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Abstract

The full understanding of the mechanisms underlying transcriptional regulatory networks requires unravelling of complex
causal relationships. Genome high-throughput technologies produce a huge amount of information pertaining gene
expression and regulation; however, the complexity of the available data is often overwhelming and tools are needed to
extract and organize the relevant information. This work starts from the assumption that the observation of co-occurrent
events (in particular co-localization, co-expression and co-regulation) may provide a powerful starting point to begin
unravelling transcriptional regulatory networks. Co-expressed genes often imply shared functional pathways; co-expressed
and functionally related genes are often co-localized, too; moreover, co-expressed and co-localized genes are also potential
targets for co-regulation; finally, co-regulation seems more frequent for genes mapped to proximal chromosome regions.
Despite the recognized importance of analysing co-occurrent events, no bioinformatics solution allowing the simultaneous
analysis of co-expression, co-localization and co-regulation is currently available. Our work resulted in developing and
valuating CluGene, a software providing tools to analyze multiple types of co-occurrences within a single interactive
environment allowing the interactive investigation of combined co-expression, co-localization and co-regulation of genes.
The use of CluGene will enhance the power of testing hypothesis and experimental approaches aimed at unravelling
transcriptional regulatory networks. The software is freely available at http://bioinfolab.unipg.it/.
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Introduction

The maintenance and modulation of cellular activities is a

complex process controlled by the co-ordinated expression and

action of different gene networks. This composite process is

regulated by a higher-order genome structure arranged into

transcriptional regulatory modules. Understanding the organiza-

tion of these networks is crucial for elucidating how different gene

combinations work together in accomplishing distinct cellular

functions. Although genome-wide transcriptional analysis and in

general genome high-throughput experimental technologies are

producing a vast amount of information, the relationships existing

amongst genome organization, gene regulation and the diverse

facets of cell activity still remain largely unknown.

Experimental observations indicate that genes sharing similar

expression patterns are correlated either from a functional or

evolutionary standpoint [1,2,3]. A key question regarding co-

expressed genes is whether they are under common transcription

regulatory controls (i.e. gene co-regulation), that is, genes that by

sharing common cis-regulatory elements in their promoters are

highly likely controlled by the same transcription factors.

Recent experimental evidence revealed that transcription

regulation may reflect also an underlying chromosomal gene

positional order [4,5,6,7,8]. Interestingly, in several eukaryotic

organisms, functionally linked and co-transcribed genes have been

reported to cluster together in physical proximity unravelling a

gene organization with operon-like features, i.e. co-regulation of

neighbouring genes [9]. This is supported by the observation that

proximity of co-expressed genes does not occur randomly, but

rather underlies a selection process involving genes working

together in signalling and metabolic pathways [9,10,11,12,13,14].

Consistently, experimental investigations revealed that functionally

related, co-localized genes show higher probability of being co-

expressed than random pairs of genes [15,16,17]. The existence of
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a non-random organization of the genome has been confirmed by

the observation that co-localized genes targeted by the same

transcription factor are subjected to stronger co-regulation when

compared to randomly distributed targets [18]. It has been

proposed that the complex eukaryotic transcriptional regulatory

mechanism has imposed a significant constraint on gene positional

organization along and across eukaryotic chromosomes [19].

Clusters of co-expressed and co-localized genes have been

recognized as playing key roles in a number of functional

pathways and adaptive responses including organism develop-

ment, differentiation, disease states and aging.

Although the importance of identifying genes localized in close

proximity to each other on the chromosome (gene positional

clusters) is widely recognized as a means for unravelling

unsuspected functional and transcriptional clues, only few

bioinformatics tools and methods are available to support the

analysis of large-scale gene datasets [5,20,21,22,23,24]. However,

they do not allow the investigation of relationships between

positional organization of genes within the genome and transcrip-

tion control. Current methods for the analysis of genome-wide

expression data allow to determine which genes show similar

increased or decreased expression profiles (i.e. co-expression) in a

specific experimental condition, over a number of conditions or

throughout a time course. To identify transcriptional networks, co-

expressed genes are searched at a later stage for locating common

transcription regulatory controls (i.e. co-regulation). Recently,

many transcription factor predictor tools have become available.

They mostly focus on searching for transcription factor binding

sites (TFBS) by using position specific scoring matrices (PSSMs)

[25,26] and by using a comparative genomic approach to identify

conserved sequences among homologous promoters, namely

phylogenetic footprinting [27,28,29,30,31]. At present, these

approaches still suffer from a high rate of false positive and false

negative results. It has been estimated that only 10% of the overall

predictions matches to biologically functional binding sites [32].

Integrated approaches using both TFBSs search methods (PSSMs

and Phylogenetic footprinting) and gene expression data were

recently implemented, leading to a dramatic improvement in

specificity while identifying over-represented TFBSs in sets of co-

expressed genes [33,34]. Interestingly, integration of gene expres-

sion data has been demonstrated to increase TFBSs prediction

specificity, namely enrichment of functional binding sites versus

false positives [33]. Another interesting approach [35] attempts at

identifying regulatory modules and their cognate regulators from

gene expression data using the module network algorithm;

although of remarkable importance, the method is characterized

by potential limitations, such as: transcription factor post-

transcriptional modifications, low regulator expression variation,

or the identification of only one regulator out of potentially many.

Here we report on the development of the first standalone

software application named CluGene for the identification of co-

regulated, co-localized and co-expressed genes.

CluGene integrates gene expression analysis profiling with

automated search and identification of co-expressed and co-

localized genes while searching for transcriptional regulatory

modules. The software combines a number of pre and post

processing functionalities together with statistical tools that

significantly facilitate and expedite the analysis of gene network

co-regulation on a global scale. In addition, CluGene provides a

plug-in mechanism so that user-defined functionality can be

seamlessly integrated within the software framework, allowing the

replication of a multitude of literature algorithms and approaches.

Materials and Methods

In this section CluGene main functionalities will be described.

Further details and more technical details are reported in Text S1.

CluGene is available for download from the website of the

Bioinformatics Laboratory (BioInfoLab) at the University of

Perugia (http://bioinfolab.unipg.it/) and can be freely used for

research purposes. CluGene is implemented with the Java Web

Start technology and can run on any operating system (Windows,

Mac or Linux) where the Java Runtime Environment (JRE) is

installed (version 1.6 or higher is required).

2.1. Architecture and Basic Principles of Operation of
CluGene
A typical CluGene work session revolves around a project where

gene-related data is managed, analyses are run, and results are

generated and visualized. Projects can be saved to files so that any

work session can be restored at a later time.

Within a project, gene-related information is collected into one

or multiple gene datasets. Essentially, a gene dataset is a list of

ENSEMBL geneID names; however, the dataset is structured so that

additional information can be associated to each gene, depending

on current analysis needs, such as: the chromosome the gene maps to;

the genomic localization, its DNA strand orientation, its promoter,

one or multiple transcription factors matching the promoter and one

or multiple expression levels as obtained by multiple sources including

microarray, EST, qRT-PCR, SAGE, RNA-seq, or other high-

throughput sequencing techniques.

A typical work session begins by creating a new project and by

importing one or more user-defined lists of geneIDs from CSV or

Excel files. The following organisms are currently supported by

CluGene: Anopheles gambiae, Culex quinquefasciatus, Aedes aegypti,

Drosophila Melanogaster, Homo sapiens, Mus musculus, Caenorhabditis

elegans, Saccharomices cerevisiae, Plasmodium falciparum and Plasmodium

berghei; multiple organisms can be managed in a single CluGene

project. Additional organisms retrieved from Biomart can be

included in CluGene, the process is rather easy, and can be done

upon user request to the developers. The possibility of letting the

user update the set of organisms within CluGene is being

considered for future releases of the software.

In CluGene chromosome names, positional information,

promoters and transcription factors are automatically retrieved

from online web-services, while expression levels must be loaded

into the project from user-defined CSV files. Genomic expression

data coming from any online source can be imported into

CluGene, as long as it is first formatted into properly structured

input files. It is the user’s responsibility to make sure that

expression data coming from heterogeneous sources is compara-

ble. This can be achieved by applying several known techniques

for normalizing data, e.g. turning expression raw data into fold-

changes with respect to given controls.

2.2. Functionality Provided by CluGene
CluGene provides multiple options for operating on gene

datasets. These can be conveniently organized into the following

macro-categories:

2.2.1. Name-based gene dataset processing. This catego-

ry contains functions aimed at processing lists of genes with set

operations (merge, intersect, subtract).

2.2.2. Expression-based gene dataset processing. This

set of functions allows the analysis of gene datasets by taking into

account expression-related information. The following main types

of operation are possible: 1) adding to the current dataset gene

expression information loaded from different sources; 2) searching,

CluGene: Gene Expression, Regulation, Localization
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sorting and visualizing genes based on expression levels; 3)

combining multiple expression levels into single scalar values; 3)

filtering datasets based on expression thresholds; and 4) comparing

datasets based on expression levels. In Figure 1a an illustrative

visualization of genes with multiple expressions is shown, where

colour is used to indicate expression level. In Figure 1b an

illustrative interactive dialog is shown for gene filtering based on

expression level thresholding and Boolean combination of

expressions.

2.2.3. TF-based gene dataset processing. This category of

functions operates with transcription factors (TF) and with TF

related information including promoter sequences and transcrip-

tion factor binding sites retrieved from different online web-

services. See Text S1 for detailed information on used web

services. For each gene it is possible to identify the position, the

number and the identity of the TFBS, and consequently deduce

which TFs can interact with them (Figure S1a). The software also

allows the reverse search, e.g. by selecting a TF and searching for

all the putative promoter sequences containing the corresponding

TFBS, which are returned by the software together with their

associated recognition frequencies (Figure S1b). Finally, distinct

datasets can be compared in terms of predicted TF binding sides

(Figure S1c).

2.2.4. Position-based gene dataset processing. Functions

are provided for retrieving gene position in the chromosome and

gene length; for retrieving the local density of genes along each

chromosome, for computing what percentage of a chromosome is

represented by a set of genes; for computing the min, max and

average lengths of the genes within a chromosome; the min, max

and average distance between consecutive genes in a chromosome,

etc. In Figure 1c an interactive window is shown where a

chromosome is visualized along with the local gene density plot

(see later for details) together with statistical information compar-

ing the selected chromosome with the rest of the genome. Datasets

can be processed by positional clustering analysis (i.e., identifica-

tion of groups of genes -clusters- that are in close proximity with

each other in the chromosome). This is an example of co-occurrence

analysis (in this case specifically addressing co-localization) and

represents a typical application for which CluGene has been

designed.

2.2.5. Multi-attribute gene dataset processing for co-

occurrence analysis. This group of functions embodies the

main innovative features of CluGene, i.e. the capability of

analysing co-occurrences (co-localization, co-expression and co-

regulation) of genes-related observations for studying transcrip-

tional regulatory networks. These functions revolve around gene

clustering, i.e. a set of statistical methods for collecting genes into

groups (clusters) based on similarity of attributes. The approach

followed by CluGene is designed around the following routines:

N Pre-processing of the gene dataset. Genes are filtered out using

thresholds of expression levels, or by rejecting those genes that

either do not contain specific TFBS, or whose corresponding

sequences are too short or too far apart, etc. Filters can be

customized by taking into account expression, regulation and

localization information to better focus on more interesting co-

occurrences;

N Application of positional clustering. Genes are collected into clusters

based on mutual proximity in the chromosome (i.e. co-

localization). Clustering can be also driven by additional

measures of similarity that take into account expression level

and/or TF-related information, in order to obtain groups of

genes that are co-localized, co-expressed and co-regulated.

N Post-processing and analysis of gene clusters. The clustering results are

filtered based on different thresholding criteria that include

expression, regulation or position; statistical analyses are

performed to determine the significance of the identified

clusters in the specific application context.

In the following sections details are provided on positional

clustering and analysis of clustering results.

2.3. Gene Positional Clustering
Positional clustering plays a central role in the analysis of gene

co-occurrences. It operates in different ways, depending on the

following customised configurations:

2.3.1. Gene distance metric. Genes are grouped according

to similarity assessed by a distance metric, which is a function that

defines how gene attributes should be accounted for and combined

in order to obtain a quantitative measure of similarity.

For all the distance metrics implemented by CluGene, the

starting point of a gene is the starting point of the first exon of any of

the transcripts for that gene; the end point is the position of the last

exon of all the transcripts that belong to that gene. In Biomart, the

coordinates do not change for the 21 strand.

The distance metrics have all constant algorithmic complexity

O(1), and are the following:

N positional (default): the distance of two genes is the distance

between their starting points in the chromosome; where the

starting point coordinates are directly taken from the default

Biomart output (which does not make any difference between

forward and reverse strands) [5];

N functional: the distance of two genes is the distance between the

positions of their respective promoters; the promoter is

physically located at the starting point of the gene; however,

to take into account the behaviour of Biomart which reverses

the genes on the 21 strand, the coordinates of the end point of

those genes are used as the promoter positions;

N centre of genes: the distance of two genes is the distance of their

two centres;

N intragenes: the distance of two genes is the minimum distance

between them (i.e. the distance between the starting point of

the second and the ending point of the first)

2.3.2. Gene distance weighting strategy. Weighting strat-

egies can be used to modify the distance metric so that it takes into

account also other gene attributes. The weighting strategies

implemented by CluGene are the following:

N uniform weighting: weights are not used.

N density based: this technique tries to capture the concept that a

simple gene distance measured in bp (base pairs) may have

different functional relevance depending on local gene density.

See again Fig. 1c for an example plot of a density function for a

chromosome.

N expression based: the overall similarity of two genes depends on

both their actual proximity on the chromosome, and on the

similarity of their expression levels. Two options are available

for considering expression similarity. When multiple expres-

sions are available for each gene, and these can be assumed to

have a normal distribution within each set, the ANOVA can

be used to test the equality of the means among the different

groups. The p-value resulting from the test is complemented

and used as a weight. Alternatively, a custom weighting

function has been designed that works both with multiple and

single expression values.

CluGene: Gene Expression, Regulation, Localization
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N transcription factor (TF) based: promoters recognized by the same

TFs significantly affect the overall similarity of two genes. To

implement this behaviour, the list of TFs for each gene is

retrieved, then the number of shared TFs between the two

genes is computed (by intersecting the two lists) and

transformed into a weighting factor.

N user-defined: a plug-in mechanism implemented within CluGene

allows users to define their own weighting functions, which can

Figure 1. Expression-based gene dataset processing and Position-based gene dataset processing. (a). An example visualization of genes
with multiple expressions is shown. Expression levels are depicted by the means of different colours (black = 0, gray = not available, from green to
red = increased expression values). Data are referring to transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles
gambiae [74]. The 5 different expression datasets are referring to (1st, 2nd, 3rd larvae stages, pupae and adults). (b). An example interactive dialog is
shown for gene filtering based on expression level thresholding and Boolean combination of expressions. (c). An example interactive window is
shown where a chromosome is rendered along with the local gene density plot. Different functions are available for retrieving gene position in the
chromosome and their lengths; for retrieving the density of genes along each chromosome, for computing what percentage of a chromosome is
represented by a gene dataset; for computing the min, max and average lengths of the genes populating a chromosome; the min, max and average
distance between consecutive genes in a chromosome, etc. The dataset considered in this example is the Anopheles Gambiae genome.
doi:10.1371/journal.pone.0066196.g001
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make use of any available gene information (expression, TFBS

similarity, chromosome local density, etc.).

2.3.3. Clustering algorithm. The last parameter that can be

selected for gene positional clustering is the type of clustering

algorithm. Three options are provided by CluGene:

– Clustering by sequential gene processing

– K-means clustering

– Max-gap Clusters by Multiple Sequence Comparison

In clustering by sequential gene processing, genes are scanned

sequentially according to the order they are located in the

chromosome. For each gene, its (weighted) distance to the previous

is computed. If such distance is below a predefined threshold, then

the gene is added to the same cluster of the previous one, otherwise

it forms a new cluster. It is important to point out that the

threshold is applied to the weighted distance, therefore it must be

chosen with care to keep into account also the effects of the

weights. This clustering algorithm is the evolution of a previous

implementation by the authors [5]. Since genes are ordered by

position in the chromosome it is sufficient for the algorithm to

check only one pair of adjacent genes at a time, and so the

complexity of this algorithm is O(n) where n is the number of

genes, the complexities of the distance metric evaluation and

distance weighting function should be added to that in order to

obtain a final figure of the overall complexity of the procedure. As

a final consideration, it should be noted that one of the

combinations available within CluGene, namely positional clus-

tering with density-based weighting, shares many similarities with

general-purpose density-based clustering algorithms such as

DBSCAN [36] and in particular OPTICS [37]. However, the

positional clustering algorithms implemented within CluGene can

take full advantage of the fact that distances (and density) are

computed over a one-dimensional space (i.e. along the chromo-

some), which ultimately leads to an algorithmic complexity of

O(n), a significant improvement over the typical O(n2) of

DBSCAN and OPTICS.

The second clustering algorithm available in CluGene is K-

means clustering. The k-means algorithm is a popular solution for

partitioning the items of a dataset into k clusters based on

similarity of item attributes. For gene clustering, once a proper

distance metric (and weighting function, if required) is defined, the

k-means algorithm can be used straightforwardly.

Differently from clustering by sequential gene processing, in this

case individual chromosomes are not scanned, and no distance

threshold must be manually defined. Typical of k-means

algorithms, the operator is asked to input the number of desired

clusters k that should be located in the dataset. In addition,

CluGene provides also an implementation of the method by [38],

which is used to predict the optimal number of clusters, which k-

means should search for. After having set the number k of clusters

to be found, the k-means algorithm consists of an iterative process

where gene groups are initially formed and increasingly refined.

The process starts from an initial assessment regarding the

positions of the cluster k centroids: at each iteration all the genes

are assigned to a cluster, then the centroids are updated according

to the updated cluster contents, and the process is repeated until

either the centroids have converged to stable positions, or until the

maximum number of allowed iterations is reached. The most

critical aspect of k-means is in the initial guess of cluster centroids;

for this reason, multiple solutions are implemented in CluGene, as

listed in the following:

N random [39]: k random points are chosen among all valid genes

positions;

N uniform: k points uniformly distributed on the chromosome are

chosen, even if not assigned to valid genes;

N plusplus [40]: to spread the k initial centroids away from each

other, the first is chosen from a uniform random distribution

on gene positions, and each other one is chosen from the

remaining positions with probability proportional to its

squared distance to the closest existing centroid.

If the plusplus initialization is chosen, the k-means algorithm is

guaranteed to find a solution that is O(log k) competitive to the

optimal k-means solution.

The third clustering algorithm available in CluGene imple-

ments the method known as: Max-gap Clusters by Multiple

Sequence Comparison. This algorithm implements the proposal

originally from Xu Ling, Xin He and Dong Xin [21]. Our version

of algorithm works on pairs of genomes which have orthologous

genes in common. Information about orthologous genes is

retrieved from Biomart. Given a dataset of one of the supported

genomes the user can specify three parameters:

N Maxgap: maximum number of non-orthologous genes between

two genes in a cluster;

N Minsize: minimum size (number of genes) in a cluster;

N Comparison organism: the other organism type on which

orthologous should be computed.

The algorithm is based on the following steps:

N all orthologous genes, ordered by chromosome position, are

computed and genes without an orthologous are removed;

N for each pair of genes in the dataset, they belong to the same

cluster if and only if the distance between the two genes

computed as the number of non-orthologous genes between

them is lower or equal to maxgap;

N all clusters with less than minsize genes are discarded.

Currently the Maxgap method within CluGene only supports

the genomes of Anopheles Gambiae and Drosophila Melanogaster.

An exemplifying cluster analysis session within CluGene is

illustrated in Figure 2, based on sequential gene processing,

functional distance metric and a weighting function combining

local density and TF similarity.

2.4. Analysis of Statistical Significance of Gene Clusters
CluGene offers functions for post-processing the clustering

results in order to highlight significant aspects. Two main

alternatives are provided: comparison to a random set, and neighbourhood

model and clustering statistics.

2.4.1. Comparison to a random set. The clustering results

obtained from the available dataset are compared with the results

of the same clustering process applied to a random set of genes.

The goal is to see whether the clustering of the available genes

produces a number of clusters which is significantly different than

what could be obtained by aggregating random genes. To perform

this analysis, CluGene needs to produce an alternative set

containing a random set of genes, as large as the original set

(size: n). The random set is created by randomly extracting n genes

from a user-selected set (size.n). No constraints are imposed on

the choice of such set, which may or may not even contain some or

all the genes of the dataset being scrutinized. Once the random set

is ready, CluGene runs the same clustering analysis that was

performed onto the original dataset and the entire process

CluGene: Gene Expression, Regulation, Localization
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Figure 2. An example of cluster analysis session within CluGene, based on sequential gene processing, functional distance metric
and a weighting function combining local density and TF similarity. Clusters are visualized as oval-shapes calculated on the different
chromosomes; information concerning the number of clusters and the number of clustered genes is also provided, along with the minimum, average
and maximum number of genes present in the clusters, and the minimum, average and maximum distance (bp) between clustered genes and
clusters. Detailed information of the distribution of cluster sizes is provided as well. For each cluster, it is possible to visualize the number of contained
genes, together with their location and the list of TFs with their associated frequencies. Besides, it is possible to visualize, for entire clustered dataset,
the calculated TFs together with associated frequencies. For each TF it is possible to identify the number of recognized target genes and the relative
number of clusters. Once a TF is selected, the clusters positive for the specified TF are interactively highlighted in red whereas negative clusters
remain blue (default colour).
doi:10.1371/journal.pone.0066196.g002
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(selection of random genes and clustering) can be repeated

multiple times. Once the process is finished, the results from

clustering of random genes are aggregated and compared with the

‘‘real’’ clustering results. The comparison is done through

hypothesis testing: CluGene provides the one-sample t-Student

test to compare number of clusters. Ideally, for the ‘‘real’’

clustering to be significant, a different number of clusters should be

generated in the ‘‘real’’ case with respect to the random case, and

such difference would be statistically significant (low p-value). In its

current implementation, CluGene can only assess if the number of

clusters in the test case is significantly larger than the random case,

and if such difference is statistically significant (one-tailed, one-

sample t-test). This approach may be limited, and may fail to flag

as interesting those cases where the opposite happens (e.g. gene

sets belonging to the same functional pathway may be more likely

be localized within the same cluster). Future CluGene implemen-

tations will consider the adoption of a two-tailed test to assess

significant differences, regardless of the sign. Also, a more

complete offering is planned for future implementations of

CluGene, which includes non-parametric tests, as equally viable

and sometimes preferable alternatives to parametric tests such as

the one-sample t-test. In the current implementation, any other

test which is not the one-sample t-test can still be performed, but

this requires manually exporting the CluGene results into separate

software applications.

2.4.2. Neighbourhood model and clustering

statistics. CluGene implements an additional algorithm to test

statistical significance of the computed clusters, as originally

defined by Li et al [23]. In a sense, this is similar to the previous

comparison to a random set. For each chromosome, the mean

number of adjacent genes in a random arrangement and the

standard deviation is computed.

Results

In order to study the capabilities of CluGene we performed two

different analyses (case studies) testing the different clustering

algorithms and analysis tools of CluGene. Organisms of the

genuses Homo and Plasmodium were used in the validation process.

3.1. Case Study 1: Co-localization of the Binding Sites of
Oct-1, c-REL, NF-KappaB, IK-1, BSAP and CP2
Specific transcription factors contribute to immunoglobulin and

other relevant genes expression crucial for B cell development and

function. They include octamer-binding transcription factor 2

(Oct-2), B cell Oct-binding protein 1 (BOB.1), B cell–specific

activator protein (BSAP), BCL-6, MUM1/IRF4, PU.1 (also

known as Spi-1), Oct-1, c-REL, NF-KAPPAB, IK1 and CP2

[41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57]. Unbalance

in the synthesis of these transcription factors or the presence of

mutations can lead to suboptimal activation of immunoglobulin or

of other relevant gene promoters in different B cell tumors

[43,58,59,60] [61,62,63]. B-cell transcription factors show diverse

expression patterns in different lymphomas (i.e. Hodgkin lympho-

ma (CHL) from diffuse large B-cell lymphoma (DLBCL) [41] or in

non–germinal center small B-cell lymphomas [57] (a heteroge-

neous group of non-Hodgkin lymphomas).

Being able to carry out a detailed stratification analysis based in

the identification of individual combinations of transcription

factors would be of great clinical value in terms of diagnosis,

prognosis and response to therapy.

To test the capability of CluGene in disclosing networks of co-

regulated genes, the human genome data and whole genome

arrays from diffuse large B-cell lymphoma (DBLCL) specimens

were considered.

3.1.1. Datasets for the diffuse large B-cell lymphoma. In

previous work [64], a combined approach of transcriptional

profiling and gene set enrichment analysis had highlighted the

existence of three distinct DLBCL sets containing a significant

number of functionally related genes, referred to as: oxidative

phosphorylation (OXPHOS), B-cell receptor/proliferation (BCR/prolif-

eration) and host response (HR) (downloadable from http://www.

broadinstitute.org/cgi-bin/cancer/datasets.cgi). The human gene

IDs in the Ensembl format were obtained using Clone/Gene ID

converter [65].

3.1.2. Identification of the main TFBS motifs. We first

investigated which of the annotated B cell TFBS motifs were

represented in the promoter sequences of the three gene subsets.

The putative promoter regions needed for the functional distance

metric were retrieved directly from Biomart and correspond to the

1000 bp flanking the 59 end of each gene. According to the

MatchTM prediction functionality provided by CluGene the

binding sites for transcription factors Oct-1, NF-KAPPA-B, IK-

1, c-REL, BSAP and CP2 occurred in the promoters of the three

subsets with different frequencies (Figure S2a). In particular, in the

OXPHOS subset, the Oct-1 TF showed the highest number of

binding sites. For assessing whether the presence of such a high

number of binding sites had a functional significance, we

compared the result with the number of Oct-1 TFBS found in a

dataset of genes randomly extracted from the human genome. The

random gene set (same size of the original dataset) was generated

through the functions available within CluGene, and analyzed

with the same MatchTM prediction function. All the results were

exported from CluGene in order to apply the one-sample

Student’s t-test provided by a commercial statistical software

application (SPSS) to test for significant differences between the

study and random datasets. The test showed that the higher

number of Oct-1 TFBS found for the real dataset was significantly

different from the amount of binding sites found for the random

set (Figure S2b).

3.1.3. Dataset clustering behavior under the application

of different distance metrics. To begin analyzing the

relationships between co-regulation and co-localization, a first

investigation was aimed at identifying interesting clustering

behaviors of the datasets subjected to sequential clustering, under

the application of three main distance metrics implemented within

CluGene:

N first metric: positional with no weights;

N second metric: functional (promoter distance), weighted by

local density;

N third metric: functional (promoter distance), weighted by local

density and TF similarity.

A threshold value of 83,000 bp [66] on the distance metric was

adopted as the rule for cluster formation for all strategies. The

number of identified clusters was tested for statistical significance

with one-sample t-test (through a function available within

CluGene) against a random set of genes. Since the population

may be nonnormal the power of the one-sample t-test may be

slightly reduced, albeit not that much, given the sample size. The

third metric generated a significantly larger number of clusters

compared to the random set (Figure 3a), this applied consistently

for all three datasets. Also, CluGene post-process analysis of the

clusters produced with the third metric showed that a high

percentage of genes targeted by the selected list of TFs are co-

localized within the genome (Figure 3b).
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The application of the third metric highlighted also that in the

HR subset there is the highest percentage of genes (45.17%),

which can be found in large clusters (defined as clusters containing

three or more genes). A histogram showing the frequency

distribution of clusters is shown in figure 3c. This preliminary

result may indicate that the HR subset is under transcriptional co-

regulation by the same set of TFs.

To better investigate the benefits of utilising the third metric

(promoter distance, weighted by local density and TF similarity),

we considered the identified B cell transcription factors (Oct-1,

NF-KAPPA B, IK-1, c-REL, BSAP and CP2) and the co-

localization of their cognate target genes along the genome.

Notably, a higher amount of co-localized positive annotated B-cell

transcription factors target genes was identified with the third

metric (Figure 4) compared to the application of simple positional

clustering (first metric). In particular, with slight variations

depending on the subset, the percentage of genes, originally

predicted as targets for the TFs and found in clusters obtained with

the third metric reached 70%, while the same percentage obtained

through simple positional clustering was not higher than 18.8%.

This result suggests that DLBCL co-regulated genes are physically

associated in clusters. Such clusters are more subtly defined than

what can be detected by means of proximity alone. The

percentages of TF target genes found in the clusters are shown

in Figure S3.

3.1.4. Investigations on the co-localization of the binding

sites of the selected TFs. We also investigated whether Oct-1,

c-REL, NF-KappaB, IK-1, BSAP and CP2 co-localize themselves

within the same genomic sites, which may imply a possible co-

operative regulatory effect. Again by using the functionality

provided within CluGene, we investigated if specific pairs of TFs

would co-occur more frequently than others within clusters. As a

starting point, the clustering results obtained with the more

promising third distance metric were considered. The analysis

specifically highlighted a statistically more frequent co-occurrence

of Oct-1 with c-REL and CP2 as judged by the contingency tables

created to compare any two pairs in terms of number of clusters

featuring them (Figure 5); contingency tables were created to

compare any two pairs of genes in terms of number of clusters

featuring them, to see whether specific pairs of TFs appeared more

often within the same clusters. The contingency tables were

created using the GraphPad QuickCalcs Web site (http://www.

graphpad.com/quickcalcs/Contingency1.cfm). However the test

for statistical significance of this result, which was based on

running within Clugene the same type of analysis on clusters

obtained from random genes, did not pass. While it is yet unknown

if the observed associations might ultimately provide a contribu-

tion to the understanding of B-cell lymphomas pathogenesis, it is

interesting to note that the identified co-occurrences include genes

which have been already recognized as being part of the same

functional pathways in large B-cell lymphoma, and this finding

applies to all three different DLBCL subsets.

3.1.5. Identification of specific diagnostic markers of

DLBCL. Additional investigations were made on the datasets

with the ultimate aim of providing support to the studies

addressing the identification of specific diagnostic markers of

DLBCL. As pointed out by Monti and co-authors [64], the HR

subset represents an interesting source of potential treatment

targets as a consequence of the role of the immune response

featuring this DBLCL subset. To this aim we have applied the

same distance metric illustrated above (promoter-based distance

metric with weights based on local density and TF similarity) to the

genes of the HR subset, and then we used CluGene functions to

compute the average number of TFBSs located within the

promoters of the clustered genes. Interestingly, this analysis

indicated that both Oct-1 and NF-Kappa B had -on average-

more than two regulatory cognate site regions per promoter

(Figure 6a). Then, by investigating the percentage of clustered HR

genes, which had also the signature of immune/inflammatory

response, we were able to estimate the number of immunity-

annotated genes that mapped to proximal chromosomal locations

(figure 6b). Interestingly almost 40% of the immune markers

appeared to be co-localized.

Finally, we examined whether co-regulated and co-localized

genes in the HR subset would also show similar expression levels,

which may indicate similar transcriptional activity.

Previous literature work had outlined that co-localized, TF

target genes are subjected to tighter co-regulation compared to

Figure 3. Different clustering behaviours of the DLBCL subsets subjected to sequential clustering and different distance metrics.
(a). The one sample t-test was used to validate the statistical significance of the number of clusters found in the test datasets, vs. number of clusters
found in random datasets. (b). % target genes found in clusters with: simple positional distance metric, functional with local density and functional
with local density and TF-similarity. (c) A histogram showing the frequency distribution of clusters is shown.
doi:10.1371/journal.pone.0066196.g003

Figure 4. Percentage of of co-localized positive annotated B-
cell transcription factors. Percentage of Oct-1, NF-KAPPA B, IK-1, c-
REL, BSAP and CP2 target genes found in clusters obtained with the
functional distance metric weighted by local gene density and TF
similarity and with the simple positional distance metric, out of the total
amount of recognized TF target genes.
doi:10.1371/journal.pone.0066196.g004
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isolated genes, and genes being co-regulated by common TFs tend

to have a similar expression profile [18,35,67].

For each DLBCL transcription factor identified as illustrated

above, we first separated co-localized genes being recognized by

that TF (test group) from those that although being co-localized

were not recognized by it (control group). Since some of the

expression profiles for the two groups were nonnormal, for each

TF we compared the gene expression profiles of the two groups

using the Mann-Whitney U test at a threshold of p,0.05 (SPSS

Statistics v.17.0).

Notably, co-localized genes containing both Oct-1 and IK-1

binding sites showed statistically significant difference in the

expression patterns (higher expressions) when compared to the

control group (Mann-Whitney U test pOct-1 = 0.03; Mann-

Whitney U test pIK-1,0.01) (Figure 7a). This behaviour was not

shared by the other TFs (NF-KAPPAB, c-REL, BSAP and CP2),

which did not show expression differences between the two groups.

To investigate whether gene co-expression was a consequence

of either sharing specific transcription factor binding sites; or being

in chromosomal proximity, we compared the expression profiles of

Oct-1 target genes that showed co-localization patterns with those

that did not show such pattern by using the Mann-Whitney U test

at a threshold of p,0.05. Notably, Oct-1 co-localized target genes

differed in their expression –higher expression- from those that

were not co-localized (Mann-Whitney U test p = 0.017) (Figure 7b).

Taken all together, these results suggest that co-localized genes

are more likely to be co-regulated than isolated genes. As the

observed correspondence between co-regulation and co-localiza-

tion was not shared by all examined TFs, we expect that not all

annotated TFs have a stringent or relevant role in DLBCL or

either that the changes in expression patterns are not sufficient to

be detected.

As a side note, it should be pointed out that another valid non-

parametric test that could have been adopted for the investigations

illustrated above is the Kolmogorov-Smirnov (KS) test. While the

KS test is capable of detecting a wider array of differences in the

shape and localization of two distributions, in this specific case, we

were only interested in simple comparisons of the means of

expression values (i.e. figuring out whether one group would have

significantly higher expression patterns than the other), which is

why the Mann-Whitney U test was adopted.

3.2. Case Study 2: Specificity of Genes Containing the
Host Targeting (HT) Motif in P. Falciparum
To investigate the capabilities of CluGene clustering algorithms,

we first analysed the entire genome of Plasmodium Falciparum by

considering genes having different cellular localization attributes.

Genes exhibiting different localization attributes were downloaded

from PlasmoDB website (http://plasmodb.org/plasmo/), using

the following queries: (i) Genes with signal peptide [68]: genes that

are predicted with the of signal peptide cleavage sites in amino

acid sequences, predictions are made with the SignalP program;

(ii) Genes with transmembrane domains [69]: genes with at least a

transmembrane helix in encoded proteins, prediction are made

with the TMHMM2 program; (iii) Apicoplast Genes [70]: genes

targeted to the apicoplast membrane, a derived non-photosyn-

thetic plastid found in most Apicomplexa; (iv) Genes with Host-

targeting (HT) motif [71]: genes with sequence motifs identified by

Hiller and co-workers [71] as being associated with proteins

secreted to the human erythrocyte. Proteins secreted to the host

erythrocyte represent important modulators of the antigenic and

adhesive modifications in the infected erythrocytes [71].

To compare results from different research analyses and from

different Plasmodial species, we also considered an additional

dataset [72] containing genes of P. Falciparum and Plasmodium

Berghei exhibiting the HT motif.

First, all downloaded dataset were imported into CluGene

system and then CluGene’s visualization tools were used to

compute the gene densities present across all chromosomes in the

different datasets. All datasets were then clustered using the default

options: positional clustering algorithm with constant threshold,

using a positional gene distance strategy (gene distance defined as

the distance between genes’ starts) and subsequently the obtained

clustered datasets were compared to each other. From the output

of CluGene analysis for PlasmoDB datasets (genes containing

signal peptide, genes containing transmembrane domains, genes

containing the Apicoplast internalization signal and P. Falciparum

genes containing the HT motif) we found that gene density is

almost linear for all chromosomes and that genes are distributed

almost uniformly on all chromosomes with the exception of genes

containing the HT motif (see Figure S4 (a) for density and

distribution examples). The gene density of genes containing the

HT motif is always higher at chromosome ends and almost zero in

the centre of chromosomes on all chromosomes. HT genes, in fact,

are mostly distributed at chromosome ends (see Figure S4 (b)),

when computing a positional clustering with CluGene we observed

a co-localization of 192 clustered genes in 36 clusters (90% of the

total number of genes, see Figure S4 (c)).

The significance of this clustering was assessed against generated

random clusters that resulted in having at most 50 genes in 30

clusters (just 23% of the total number of genes).

When we analysed the P. Falciparum and P. Berghei HT datasets

described by Sargeant [72], for comparison, we found a similar

clustering behaviour for both P. Falciparum and P. Berghei gene

datasets (data not shown). CluGene clustering features and

visualization tools helped in identifying this inter-species clustering

behaviour in a very simple way.

Discussion

The importance of adding positional information to the data

generated by high-throughput techniques, such as histone marks,

chip-seq, and DNAseI hypersensitivity, is already recognized.

Adding gene localization information could also provide benefit to

projects such as the Encyclopedia of DNA Elements (ENCODE)

project [73].

Despite the benefits of positional information, obtaining a

comprehensive picture of transcriptional regulatory networks is

still beyond our reach. Additional insight can be gained by

studying co-occurrences, i.e. events involving activation/deactiva-

tion of clusters of genes that not only are localized within the same

Figure 5. Analysis of co-operative regulatory effect of Oct-1, c-REL, NF-KappaB, IK-1, BSAP and CP2 in shared DLBCL genomic sites.
Co-operative regulatory regions in target genes were identified using the functional distance metric weighted by local density and TF similarity. The
panels refer to an investigation aimed at identifying TFs appearing more often together in clusters. The values in the contingency tables (right panels)
are the frequencies of clusters featuring either both TFs of a given pair (true), or only one of them (false). The tables contain also the p-values of the
Fisher’s exact test, indicating whether there is some statistically significant difference between the co-occurrences of TF pairs within clusters. Panels
refer specifically to the (a). Oxphos; (b). BRC and (c). HR subsets. Only statistically significant results are shown. These results emphasize the role of c-
REL, CP2 and Oct-1 association in shared diffuse large B-cell lymphoma regulatory regions.
doi:10.1371/journal.pone.0066196.g005
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Figure 6. Characterization of the immune/inflammatory response genes of the HR subset. (a). Total and average number of TFBSs present
in the promoters of genes expressed in the HR subset. Frequencies were calculated on the genes clustered using the functional distance metric
weighted by local density and TF similarity. In bold are shown TFs (Oct-1 and NF-KAPPA B) with an average number value exceeding 2 sites/promoter.
(b). Analysis of localization within clusters of HR genes having the signature of immune/inflammatory response. The Show dataset into clusters utility
of CluGene (top panel), allows to identify which clusters (red) out of the total (blue) contain a specified list of genes (immune annotated genes). The
list of genes contained in clusters and their location is given on the right part of the panel. The tables (bottom) include the identified clustered
immunity genes (bold), their function and the size and what other genes are grouped within the same cluster.
doi:10.1371/journal.pone.0066196.g006
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Figure 7. Co-localization of TF target genes positively affects co-regulation. (a). Comparison of expression profiles of genes showing both
co-localization patterns and recognition patterns by a specific DLBCL annotated transcription factor (Status = 0) from those that although being co-
localized were not recognized by the specified transcription factor (Status = 1). The comparison of the gene expression profiles between the two
groups was done using the Mann-Whitney U test at a threshold of p,0.05 and results were illustrated as boxplot. Only TF co-localized target genes
differing in their expression patterns with respect to those not recognized by the specific TFs have been detailed (Oct-1 and IK-1). (b). Both co-
regulation by a common TF and co-localization patterns determine co-expression of TF target genes. The expression profiles of Oct-1 co-localized
target genes (Status = 0) were compared to those that although recognized by Oct-1did not cluster together (Status = 1); notably Oct-1 co-localized
target genes differed in their expression from those that did not cluster as shown by the Mann-Whitney U test at a threshold of p,0.05.
doi:10.1371/journal.pone.0066196.g007
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confined regions on the chromosomes, but also respond to the

same transcription factor families, and are similarly expressed.

No currently available bioinformatics tool allows for multi-

attribute gene searches where co-localization, co-expression and

co-regulation can be considered at the same time.

CluGene offers such possibility for the first time, and provides

flexible integration mechanisms to assign varying relative impor-

tance to co-localization, co-expression and co-regulation to

accommodate the needs of many types of analysis processes.

It is particularly important to stress out the concurrency of the

search criteria (localization, expression and regulation) allowed by

CluGene. A possible alternative would consist in running multi-

step searches that proceed by further refinements: e.g. a first

positional clustering to identify groups of genes that are located

close to each other, followed by filtering on expression levels, and

again followed by searching for common TFBSs in order to

identify those subsets of co-localized, co-expressed and co-

regulated genes. It goes without saying that such a sequential

approach would greatly limit the amount of promising genes that

in the end survive the bioinformatics selection process, each step

potentially eliminating promising candidates only because of the

order the selection operations were performed. On the contrary,

with CluGene, such steps can be integrated so that all the criteria

can be applied at the same time, and with weights, so that the

relative importance of each can be controlled.

The case studies have shown that there may not necessarily be a

unique analysis protocol that works equally well for any type of

problem; which means that in general, for a new problem, many

pathways may be explored involving numerous combinations of

multi-attribute clustering and weighting strategies before impor-

tant novel insight can be gained, and emerging behaviour can be

detected. This brings to the table the second main distinguishing

feature of CluGene, i.e., the software being an interactive

framework where different solutions can be rapidly explored and

compared. Furthermore, through the plug-in mechanism, Clu-

Gene allows for user-defined algorithms and procedures to be

integrated within the framework to expand its functionalities,

reaching an optimal compromise between the accessibility of a

user-friendly solution and the flexibility of a programming

environment.

The types of investigations that may be run with CluGene are

numerous, ranging from simpler searches trying to determine if a

specific TF regulates nearby genes, or analysing the tendency of a

TF to preferentially regulate genes located on one or a few specific

chromosomes or chromosome regions, to more complex analysis

tasks, such as determining whether TF regulatory mechanisms

have lead to evolutionary constraints favouring the formation of

specific positional clusters of target genes, and whether clusters of

co-regulated genes show some tendency of producing similar

expression levels as well.

A limitation of CluGene concerning TF analysis is that it

currently supports only the analysis of binding sites in promoters;

in future releases binding information will be searchable also in

other locations across the genome, such as enhancers, introns, etc.

(e.g. analysis of ChIP-Seq data).

Moreover, despite the capacity of CluGene to provide novel

viewpoints for understanding transcription regulation, it still fails

to provide insight on higher-order phenomena. Specifically, the

chromatin remodelling events leading to inactive and active states

and the three-dimensional, spatial organization of the chromo-

somes within the nucleus (i.e. chromosome territories) are

currently beyond the analysis capabilities of CluGene. Our

method typically identifies only the first level of transcription

regulation: further applications will certainly need to take into

consideration higher-order transcription regulation in order to

provide more tools for understanding transcription regulatory

mechanisms.

Nevertheless, it is our belief that as genome-wide transcriptional

analysis and in general genome high-throughput experimental

technologies will keep on providing a growing amount of

information on different organisms, the application of software

tools such as CluGene will become increasingly more important.

The availability of techniques that allow for the identification of

relationships between gene properties and regulation phenomena

will reveal itself as a fundamental prerequisite for the development

of original and performing search tools to shed some more light on

transcriptional regulatory networks.

Supporting Information

Figure S1 TF-based gene dataset processing. (a). For each
gene present within a dataset (left panel) it is possible to identify

number and types of TFBS, and consequently, what TFs can

recognize them. (b). It is also possible by selecting a specific TF to

search for all genes being recognized by it together with associated

frequencies, a list of all TFs recognizing each gene in dataset is

provided as well. (c). Distinct datasets can be compared in terms of

predicted TFBs. The comparison can be ordered as a function of

difference or relevance. TFs are coloured differently in the

compared datasets depending on the outcome: present at an

higher extent (green), present at a lower extent (red) and absent

(black).

(TIF)

Figure S2 Transcription factor binding site motifs over-
represented in sequences from the three DLBCL subsets
(BRC, HR and OXPHOS). (a). List of TFs with associated

frequencies for each DLBCL subset according to the MatchTM

predictor embedded in CluGene. Annotated B cell transcription

factors are boxed. TFs are coloured differently in the compared

datasets depending on the outcome: Higher transcription factors

binding site motifs percentages are coloured green whereas lower

percentage are marked in red, absent TFBSs are coloured balck.

The last column shows the maximum difference values amongst

TF frequencies within the three subsets. (b). Statistical significance
assessment for the results obtained with selected TFs in the

OXPHOS dataset with respect to a random set of genes.

Transcription factors results on the OXPHOS dataset were

compared with average transcription results on 10 datasets of

randomly selected genes. Ten random sets of genes were extracted

form the human genome, with a number of genes same as

OXPHOS. The One sample student’s t-test (SPSS) was used for

the analysis.

(TIF)

Figure S3 Percentages of genes that are TF targets.
Number of TF target genes out of the total number of genes

present within the three DLBCL subsets. A comparison between

the number of TF target genes in the three DLBCL subsets and

different clustering strategies output is presented. Gene clustering

was performed using both the un-weighted positional clustering

(Positional clustering) followed by TF prediction and the functional

clustering weighted by local density and TF similarity. For the positional

and functional clustering cases, the percentage refers to genes

found in clusters.

(TIF)

Figure S4 Localization of genes containing the HT motif
in P. falciparum. The gene density and the cluster of genes

containing specific localization attributes were predicted through-
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out the Plasmodium Falciparum genome using different source

datasets. (a) Calculation of the gene density of genes containing

the signal peptide (PlasmoDB) as localization attribute, a total of

1216 genes were considered for the analysis. The left-hand panel

shows the distribution of the gene density on chromosome 5 as an

example, while the right-hand panel shows the localization of

genes containing the signal peptide on all chromosomes. The

relative position of the individual genes (blue bars) are shown along

the chromosomes (horizontal lines). The positions of the genes

along the chromosomes are also indicated with a label that

represents the position (in kbp). (b) Calculation of the gene density

of P. falciparum genes containing the HT localization motif

(PlasmoDB), a total of 214 genes were considered for the analysis,

the left-hand panel shows the calculated gene density on

chromosome 5 as an example, while the right-hand panel shows

the localization of the genes containing the HT motif along the

different chromosomes: genes tend to locate mostly at the end of

the chromosomes. (c) Clustering analysis of the dataset containing

the genes with the HT motif (same dataset as in (b)). The relative

position and the size of individual genes clusters (blue-oval shape)

are shown along the chromosomes (horizontal lines). The size of

each cluster is proportional to its population size. Each cluster is

also flagged with a label that indicates the position (in kbp) of the

first gene. A total of 192 genes in 36 clusters were found out of the

total 214. Gene clustering was performed using default positional

clustering options.

(TIF)

Text S1 Supplementary information about the CluGene
software. Download details; system requirements; third-party

libraries used by CluGene; genome and transcription factor online

databases accessible from within the software; technical details on

the clustering algorithms available in CluGene.

(DOCX)
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