
fmicb-13-865141 March 2, 2022 Time: 16:4 # 1

MINI REVIEW
published: 08 March 2022

doi: 10.3389/fmicb.2022.865141

Edited by:
Katarzyna Potrykus,

University of Gdańsk, Poland
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Protein homeostasis is fundamental to cell function and survival. It relies on an
interconnected network of processes involving protein synthesis, folding, post-
translational modification and degradation as well as regulators of these processes.
Here we provide an update on the roles, regulation and subcellular localization of
the protein homeostasis machinery in the Gram-positive model organism Bacillus
subtilis. We discuss emerging ideas and current research gaps in the field that, if
tackled, increase our understanding of how Gram-positive bacteria, including several
human pathogens, maintain protein homeostasis and cope with stressful conditions
that challenge their survival.

Keywords: chaperone, protease, degradation tags, protein quality control, protein aggregation, proteotoxic stress

INTRODUCTION

Native proteins typically fold into well-defined three-dimensional structures. To function properly,
all cells need to contain correctly folded proteins and have mechanisms to prevent accumulation
of unneeded or aberrant proteins. The folded state of most proteins is marginally more stable
than the unfolded state. Therefore, small changes of environmental conditions may affect the
equilibrium between the folded and unfolded state. Protein homeostasis (proteostasis) is crucial
to achieve a “healthy” proteome, and refers to the dynamic balance between synthesis, folding,
post-translational modification, transport, and degradation of proteins (Figure 1; Powers et al.,
2009; Richter et al., 2010; Schramm et al., 2020). The main components of the proteostasis network
are the ancient and evolutionary conserved chaperones and proteases, which assist in protein
folding and degrade specific protein substrates, respectively (Powers and Balch, 2013; Balchin et al.,
2016; Olivares et al., 2016). Surprisingly, even though eukaryotic proteomes are typically much
larger and complex and contain more aggregation-prone proteins than those of prokaryotes, no
new core chaperones appear to have emerged during billion years of evolution (Rebeaud et al.,
2021). Instead, the core chaperones and their relative abundance have remained invariant across
the domains of life. Maintaining integrity of a more complex and unstable proteome has been
dealt with by increasing cellular chaperone levels, as well as promoting cooperation between them
(Rebeaud et al., 2021).

Understanding how cells maintain proteostasis is an important topic to address, not only
because proteome integrity is crucial for the correct cellular function, but also because
accumulation of protein aggregates – which mainly results from dysregulation of proteostasis –
has been linked to aging and to human diseases, such as Parkinson’s and Alzheimer’s, and to
defects in growth and survival in prokaryotes (Balchin et al., 2016; Cheng et al., 2018). In addition,
the presence of protein aggregates is strongly correlated with dormant antibiotic-resistant cells,
called persisters (Leszczynska et al., 2013; Pu et al., 2019; Yu et al., 2019; Dewachter et al., 2021;
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Huemer et al., 2021). Because of this and other data, disruption
of proteostasis has been suggested as an anti-bacterial strategy
(Khodaparast et al., 2021).

Most information on chaperones and proteases in bacteria
derives from studies in Escherichia coli, but there are many
host-specific regulation mechanisms concerning proteostasis
to unravel. B. subtilis is adapted to rapid intracellular and
environmental fluctuations that challenge the stability of its
proteome. Thus, it is a suitable model organism to study not
only from the view of fundamental principles of proteostasis,
but also regarding proteostasis maintenance in other Gram-
positive bacteria, that includes several human pathogens. Here
we provide an updated description of the main components
of the B. subtilis proteostasis network (Figure 1), and address
known and emerging mechanisms for its regulation during
proteotoxic stress.

THE MAJOR CLASSES OF MOLECULAR
CHAPERONES: CONSERVED
MECHANISMS OF ACTION AND ROLES
IN B. subtilis

Molecular chaperones are central to proteostasis by ensuring that
proteins are correctly folded, and preventing protein misfolding
and aggregation (Mogk et al., 2011; Balchin et al., 2016). The
ancient and evolutionary conserved DnaK (Hsp70), GroEL
(Hsp60), and trigger factor (TF) are three important abundant
cytosolic chaperones in B. subtilis (Moliere and Turgay, 2009).

DnaK functions as a monomer and consists of an N-terminal
ATPase domain and a C-terminal peptide-binding domain
composed of a β-sandwich and an α-helical lid (Zhu et al., 1996;
Perales-Calvo et al., 2018). Together with its co-chaperone DnaJ
(Hsp40) and the nucleotide exchange factor GrpE, and through
ATP hydrolysis, the α-helical lid closes over the β-sandwich,
allowing tight binding of unfolded substrates (Liberek et al., 1991;
Zhu et al., 1996). DnaK typically recognizes exposed hydrophobic
peptide segments (∼5–7 residues) of client proteins that are
prone to aggregate during folding (Rudiger et al., 1997; Mogk
et al., 1999; Calloni et al., 2012); substrate binding and release
cycles decrease the folding rate, and prevent non-native protein
species from folding prematurely in a misfolded state or from
aggregating (Szabo et al., 1994). Interestingly, some bacteria
like E. coli contain more than one Hsp70 and Hsp40 homolog.
For instance, apart from DnaK, E. coli harbors two additional
Hsp70 proteins – Hsc66 (Seaton and Vickery, 1994) and Hsc62
(Yoshimune et al., 1998) – and five additional DnaJ-like proteins
such as Hsc20 and CbpA (Ueguchi et al., 1994; Lelivelt and
Kawula, 1995; Clarke et al., 1996; Itoh et al., 1999; Yoshimune
et al., 2002). In contrast, B. subtilis appears to have only DnaK and
DnaJ. Oligomeric GroEL is composed of two stacked heptameric
rings, each forming large cylindrical cavities in which misfolded
protein substrates can be enclosed (Langer et al., 1992; Mayhew
et al., 1996). The GroES (Hsp10) heptameric co-chaperonin caps
GroEL cavities, and through ATP hydrolysis allows complete
substrate encapsulation, thus providing a “protected” folding

environment (Mayhew et al., 1996). Finally, TF is a ribosome-
associated chaperone comprised of three domains adopting an
overall elongated shape (Stoller et al., 1995; Zarnt et al., 1997).
An N-terminal ribosome-binding domain is followed by a
peptidyl-prolyl isomerase domain linked to the C-terminal
substrate-binding domain. The substrate-binding domain has
two helical arms that form a promiscuous clamp-like structure,
providing a shielded environment to nascent polypeptides as
translation proceeds, and also slowing the folding rate preventing
aggregation (Agashe et al., 2004; Ferbitz et al., 2004; Singhal
et al., 2015). The clamp, together with the TF structural flexibility,
allows TF to function with a wide range of emerging substrates
(Martinez-Hackert and Hendrickson, 2009; Saio et al., 2014).
While the monomeric form of TF is bound to the ribosome, its
dimeric form exists mainly in the cytosol, and apart from assisting
several proteins in their folding, it has anti-aggregation activity
(Saio et al., 2018).

In addition to assisting in the folding of cytosolic proteins,
DnaK/DnaJ/GrpE (Wild et al., 1992, 1993, 1996), GroEL/GroES
(Kusukawa et al., 1989), and TF (Lee and Bernstein, 2002;
Genevaux et al., 2004; Ullers et al., 2007; Oh et al., 2011)
are also involved in protein secretion by preventing premature
folding and aggregation of presecretory proteins in the cytosol.
Most proteins are translocated in an unfolded state via the
general secretion (Sec) pathway. Typically, the secretion-specific
chaperone SecB binds newly synthesized presecretory proteins
and targets them for SecA-driven protein translocation. However,
SecB is absent in many Gram-positive bacteria, and in B. subtilis
CsaA has been suggested to play a similar role since, among other
evidence, it interacts with SecA as well as several presecretory
proteins (Müller et al., 2000; Linde et al., 2003).

Even though the general mechanisms of action and structures
of DnaK, GroEL, and TF chaperones are widely conserved
among organisms, their specific roles and their contributions
to proteostasis maintenance differ between bacteria. A clear
example of such divergence is displayed by the phenotypic
differences between E. coli and B. subtilis chaperone-deficient
mutants. Although in both organisms groES and groEL are
essential genes at all temperatures (Fayet et al., 1989; Commichau
et al., 2013), single and double deletions of dnaK and tig
(encoding DnaK and TF) give different effects. In E. coli, DnaK is
essential for growth at high or low temperature (Paek and Walker,
1987; Bukau and Walker, 1989), and it plays a crucial role under
both optimal and proteotoxic stress conditions. Its absence causes
cellular defects such as reduced growth rates, dysregulation of the
heat-shock genes, and abnormal cell division (Paek and Walker,
1987; Bukau and Walker, 1989, 1990). DnaK is not only needed
for the folding of a large number of E. coli “thermolabile” proteins
(Mogk et al., 1999), it also regulates the heat shock sigma factor
σ32 (Gamer et al., 1992; Liberek et al., 1992).

Deletion of tig in E. coli also leads to cellular defects: it
reduces the cell’s tolerance to SDS/EDTA and vancomycin,
thereby reducing outer membrane integrity (Oh et al.,
2011), and induces the heat shock response (Deuerling
et al., 2003). In E. coli, DnaK and TF possess overlapping
functions in protein folding, and their shared role seems to
be crucial for maintaining proteostasis, even under typical
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FIGURE 1 | Schematic representation of the B. subtilis proteostasis network and its regulators. Protein folding and degradation are two key cellular processes
involved in proteostasis maintenance. While some proteins can spontaneously fold into their functional native state, many others need the assistance of molecular
chaperones to do so. Underlined in the purple box are the main B. subtilis chaperones. For its full activity, DnaK requires the co-chaperone DnaJ and the nucleotide
exchange factor GrpE. Similarly, GroEL requires the co-chaperonin GroES. Unneeded, misfolded or damaged proteins are eliminated from the cell by proteases
(underlined in the green box) and its respective adaptor proteins (shown below each protease complex). In addition to protein folding and degradation, other key
processes that affect proteostasis maintenance are protein synthesis, post-translational modifications, and the transport of proteins to specific locations. Failure in
proteostasis maintenance often leads to the formation and accumulation of misfolded and aggregated proteins, a condition termed as proteotoxic stress. The main
regulators that are known to be involved in the B. subtilis proteotoxic stress response are shown in the orange text box. Created with BioRender.com.

growth temperatures (Deuerling et al., 1999, 2003; Teter
et al., 1999; Genevaux et al., 2004; Calloni et al., 2012). This
redundancy might explain why a double deletion of dnaK
and tig is synthetically lethal at temperatures above 30◦C
(Deuerling et al., 1999; Teter et al., 1999; Genevaux et al.,
2004). Another example of chaperone collaboration is found
between Hsp70 and the ATP-dependent Hsp90 chaperone,
which in eukaryotes are well known to function together to
orchestrate the proteostasis network (Schopf et al., 2017). In
bacteria, the function of the Hsp90 homolog HtpG is not as

well-characterized [see Wickner et al. (2021) for the latest
review], but it has been shown that HtpG and DnaK systems also
collaborate during the protein folding process in E. coli (Genest
et al., 2011). DnaK-HtpG interaction involves the DnaJ-like
protein CbpA (Genest et al., 2015). Unlike in eukaryotes, HtpG
is not essential for the growth of many bacteria including
E. coli and B. subtilis, and deletion of htpG causes minor
growth defects after temperature upshifts in both organisms
(Bardwell and Craig, 1988; Thomas and Baneyx, 1998; Versteeg
et al., 1999). In addition, recent proteomic studies suggest that
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HtpG enhances degradation of DnaK/DnaJ client substrates
(Fauvet et al., 2021).

While the implications and roles of chaperones in proteostasis
are well-characterized in E. coli, far less is known for other
bacteria including B. subtilis. In stark contrast to E. coli, the
absence of DnaK, TF or both proteins in B. subtilis does
not affect cell viability in the 16–52◦C temperature range
(Schulz et al., 1995; Gothel et al., 1998; Reyes and Yoshikawa,
2002). Apart from a very short study (Reyes and Yoshikawa,
2002), no characterization of the effects of a dnaK tig double
deletion in B. subtilis has been published. B. subtilis dnaK tig
double mutants are viable below 53◦C, suggesting that folding
of nascent peptide chains is assisted also by other proteins than
DnaK and TF (Reyes and Yoshikawa, 2002).

B. subtilis DnaK and TF are subjected to regulation by
phosphorylation. Tyrosine residue 601 in the C-terminal region
of DnaK can be phosphorylated by the PtkA kinase and
dephosphorylated by the PtpZ phosphatase, influencing its
chaperone activity and survival of the cell upon heat-shock (Shi
et al., 2016). In the case of TF, phosphorylation of Arg45 by
the McsB kinase negatively influences its association with the
ribosome (Zhou et al., 2019). Interestingly, spore germination
requires Arg45 to be dephosphorylated by the YwlE phosphatase,
since this licenses TF to interact with ribosomes and resume
translation (Zhou et al., 2019). These observations are in line with
the notion that chaperones possess host-specific roles, in addition
to their conserved functions.

ROLE OF AAA+ PROTEASES,
ADAPTORS, AND DEGRADATION TAGS
IN CLEARANCE OF ABERRANT
PROTEINS

Unfinished, damaged, misfolded, or unneeded proteins are
eliminated from the cell to maintain proteome integrity. In
B. subtilis, degradation of most cytoplasmic proteins is performed
by the conserved AAA+ family of intracellular proteases (AAA+;
ATPases associated with a variety of cellular activities), which
recognize, unfold, and degrade specific protein substrates (Sauer
and Baker, 2011). B. subtilis has seven AAA+ proteases: ClpCP,
ClpEP, ClpXP, ClpYQ, LonA, LonB, and FtsH (Elsholz et al.,
2017), whose mechanisms of action have been described in
numerous reviews (Sauer et al., 2004; Kirstein et al., 2009; Sauer
and Baker, 2011; Olivares et al., 2016; Elsholz et al., 2017). The
Clp complexes consist of an AAA+ unfoldase coupled to an ATP-
dependent serine protease, whereas LonA, LonB, and FtsH have
both unfoldase and protease domains within a single polypeptide
(Elsholz et al., 2017).

Proteolysis can be regulated by adaptor proteins, which
provide substrate specificity to proteases, usually by interacting
with both substrate and protease. Several adaptor proteins have
been characterized in B. subtilis, such as the ClpCP adaptor
proteins MecA, YpbH, and McsB, and the ClpXP adaptor
proteins YjbH and CmpA (Elsholz et al., 2017). The mechanism of
adaptors often involves tethering the substrate to the protease to

increase the local substrate concentration to facilitate proteolysis
(Battesti and Gottesman, 2013). Less common mechanisms of
adaptors are also known. For instance, the ClpXP adaptor
protein YjbH does not appear to directly interact with ClpX
(Chan et al., 2012), but enhances degradation of the stress-
responsive regulator Spx by binding and stabilizing it, promoting
its recognition by ClpXP (Awad et al., 2019).

AAA+ proteases or their respective adaptors recognize short
degradation signals (degrons) located at the N-terminal, internal,
or C-terminal position of protein substrates (Kirstein et al., 2009).
A degron with relevance in protein homeostasis maintenance
is the C-terminal SsrA degradation tag, which is added co-
translationally by the transfer-messenger RNA (tmRNA) system
to unfinished polypeptides when ribosomes stall (Keiler et al.,
1996; Moore and Sauer, 2007). Truncated polypeptides challenge
the stability of the proteome, and it is important that they are
eliminated from the cell. SsrA-tagged polypeptides are typically
degraded by the ClpXP protease complex (Sauer and Baker,
2011), although in E. coli, ClpAP and FtsH proteases can also
recognize and degrade SsrA-tagged proteins (Gottesman et al.,
1998; Herman et al., 1998). Cryo-EM studies have provided
a detailed molecular mechanism of SsrA-tagged substrate
recognition by ClpXP. Specific binding of the SsrA degron to
ClpX triggers a ClpX conformational change from a “closed-
pore” conformation to an “open-pore” conformation, allowing
substrate translocation through the channel and subsequent non-
specific interactions of the unfolded substrate with inner channel
residues (Fei et al., 2020).

Interestingly, a novel ClpXP proteolytic mechanism for
degradation of unfinished polypeptides in B. subtilis that
is redundant with the SsrA tagging has been uncovered
(Lytvynenko et al., 2019). Here, the B. subtilis RqcH recognizes
stalled ribosomes and recruits tRNAAla to mark aberrant nascent
chains for degradation with C-terminal poly-alanine tails, which
are recognized by ClpXP (Lytvynenko et al., 2019). Because the
ALAA motif of the SsrA tag and poly-alanine tails are similar,
it would be no surprise if their recognition and degradation
mechanism would be similar. However, whether the poly-alanine
tagged proteins are also degraded by ClpAP and FtsH in B. subtilis
remains to be answered.

Another degradation tag of vast importance in B. subtilis
proteostasis is the phospho-arginine (pArg) tag introduced by
McsB (Trentini et al., 2016). McsB is conserved among Gram-
positive bacteria and functions both as an adaptor protein for
ClpCP (Kirstein et al., 2007) and as an arginine kinase with a
major role in eliminating hundreds of damaged proteins from
the cytoplasm, particularly under proteotoxic stress conditions
(Elsholz et al., 2012; Trentini et al., 2016). McsB phosphorylates
arginine residues, marking proteins for degradation by ClpCP
(Trentini et al., 2016). Among the McsB phosphorylated proteins
are the protein quality control members CtsR, HrcA, GroEL,
TF, ClpC, and ClpP (Schmidt et al., 2014). In the case of the
transcriptional repressors CtsR and HrcA, phosphorylation of
residues in their DNA-binding domains greatly contributes to
induction of the proteotoxic stress response (Kirstein et al.,
2005; Fuhrmann et al., 2009; Schmidt et al., 2014). A recent
study uncovered the molecular mechanism of McsB targeting
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(Hajdusits et al., 2021). McsB assemble into octamers, stabilized
by auto-phosphorylation to form a molecular chamber-like
structure, with the kinase active site buried inside (Hajdusits
et al., 2021). McsB octamers are formed upon proteotoxic
stress conditions, when McsB levels increase, and possess high
selectivity for phosphorylation of unfolded proteins, which are
able to access the kinase chamber through a narrow entrance.
The phosphorylated proteins are thus targeted for degradation by
ClpCP (Hajdusits et al., 2021).

Although it is likely that B. subtilis Lon proteins and FtsH
play some role in protein quality control, experimental evidence
is lacking. However, roles in degradation of regulatory proteins
have been reported (Thi Nguyen and Schumann, 2012; Bradshaw
and Losick, 2015; Mukherjee et al., 2015).

SUBCELLULAR LOCALIZATION OF THE
PROTEIN QUALITY CONTROL
MACHINERY

B. subtilis ClpC, ClpE, ClpX, and ClpP have been shown to co-
localize with heat-induced protein aggregates or PorA inclusion
bodies (Kruger et al., 2000; Jurgen et al., 2001; Miethke et al.,
2006). In non-stressed cells, without aggregates, ClpP appears
in the cytoplasm, while ClpC and ClpX are found both in the
cytoplasm and associated with the membrane (Kruger et al., 2000;
Jurgen et al., 2001). Three independent publications reported
in 2008 that B. subtilis GFP-tagged Clp proteins, such as ClpX
and ClpP, form foci with a cell polar localization pattern (Kain
et al., 2008; Kirstein et al., 2008; Simmons et al., 2008). The
subcellular localization of Lon seems to be developmentally
regulated: B. subtilis LonA-GFP associates with the nucleoid
under normal growth, and with the forespore during sporulation
(Simmons et al., 2008).

It is important to note that used fluorescent protein tags
lead to clustering artifacts when fused to homo-oligomers such
as Clp proteins, and that, at least in E. coli, Clp proteins are
homogenously distributed in the cell (Landgraf et al., 2012).
Therefore, the native sub-cellular localization of the B. subtilis
proteolytic machinery should be revaluated.

Localization of chaperones seems to be conditional to stress in
several bacteria. For example, in E. coli the co-chaperone DnaJ
mediates ATP-DnaK binding to protein aggregates (Acebron
et al., 2008). Moreover, large heat-induced protein aggregates
localize at the cell poles, and such a localization requires
DnaK and DnaJ, as well as ATP synthesis and the membrane
proton motive force (Rokney et al., 2009). DnaK and the ClpB
disaggregase are essential for dissolving polar aggregates (Rokney
et al., 2009), but it is not clear whether the polar localization
of aggregates in E. coli is energy-dependent, since other studies
claim it to be a passive process, driven by the molecular crowding
in the nucleoid region (Winkler et al., 2010; Coquel et al., 2013;
Gupta et al., 2014; Neeli-Venkata et al., 2016; Oliveira et al., 2016).
Large, polar localized, protein aggregates are asymmetrically
inherited in E. coli, as division generates cells with aggregates
at the old cell poles (Lindner et al., 2008; Winkler et al.,
2010). In B. subtilis, protein aggregates have also been shown

to locate at cell poles (Kirstein et al., 2008; Runde et al., 2014;
Stannek et al., 2014; Hantke et al., 2019; Schafer et al., 2019), but
their inheritance after cell division has not been studied.

To our knowledge, chaperone localization in B. subtilis has
been only addressed in few studies. B. subtilis GFP-DnaK localizes
as multiple discrete foci proximal to the membrane (Meile et al.,
2006). In response to short-term ethanol stress, phosphorylated
DnaK and GroEL chaperones are recruited to the B. subtilis
cytoplasmic membrane (Seydlova et al., 2012).

Collectively, it seems that to cope with proteotoxic stress
the cell redirects the protein quality control machinery to sub-
cellular areas, containing protein aggregates, such as the cell
poles. Interestingly, protein aggregates are typically associated
with detrimental effects for cellular fitness (Ross and Poirier,
2004; Lindner et al., 2008; Mortier et al., 2019), but their presence
has been reported to pre-adapt lineages to subsequent proteotoxic
stress (Govers et al., 2014; Mortier et al., 2019). Such pre-
adaptation may arise from the increased levels of protein quality
control agents such as proteases and chaperones that co-localize
with protein aggregates (Kruger et al., 2000; Jurgen et al., 2001;
Acebron et al., 2008; Govers et al., 2014; Mortier et al., 2019).

REGULATORS OF THE PROTEOTOXIC
STRESS RESPONSE

During proteotoxic stress, response mechanisms are activated
which help the bacterium adapt to the new cellular or
environmental condition. Of particular importance in B. subtilis
are the HrcA and CtsR regulators. HrcA represses transcription of
the hrcA-grpE-dnaK-dnaJ-yqeT-yqeU-yqeV and the groES-groEL
operons (Schumann, 2016), and thus regulates the synthesis of
chaperones. HrcA levels are depleted upon proteotoxic stress by
a feedback mechanism involving the GroEL-GroES chaperone
complex (Mogk et al., 1997; Schumann, 2016). CtsR, a regulator
of protein degradation, represses transcription of the ctsR-mcsA-
mcsB-clpC-radA-disA operon, and the clpP and clpE genes (Derre
et al., 2000; Kruger et al., 2001; Elsholz et al., 2010). Regulation by
CtsR involves a complex regulatory network, where McsB, McsA,
and ClpCP play important roles in derepressing the CtsR regulon
upon proteotoxic stress conditions [for a review, see Elsholz et al.
(2017)].

Another player in the proteotoxic stress response is the Spx
protein. Spx was initially characterized as a global regulator of
the thiol-specific oxidative stress response (Nakano et al., 2003),
controlling ∼144 transcriptional units (Rochat et al., 2012).
However, an increasing number of studies have reported the
involvement of Spx in the response to other stress conditions,
such as heat shock and compounds targeting the cell wall (Runde
et al., 2014; Rojas-Tapias and Helmann, 2018; Schafer and Turgay,
2019). The view that Spx is an important regulator of the
proteotoxic stress response is becoming established (Rojas-Tapias
and Helmann, 2019a,b; Schafer et al., 2019). Spx interacts with
the C-terminal domain of the α-subunit (αCTD) of the RNA
polymerase (RNAP), activating or repressing target genes in order
to cope with the stress (Zuber, 2004; Newberry et al., 2005;
Reyes and Zuber, 2008; Lamour et al., 2009; Nakano et al., 2010;
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Rochat et al., 2012). As revealed by structural studies, redox
activated Spx with a disulfide bond between the two cysteine
residues (Cys10 and Cys13) interacts both with the αCTD and
σA in the holo RNAP, and this complex binds to the −44
position of promoter DNA to enhance transcription activation
(Shi et al., 2021). Among the Spx-induced genes are trxA
(thioredoxin) and trxB (thioredoxin reductase), as well as the
clpX, clpE, and clpC genes, and putatively clpP (Nakano et al.,
2003; Rochat et al., 2012). Spx also induces the ctsR operon
(Rojas-Tapias and Helmann, 2019a).

Control of the cellular level and activity of Spx involves
many layers of regulation that are fine-tuned depending on
the type of stress [reviewed in Rojas-Tapias and Helmann
(2019b)]. The most important layer of Spx regulation seems
to be through ClpXP proteolysis. Efficient degradation of Spx
under normal conditions requires the ClpXP adaptor protein
YjbH, which aggregates upon proteotoxic stress conditions and
causes a decrease in Spx proteolysis (Nakano et al., 2003; Larsson
et al., 2007; Garg et al., 2009; Engman and von Wachenfeldt,
2015). By hydrogen-deuterium exchange mass spectrometry it
was determined that binding to YjbH decreases the Spx dynamics,
reducing the conformational entropy and probably allowing a
more efficient recognition of its C-terminal end, needed for
ClpXP degradation (Awad et al., 2019). ClpCP and its adaptor
McsB are also involved in Spx degradation, although to a lesser
extent (Rojas-Tapias and Helmann, 2019a). Interestingly, the Spx
paralog MgsR, which is also involved in the oxidative stress
response (Reder et al., 2008), has been shown to interact with
McsB upon ethanol stress, and McsB enhances MgsR degradation
by ClpXP in vivo (Lilge et al., 2020).

Proteotoxic stress conditions also induce the general stress
response, which is governed by the alternative sigma factor σB

and is one of the most important non-specific stress response
mechanisms of B. subtilis. The σB regulon is induced through a
signal transduction cascade, involving the RsbV, RsbW, and RsbX
regulators, and comprises about 200 genes, defined as class II
heat-shock genes (Schumann, 2003; Nannapaneni et al., 2012).
Other than heat, the general stress response is triggered by a
wide range of stresses (Hecker et al., 2007). Genes included in the
σB regulon are, for example, genes that protect against elevated
temperatures, such as clpP and clpC, and against oxidative stress,
such as thioredoxin (trxA), peroxidase (ohrA), and superoxide
dismutase (sodA) (Helmann et al., 2001; Petersohn et al., 2001;
Price et al., 2001; Nannapaneni et al., 2012) and regulators (e.g.,
CtsR and Spx) (Hecker et al., 2007).

MECHANISMS TO DOWNREGULATE
THE TRANSLATION MACHINERY
DURING PROTEOTOXIC STRESS

Proteotoxic stress and other physiological demands on
proteostasis may lead to insufficient protein folding capacity,
resulting in accumulation of aberrant proteins. Reducing the rate
of translation lowers the protein load, preventing further protein
damage, and may help maintenance of proteostasis. Under
proteotoxic stress conditions, such as heat or oxidative stress,

B. subtilis downregulates transcription of translation-related
genes, including ribosomal-protein encoding genes (rplD, rpsC,
rplW, and rpsJ), and ribosomal RNA (rRNA) genes (Price et al.,
2001; Leichert et al., 2003; Mostertz et al., 2004; Rochat et al.,
2012; Schafer et al., 2019). In line with this notion, translation-
related proteins have been found in protein aggregates in E. coli
(Kwiatkowska et al., 2008; Dewachter et al., 2021). Moreover,
the translation rate is reduced in E. coli cells containing a
dysfunctional GroEL (Chapman et al., 2006), and protein folding
is enhanced by slowing down translation rates in E. coli cells
harboring mutant ribosomes (Siller et al., 2010).

Spx, apart from inducing transcription of stress-responsive
genes, is also capable of repressing expression of genes for
ribosomal proteins and rRNA (Nakano et al., 2003; Rochat
et al., 2012; Schafer et al., 2019). Among the Spx downregulated
genes are rpoA and rpoC, encoding for RNAP core subunits,
and lepA, encoding for elongation factor 4 (EF4/LepA; Schafer
et al., 2019), a paralog of the canonical elongation factor EF-G
(Evans et al., 2008).

Downregulation of the translation machinery is also observed
in cells lacking Spx (Schafer et al., 2019) suggesting that, at
least under the stress conditions investigated (heat, oxidative,
and cell wall stress), there are additional mechanisms to reduce
translation in B. subtilis.

A downregulation of translation is frequently linked to the
second messengers of nutrient starvation, ppGpp and pppGpp
[collectively referred to as (p)ppGpp], which are synthesized
by RelA (Rel in B. subtilis) and mediate the stringent response
(Roghanian et al., 2021). Recently, a role of (p)ppGpp in slowing
down the translation rate upon proteotoxic stress in B. subtilis has
been suggested (Schafer et al., 2020).

McsB, which as mentioned before targets proteins for
degradation by ClpCP, also has a potential role in regulating
translation upon heat or oxidative stress, since it targets proteins
related to translational control (Schmidt et al., 2014).

Inactivation of the B. subtilis methionine synthase MetE could
also contribute to limit the translation rate by depleting the
biosynthesis of the precursor of the initiation codon formyl-
Met (Chi et al., 2011). Indeed, oxidative stress has been shown
to inactivate E. coli MetE (Hondorp and Matthews, 2004), and
oxidized MetE appears in the aggregate fraction of GroEL-
defective mutants cells (Chapman et al., 2006). In response to the
oxidative stress agents diamide or sodium hypochlorite, specific
cysteine residues of B. subtilis MetE become either S-cysteinylated
(Hochgrafe et al., 2007) or S-bacillithiolated, leading to its
enzymatic inactivation (Chi et al., 2011). Moreover, MetE is
among 108 identified S-thioallylated proteins caused by garlic
sulfur compounds, and such compounds were found to induce
the HrcA, CtsR, and Spx regulons (Chi et al., 2019).

CONCLUDING REMARKS

B. subtilis is tolerant to drastic and rapid environmental
changes by having a network of regulators and mechanisms
controlling the synthesis, folding, post-translational
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modifications, sub-cellular localization and clearance of proteins
to ensure proteostasis. Several of these processes are controlled
differently in E. coli and B. subtilis, reflecting a long history of
adaptations of the two model organisms to different niches.
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