost, may sacrifice interpretability for improved perform-
ance. Although our models provide accurate predictions, they
may not offer straightforward explanations for the underlying
relationships between the laser-induced spectroscopy emission
intensities and soil unconfined compressive strength. This

Figure 13. Validation plot comparing the soil UCS predicted by DTR (a,b) and DTR-ADB (c,d) models with the experimental values for different
concentrations of stabilizing agents.
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limitation may hinder the direct interpretation of the model’s
output and could be an area for further investigation.

4. CONCLUSIONS AND FUTURE SCOPE
In summary, the soil unconfined compressive strength was
estimated using the duo of the LIBS system and machine
learning techniques. Laser-induced breakdown spectroscopy
was employed to investigate the constituent elements present in
the multiple soil samples collected from different locations and
their respective concentrations. Subsequently, machine learning
techniques used the LIBS-generated emission intensities of
selected constituent elements, as well as soil water content and
bulk density, as the input features. Initially, a decision tree and a
support vector regressionmodel with a radial basis function were
used to predict the soil UCS. Consequently, the concept of
adaptive boosting of weak learners to create strong regressors
was used to improve the performance of each of the two models.
The R2 values obtained for SVR, SVR-ADB, DTR, and DTR-
ADB are 95.28, 95.22, 98.98, and 99.03%, respectively, during
the testing phase. This indicates that the DTR-ADB model
outperformed the rest of the models in predicting the soil UCS.
The models were validated by studying external systems whose
data were not involved in the training and testing phases. The
specimens were further stabilized with lime and cement to
improve their strength. The LIBS emission intensities of such
cement- and lime-treated samples were used to predict their
UCS to confirm the validity of the models and ensure their
generalization strength. The high degree of accuracy achieved in
the prediction of soil strength using the developed models
highlights their potential for application in geotechnical
engineering. For future works, it will be imperative to take
into account the concept of feature selection to minimize the
number of input descriptors and lower the computational cost.
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