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Abstract: The majority of patients with high-grade serous ovarian cancer (HGSOC) initially respond
to chemotherapy; however, most will develop chemotherapy resistance. Gene signatures may change
with the development of chemotherapy resistance in this population, which is important as it may
lead to tailored therapies. The objective of this study was to compare tumor gene expression profiles
in patients before and after treatment with neoadjuvant chemotherapy (NACT). Tumor samples
were collected from six patients diagnosed with HGSOC before and after administration of NACT.
RNA extraction and whole transcriptome sequencing was performed. Differential gene expression,
hierarchical clustering, gene set enrichment analysis, and pathway analysis were examined in all of the
samples. Tumor samples clustered based on exposure to chemotherapy as opposed to patient source.
Pre-NACT samples were enriched for multiple pathways involving cell cycle growth. Post-NACT
samples were enriched for drug transport and peroxisome pathways. Molecular subtypes based on
the pre-NACT sample (differentiated, mesenchymal, proliferative and immunoreactive) changed in
four patients after administration of NACT. Multiple changes in tumor gene expression profiles after
exposure to NACT were identified from this pilot study and warrant further attention as they may
indicate early changes in the development of chemotherapy resistance.
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1. Introduction

About 85% of patients with high-grade serous ovarian cancer (HGSOC) will achieve a clinical
remission with a combination of surgery and platinum-based chemotherapy despite presenting
with advanced stage disease [1]. Though many will respond to additional rounds of treatment and
may experience prolonged remission, disease-free intervals generally become progressively shorter,
culminating in platinum and ultimately chemotherapy resistance, suggesting a fundamental and
progressive change in the biology of the tumor.

The development of chemotherapy resistance is hypothesized to occur through multiple routes,
most notably selection of resistant clones and upregulation of tumor-protective pathways. To elucidate
the mechanisms underlying platinum resistance several groups have generated chemoresistant versions
of established ovarian cancer cell lines and compared gene expression between the chemoresistant line
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and its chemosensitive parental line [2–5]. These studies provide insight into changes that occur as
cells adapt to high levels of chemotherapy, but the genes identified in these studies are inconsistent
between studies and the mechanisms of in vitro resistance could very likely be different from those
arising in human tumors [6].

Similarly, comparisons of gene expression between patients who achieved clinical remission
versus those who were refractory identified expression signatures of chemoresistance, but patient
heterogeneity was a noted confounding factor in these comparisons [5,7]. To eliminate interpatient
heterogeneity, Patch et al. compared matched samples taken from patients at initial debulking and at
recurrence [8], suggesting that gene profiles in the latter may represent a chemoresistant gene signature.

A large systematic review of 42 studies attempting to define molecular signatures that predict
resistance to chemotherapy in ovarian cancer found that gene signatures were not consistent between
studies and concluded that there are no gene signatures currently appropriate for clinical use [9].
With larger datasets becoming available, it may be possible to improve upon previous studies.
For example, Yin et al. used TCGA data to devise a 131-gene signature correlating with platinum
resistance [10].

Another approach for predicting the response to chemotherapy is to perform in vitro growth
assays using fresh tumor samples exposed to chemotherapy [11]. The sensitivity and specificity of
these in vitro assays vary, but they do show promise as a possible means to predict patient response,
although they have not yet had widespread use in a clinical setting [12–14].

A goal of precision medicine is to classify patients based on the genomic and transcriptomic
characteristics of their tumor and use these classifications to guide treatment decisions. This approach
has been successful in breast cancer, where gene expression signatures can be used for prognosis
and to predict chemotherapy response [15,16]. There are now gene-expression-based lab diagnostics
that are routinely used to stratify breast cancer patients into molecular subtypes and guide treatment
options [17,18]. In ovarian cancer, several large-scale datasets have been used to stratify ovarian cancer
patients into molecular subtypes based on gene expression [19–22]; this stratification has prognostic
and therapeutic relevance [23,24], but has not yet been prospectively validated for clinical use [25].

The aim of this study was to compare gene expression profiles for individuals before and early
into the course of treatment in hopes of identifying early changes in expression that may herald either
up-front chemoresistance or provide insights into the sequence of events involved in the development
of resistance. Patients undergoing neoadjuvant chemotherapy (NACT), who typically require a biopsy
for diagnosis followed by an interval cytoreduction, were felt to be ideal to address these questions.

2. Results

2.1. Patient Characteristics and RNA Sequencing Metrics

Six patients diagnosed with HGSOC were enrolled in this study. We collected pre-NACT samples
from these patients either via CT-guided biopsy or intraoperatively. We collected post-NACT samples
at the time of interval debulking surgery (IDS). The baseline characteristics, chemotherapy regimens,
disease status, platinum response classification, sample site, chemotherapy response score (CRS), and
change in tumor purity ESTIMATEScore comparing pre- to post-NACT samples for all patients are
shown in Table 1. All patients received at least three cycles of NACT. We performed RNA sequencing
on all of the matched pre- and post-NACT samples. Of note, four patients were platinum-resistant
and two were platinum-sensitive based on clinical evidence of disease recurrence within six months
of the final administration of chemotherapy. The two platinum-sensitive patients also had CRS
scores of 3, indicating early response to platinum therapy. The CRS score represents a systematic
histopathologic assessment of response to NACT [26,27]. Tumor purity and CRS scores were evaluated
by an expert clinical pathologist specializing in ovarian cancer (Figure 1 and Table 1). All tumors
had high purity of tumor cells compared to stroma, based on the evaluation of hematoxylin and
eosin stained sections by a clinical pathologist (Figure 1). Yoshihara et al. developed a bioinformatic
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algorithm for estimating tumor purity based on gene expression data [28]. This algorithm produces an
“ESTIMATEScore” based on expression of a subset of genes. When applied to 248 ovarian samples
from TCGA patients, ESTIMATEScores ranged from −3647 to +3205, with a lower score indicative of
higher purity. We performed the ESTIMATE algorithm and the ESTIMATEScores ranged from −566 to
4361 (Figure S1). The differences between the pre- and post-NACT ESTIMATEScores varied by patient
(Table 1 and Figure S1).

Table 1. Patient characteristics.

Patient ID Age at
Diagnosis

Number of NACT
Cycles

PFS 1

(Months)
Platinum

Classification 2
Pre- and Post-
Sample Site CRS 3 ESTIMATE Score

Change 4

1 47 3 5 Resistant Omentum 2 +2309
9 56 7 5 12 Sensitive Omentum 3 −108
10 57 3 3 Resistant Peritoneum 2 −3383
16 74 3 2 Resistant Omentum 1 +1898
17 58 3 10 Sensitive Omentum 3 +655
22 78 3 5 Resistant Peritoneum 2 −2070

1 PFS, progression-free survival. Patients 9 and 17 had not suffered a relapse at time of publication. 2 Platinum
classification: Resistant = disease progression within six months of final chemotherapy administration. Sensitive = no
disease progression within six months of final chemotherapy administration. [1]. 3 CRS, Chemotherapy response
score: 1 = no or minimal tumor response, 2 = appreciable tumor response, 3 = complete or near-complete response.
Based on Bohm et al., 2015 [26]. 4 Absolute change in ESTIMATEScore comparing post- to pre-NACT samples [28].
5 Patient was responsive to platinum-based therapy but was medically unfit for surgery until the completion of
seven cycles of chemotherapy.
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Figure 1. Photomicrographs of selected cases showing high-grade serous carcinoma. (A) Patient #17,
high-power magnification of pre-NACT omental biopsy showing solid clusters of malignant cells with
high purity and no intervening stroma. (B) Low-power magnification of post-NACT omental biopsy
from the same patient showing CRS of 3. (C) Patient #1, high-power magnification of pre-NACT omental
biopsy showing sheets of malignant cells with high purity and no intervening stroma. (D) Low-power
magnification of post-NACT omental biopsy from the same patient showing CRS of 2. Scale bars:
A and C = 100 µm, B and D = 500 µm.
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We obtained an average of 23.7 million reads per sample, with greater than 95% of reads mapping
to the genome and an average or 20,459 genes detected per sample. We limited our analysis to
well-annotated genes with average expression levels above 5 FPKM.

2.2. Chemotherapy Effects on Gene Expression Are Stronger than the Effects of Inter-Patient Heterogeneity

The genomic landscape of ovarian cancer is characterized by extensive copy number variation
(CNV), which affects gene expression [29,30]. There are recurrent chromosomal regions of CNV in
ovarian cancer that are common to many patients, but patients may also have “private” CNVs that are
specific to that patient. We predicted that the pre-NACT and post-NACT samples for each patient would
have similar gene expression patterns. However, chemotherapy can also affect gene expression patterns.
To determine which of these has a stronger effect on gene expression (chemotherapy or interpatient
heterogeneity), we performed unsupervised hierarchical clustering and k-means clustering. Using a
set of 366 genes that had the most highly variable expression between the samples (average deviation
> 50), we found that, with one exception (patient 9), samples clustered based on their chemotherapy
status and not based on their patient source (Figure 2). Principal component analysis using 6748
consistently expressed genes (minimum FPKM > 5) also resulted in clustering by chemotherapy status
and not by patient source (Figure 3). Together, these results suggest that the effects of chemotherapy
on gene expression are stronger than the differences in gene expression between patients and further
suggest a commonality of response to the stress of chemotherapy.
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2.3. Chemotherapy Changes the Molecular Subtype of the Patient

Several groups have defined HGSOC molecular subtypes using gene expression datasets
from samples taken from chemo-naïve patients during their initial debulking surgery [19,20,24].
In TCGA analysis, based on the set of genes upregulated within each of these clusters, the molecular
subtypes have been given the names Differentiated, Proliferative, Mesenchymal, and Immunoreactive.
These clustering patterns are generated using a subset of genes that are highly expressed and highly
variable and applying various clustering algorithms. The initial TCGA clusters were generated using a
clustering method referred to as non-negative matrix factorization (NMF) on a set of ~800 genes [20].

Having documented the effect of chemotherapy on gene expression, we predicted that
chemotherapy would potentially alter the molecular subtype designation of our patients. To determine
the molecular subtypes of our 12 samples, we combined RNAseq data from TCGA patients with our
12 samples and performed NMF using the same set of ~800 genes. Because the original clustering of
TCGA patients was done using microarray data, we first checked to see if clustering with RNASeq data
produced similar clusters. Using RNASeq data, 84% of patients were classified in the same molecular
subtype as originally reported (Table S1). In our combined dataset, of the six pre-NACT samples,
three were classified as immunoreactive and one each as proliferative, mesenchymal and differentiated
(Table 2 and Figure 4). As we predicted, the molecular subtype for four of the six patients changed after
administration of chemotherapy. Two of three patients that were initially classified as immunoreactive
switched, one each to proliferative and mesenchymal (patients 10 & 22). Two additional patients
switched from proliferative and mesenchymal subtypes (patients 1 & 9) (Table 2). These findings
indicate that chemotherapy causes significant changes to gene expression patterns resulting in changes
in the molecular subtyping of the tumor.

Table 2. Molecular subtype assignment.

Patient ID Pre-NACT Molecular Subtype Post-NACT Molecular Subtype

1 Proliferative Mesenchymal

9 Mesenchymal Differentiated

10 Immunoreactive Proliferative

16 Immunoreactive Immunoreactive

17 Differentiated Differentiated

22 Immunoreactive Mesenchymal
NACT, neoadjuvant chemotherapy. Red ID indicates platinum-resistant patients, green ID indicates
platinum-sensitive patients.

2.4. Cell Cycle Pathways Are Enriched in Pre-NACT Samples

To identify important biological differences between pre- and post-NACT samples, we identified
signaling pathways and biological states enriched in the pre-NACT samples compared to the post-NACT
samples. For our first approach, we performed gene set enrichment analysis (GSEA) using a collection of
50 “hallmark” gene sets representing well-defined biological states or processes [31,32]. Hallmark gene
sets relating to cell cycle and cell growth were significantly enriched in the pre-NACT samples compared
to the post-NACT samples. Of the 10 significantly (p < 0.01) enriched hallmark gene sets, five were
cell cycle pathways (G2M-Checkpoint, E2F-targets, Mitotic-Spindle, MYC V1, and MYC V2-Targets).
Another three enriched hallmark gene sets were related to growth (Glycolysis, MTORC1-Signaling,
and PI3K-AKT-MTOR-Signaling), while the remaining two enriched gene sets were DNA-Repair and
the Unfolded-Protein-Response (Table 3).
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Figure 4. NMF clustering of TCGA, pre-NACT and post-NACT samples. Clustering of NMF target
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Table 3. Hallmark gene sets enriched in pre-NACT samples.

Hallmark Name Size ES NES NOM p-val * FDR q-val *

G2M CHECKPOINT 151 0.76 1.89 0.00 0.003
E2F TARGETS 166 0.78 1.82 0.00 0.004

MTORC1 SIGNALING 158 0.60 1.68 0.01 0.028
GLYCOLYSIS 162 0.59 1.70 0.01 0.029

UNFOLDED PROTEIN RESPONSE 92 0.53 1.54 0.04 0.079
DNA REPAIR 114 0.50 1.55 0.01 0.085

MYC TARGETS V1 159 0.60 1.55 0.05 0.100
MITOTIC SPINDLE 163 0.49 1.47 0.04 0.112
MYC TARGETS V2 51 0.62 1.47 0.11 0.125

PI3K AKT MTOR SIGNALING 78 0.48 1.42 0.05 0.153

* p-val is calculated by comparing the observed ES score with a set of ESnull scores computed with randomly
assigned phenotypes. The FDR q-val is based on a null distribution of NES scores [31].

To confirm these results, we used a second, complementary approach to identify pathways
enriched in the pre-NACT samples. First, we identified differentially expressed genes using the software
package EdgeR, selecting genes that were at least 1.5-fold higher in pre-NACT samples (Poisson model
FDR < 0.0001) [33]. This analysis identified 117 genes that were significantly higher in pre-NACT
samples compared to post-NACT samples (Table S2). We performed over-representation analysis based
on this set of genes using ConsensuPathDB [34]. ConsensusPathDB tests for over-representation of the
gene set in over 4000 signaling pathways extracted from 12 annotated pathway databases including
KEGG, Pathway Interaction Database, Reactome, and Wikipathways. We identified 86 pathways
significantly enriched with our gene set (Table S3, Hypergeometric test, p < 0.001). Similar to the GSEA
results, ~60% of significantly over-represented pathways related to the cell cycle. The overexpressed
genes contributing to this enrichment included several cyclins (CCNB1, CCNB2, CCNA1), cell division
control genes (CDC20, CDC25A, CDC45), a cyclin dependent kinase (CDK1), regulators of mitosis
(AURKB, PLK1, CENPF, BUB1) and other key regulators of the cell cycle (CHEK1, E2F2). Using the same
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set of 117 genes, we also tested for enriched terms from Gene Ontology (GO) database. This analysis
resulted in identification of 37 GO terms, again with ~60% being cell-cycle-related (Table S4).

2.5. Drug Transport and Peroxisome Pathways Are Enriched Post-NACT Samples

Post-NACT samples were also subjected to GSEA analyses, but interestingly, only three hallmark
gene sets were significantly enriched in post-NACT samples (Figure 5A and Table 4). The most
significantly enriched hallmark gene set was Bile Acid Metabolism, which is a synthesis of 28 annotated
pathways. In addition to bile acid metabolism genes, this hallmark gene set includes drug transporter,
peroxisome, and drug response pathways. To understand the functional significance of this pathway to
post-NACT samples, we analyzed the function of the top 15 genes upregulated in post-NACT samples
that resulted in this pathway scoring as significant (Figure 5B and Table 4). None of the 15 genes were
directly related to bile acid metabolism. Instead, one-third of the genes were drug transporters (ABCA5,
ABCA6, ABCA8, ABCA9, and ABCD2) but none of these genes were in the MDR/TAP family of ABC
drug transporters, which includes ABCB1 (also known as MDR1). Previous studies have implicated
upregulation of ABCB1 as a mechanism for both platinum and taxane resistance [8,35,36]. In our dataset
ABCB1 expression was very low in all samples (Table S5). In addition to drug transporters, one-third of
the upregulated genes from the Bile Acid Metabolism gene set were involved in fatty acid or cholesterol
metabolism and were connected with functioning of the peroxisome (HACL1, CH25H, LIPE, PECR,
and PEX11A) (Figure 5B and Table 4). Supporting the importance of the peroxisome, an activator of
peroxisome proliferation, PPARG, is significantly upregulated in the post-NACT samples compared to
pre-NACT samples (Fold Change > 1.5, FDR < 0.001, Table S6).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 17 
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Table 4. Hallmark gene sets enriched in post-NACT samples.

Hallmark Name SIZE ES NES NOM p-val FDR q-val

BILE ACID METABOLISM 89 0.53 1.76 0.002 0.007
ADIPOGENESIS 155 0.46 1.65 0.000 0.012

UV RESPONSE DN 110 0.44 1.49 0.002 0.049

We identified 266 genes upregulated in post-NACT samples using the complementary approach
(Table S6). An analysis of this gene list for enriched pathways using ConsensusPathDB identified
47 enriched pathways from eight annotated pathway databases (Table S7). The most significantly
enriched pathways included lipid metabolism, adipogenesis, PPAR signaling, drug metabolism and
bile acid metabolism, similar to the hallmarks analysis. Analysis of GO term enrichment resulted in
somewhat contradictory terms being highly enriched (Table S8). For example, the top 10 enriched GO
terms included “negative regulation of cell proliferation,” “positive regulation of cell proliferation,”
“regulation of lipid metabolic process,” and “negative regulation of lipid metabolic process.”

2.6. Platinum Resistant Tumors Are Characterized by Lower Levels of Membrane Transporters

To understand the difference between patients that respond to platinum chemotherapy compared
to those that recur within six months, we identified genes that were upregulated or downregulated in
the clinically defined resistant patients compared to the sensitive patients. Due to the small sample
size (two sensitive and four resistant patients), we used stringent statistical requirements for a gene to
be considered up- or downregulated and we compared the set of pre-NACT samples separately from
the post-NACT samples (FDR p-value < 0.05 after Benajamini-Hochberg correction, see Section 4.4).
In the pre-NACT samples, there were only 10 significantly downregulated genes and no upregulated
genes in the resistant samples (Table S9). Of the 10 downregulated genes, three were of unknown
function, two genes encode transcription factors (FOXA1 and ZNF648), while one gene regulates
glycogenesis (GYG2). The remaining four genes encode membrane proteins that regulate calcium
channels, extracellular levels of ATP and biogenesis of collagen fibrils (CACNA1E, PKD1L2, ENTPD3,
and EPYC).

In the post-NACT samples there was a larger number of differentially expressed genes when
comparing the sensitive to the resistant samples. Using the same stringent criteria, there were
40 downregulated genes and five upregulated genes in the resistant samples. Four of the five
upregulated genes encode for nuclear proteins that regulate transcription and MAPK signaling (ID3,
IER2, GADD45B, and DUSP5). The other upregulated gene, CYR61, is a secreted protein that interacts
with the extracellular matrix to promote cell proliferation, chemotaxis, angiogenesis, and cell adhesion
(Table S10).

Of the 45 genes that are expressed at significantly lower levels in resistant patients, almost
half are of unknown function. There were two downregulated transcription factors (BARX2 and
CDX2), a glutathione regulating enzyme (GGT6) and a serine protease that correlates with improved
survival in ovarian cancer (PRSS16) [37]. The remaining 18 downregulated genes can be grouped
into four functional categories: 1) Channel proteins (ABCA13, ATP6VOA4, CACNA1F, GJB5, and
TMC5); 2) blood-antigen regulation (ABO, B3GNT3, CD1A, FUT3, and ST6GALNAC1); 3) GPCR/TKR
signaling (FAM83A, OR2C1, PAK6, and PLPP2); and 4) cell-cell/cell-ECM interaction (CORO2A, ITGB6,
and MUC6) (Table S11).

2.7. Quantitative PCR Supports the Accuracy of RNA Sequencing

We randomly selected five genes from those discussed above (CCNB2, CYR61, CDC20, LIPE, and
EPYC) and performed quantitative RT-PCR to measure expression changes in four sets of matching
pre- and post-NACT samples (Patients 1, 10, 16, and 17). In 85% of the comparisons (17 out of 20) the
qRT-PCR results were in accordance with the results from RNA sequencing (Table 5).
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Table 5. Comparison of qRT-PCR results with RNA sequencing results.

Gene Symbol Patient ID Fold Change Based on qRT-PCR Fold Change Based on FPKM Change in Same Direction

CYR61 1 7.3 14.1 yes
CYR61 10 −2.2 −1.9 yes
CYR61 16 −7.1 20.7 no
CYR61 17 20.3 3.5 yes
CCNB2 1 −88.6 −48.9 yes
CCNB2 10 −5.6 −4.5 yes
CCNB2 16 −1.8 −7.9 yes
CCNB2 17 −4.1 −5.4 yes
CDC20 1 −9.0 −72.2 yes
CDC20 10 −2.5 −4.4 yes
CDC20 16 0.7 −14.8 no
CDC20 17 −10.7 −7.8 yes
EPYC 1 −44.9 −44.6 yes
EPYC 10 −4.2 −10.6 yes
EPYC 16 5.9 2.6 yes
EPYC 17 −340.1 −166.5 yes
LIPE 1 186.1 168.6 yes
LIPE 10 12.6 2.4 yes
LIPE 16 2.3 31.0 yes
LIPE 17 0.4 −2.6 no

3. Discussion

Our data demonstrate that there are multiple changes in gene expression profiles following
exposure of HGSOC to platinum and taxane therapy and that these appear to develop early in the
treatment of cancer. These changes are sufficiently similar between patients to distinguish pre- and
post-treatment specimens, suggesting that biological pressure may be more relevant to the initial
response to chemotherapy than the expansion of minor resistant subclones. A recent study by Arend et
al. measured pre- and post-NACT expression of 770 cancer genes using the Nanostring platform [38].
Unsupervised clustering using the 86 differentially expressed genes from this panel of 770 genes
resulted in a similar separation between pre- and post-NACT samples. Interestingly, when using
all 770 genes, the samples did not cluster based on pre- and post-NACT status in the Arend study,
while in our study, clustering using an expanded set of 6748 genes did result in separation (Figure 2).
This highlights the differences between using an unbiased whole transcriptome approach versus a
targeted panel analysis. There was strong concordance between the two studies, with 19 of the top
20 differentially expressed genes identified in the Arend study also significantly changed in our study.

A caveat to gene expression analysis using bulk tissue samples is the contribution of non-cancer
cell types within the tumor microenvironment. Gene transcripts from infiltrating stromal, vascular and
immune cells are inevitably mixed in with the cancer cell mRNA, producing a “bulk” gene expression
signature. Several groups have demonstrated that small numbers of infiltrating cells, comprising as
little as 5% of the total sample, will affect the gene expression signature [39,40], which can heavily
influence the molecular subtype assigned to the patient [41]. Our samples had a similar range of tumor
purity based on pathologic analysis and the ESTIMATEScore (Table 1, Figure S1) compared to TCGA
samples [28]. It is highly likely that these infiltrating cells contributed to the gene expression signatures.
Future studies using microdissected tissue and/or single cell analyses will be required to determine the
effect of these infiltrating cells on the molecular signatures.

We were most interested in the pathways or biological states that were enriched in the post-NACT
samples, as these could represent potential therapeutic windows if targeting those pathways could
block the ovarian cancer cells’ ability to resist chemotherapy treatment. Interestingly, only three
hallmark gene sets were enriched in the post-NACT samples compared to the pre-NACT samples: Bile
acid metabolism, Adipogenesis, and Ultraviolet-response-down (Figure 5). Tumor purity may have
affected these results, although changes in tumor purity comparing pre- to post-NACT samples were
varied, with half of the samples showing increased purity and half showing decreased purity (Table 1,
ESTIMATEScore change). However, three of the four samples from the omentum had decreased
purity, which could indicate increased infiltration of adipocytes, which could account for the enriched
adipogenesis gene set.
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The hallmark gene set with the strongest normalized enrichment score was the bile acid metabolism
gene set. This gene set is based on 28 founder gene sets, including several datasets relating to
transporters, peroxisome, and response to drug. To better understand this enrichment, we identified
the specific genes that were upregulated in our samples that caused gene set enrichment. Of the
38 genes that contributed to this enrichment, the top 15 were characterized by drug transport, fatty
acid metabolism, and peroxisome production genes (Table 6 and Figure 5B). Both the Adipogenesis
hallmark enrichment and the fatty acid metabolism enrichment could be the result of changes in the
cancer epithelial cells or, alternatively, infiltration of fat cells within the sample taken during interval
debulking surgery. Five of the 15 genes contributing to the Bile Acid Metabolism hallmark are drug
transporters. Although we did not identify upregulation of ABCB1 in our analysis, there is evidence
that upregulation of ABCB1 occurs via fusion with upstream promoters [8]. It is possible that we did
not detect upregulation of ABCB1 because our sequence analysis pipeline rejected these transcripts
due to non-alignment with annotated transcripts, or the upregulation did not change during the first
three cycles of chemotherapy administration. Our data indicate that, in addition to ABCB1, other
transporters, especially those in the ABC1 family of transporters, may be playing an important role in
the ovarian cancer response to chemotherapy treatment. Finally, our data indicate that cancer cells
respond to chemotherapy by increasing peroxisome activity. Peroxisomes are key hubs within the cell
for controlling reactive oxygen species [42,43]. Together these results suggest that inhibitors of drug
transport, not just limited to ABCB1/MDR, and inhibitors of peroxisomes and fatty acid metabolism
may be effective in blocking cancer cells’ response to chemotherapy.

Table 6. Top 15 upregulated genes in post-NACT samples contributing to enrichment in the Hallmark
Bile Acid Metabolism gene set.

Gene Symbol Function

CAT Antioxidant, Catalase enzyme
CH25H Cholesterol metabolism
RETSAT Drug metabolism
ABCA5 Drug transport (ABC1 family)
ABCA6 Drug transport (ABC1 family)
ABCA8 Drug transport (ABC1 family)
ABCA9 Drug transport (ABC1 family)
ABCD2 Drug transport (ALD family)
ISOC1 Enzymatic production of pyruvate
LIPE Fatty acid and cholesterol metabolism

HACL1 Fatty acid metabolism
PECR Fatty acid metabolism

PEX11A Peroxisome membrane elongation
BMP6 Regulates bone development and ovulation, secreted TGFb ligand

AR Steroid hormone receptor, transcription factor

Numerous studies have demonstrated a large degree of heterogeneity in gene expression patterns
found in HGSOC patients [8,20], which presumably would result in pre-NACT and post-NACT
samples from the same patient clustering together due to their unique pattern of copy number changes.
In contrast to this prediction, unsupervised hierarchical clustering and k-means clustering, using the
most variably expressed genes, indicated that the effects of chemotherapy on gene expression appear
to outweigh the effects of inter-patient variability (Figure 2). Arend et al. performed a similar study
using a targeted gene panel and also found that pre- and post-NACT samples cluster together [38].
A previous study comparing the change in chromosomal alterations between matched pre-NACT and
post-NACT samples found that there were no significant changes in the chromosomal architecture
during the first three cycles of chemotherapy [44]. These findings combined with our findings of
extensive gene expression changes indicate that chemotherapy has a stronger effect on gene expression
than clonal evolution within the short time frame of NACT.
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Currently there are no clinically useful biomarkers or gene expression patterns that predict
response to carboplatin and paclitaxel [7,45]. Analyses of gene expression in large cohorts of HGSOC
patients has led to classification of patients into molecular subtypes based on various unsupervised
clustering algorithms. Several groups have proposed between four and nine molecular subtypes
for ovarian cancer based on gene expression and other omics datasets in hope of improving patient
outcomes through tumor-directed therapy selection [8,19–21,23–25]. While appealing, especially for
the treatment of patients who are categorized as likely to be platinum-resistant, one problem with
this approach is that the patient cohort and the platform for measuring gene expression can affect
the robustness and applicability to other datasets. Our group has previously demonstrated that the
technology used to measure gene expression can affect placement of patients into their molecular
subtype. When we re-analyzed the original TCGA cohort using RNASeq gene expression data, instead
of the original microarray gene expression data, a large percentage of the patients were classified into
different molecular subtypes [46]. Due to this and other factors, it is difficult to make robust molecular
classifications based on gene expression [47]. In this present study, we demonstrate that classification
of patients into specific molecular subtypes changes after administration of chemotherapy (Figure 4
and Table 2). One caveat to this analysis is that our samples were from metastatic sites (Table 1) and
not from the primary ovarian tumor. The TCGA molecular subtypes were based on gene expression
in the primary ovarian tumor and it has not been established that gene expression from metastatic
sites or from post-NACT samples can be applied to the molecular subtype stratification. Nevertheless,
our data suggest that the subtypes may not be as useful as has been proposed because a patient’s
classification into a subtype might change after exposure to chemotherapy. Furthermore, the change is
not predictable based on the initial classification, as the three patients classified in the Immunoreactive
subtype were all assigned to different subtypes after NACT.

Unsurprisingly, pre-NACT samples were notably enriched for multiple pathways involving cell
cycle progression (Table 3, Tables S3 and S4) consistent with the concept that HGSOC is a highly
proliferative disease and that platinum and taxane therapy reduces proliferation dramatically. This is
further supported by the finding that common proliferation markers, MKI67 and PCNA were both
significantly downregulated in the post-NACT samples (Tables S2 and S5). A subset of ovarian cancer
is known to overexpress CCNE1 or CCND1 [8], suggesting that cell-cycle-targeted drugs such as
palbociclib, a CDK4/6 inhibitor, may be effective in specific subsets of ovarian cancer [48]. In our
study, the levels of CCND1, CCND2, CCNE1 and CCNE2 were relatively unchanged after treating with
chemotherapy, while CCNB and CCNA were significantly downregulated (Table S12), suggesting cell
cycle inhibitors may be effective even in patients without elevated CCNE or CCND.

4. Materials and Methods

4.1. Patient Recruitment

After obtaining study approval by the Institutional Review Board (IRB number 1402M48375,
approved 5/6/2014), we recruited women over the age of 18 with clinical, laboratory and/or imaging
findings suspicious for advanced (FIGO Stage IIIC or IV) epithelial ovarian cancer treated at the
University of Minnesota Medical Center. Samples were collected at the time of confirmatory biopsy
in the setting of planned neoadjuvant therapy or when optimal debulking was deemed unfeasible
intraoperatively. Study enrollment occurred after histologic assessment demonstrated high grade
serous ovarian cancer and NACT was finalized as the treatment plan. Patients with a non-epithelial
ovarian cancer, borderline ovarian cancer, or unclear histology were excluded from the study based on
pathologic diagnosis. Demographic and clinical factors, including age at diagnosis, comorbid medical
conditions, disease stage, and tumor histology, as well as details regarding treatment and survival
outcomes were abstracted from the medical record. All patients gave written informed consent prior
to enrollment.
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4.2. Sample Collection, RNA Extraction, Library Preparation, and Sequencing

Samples of tumor tissue were obtained in the operating room or the interventional radiology suite
and then sent to pathology where the samples were divided for subsequent analysis. A portion of each
tissue sample was immediately placed into 2.5 mL of RNAlater solution prior to subsequent RNA-Seq
analysis. RNA was extracted using the RNeasy Micro Kit (Qiagen, Redwood City, CA, USA) following
the manufacturer’s protocol. RNA was quantified using RiboGreen (Thermo Fisher Scientific, Waltham,
MA, USA). RNA integrity was assessed using capillary electrophoresis via the Agilent BioAnalyzer
2100 (Santa Clara, CA, USA), generating an RNA Integrity Number (RIN). To proceed to sequencing,
samples had to be at least 1 microgram and have a RIN of 8 or greater. RNA samples were converted
to Illumina sequencing libraries using Illumina’s Truseq RNA Sample Preparation Kit (Illumina,
San Diego, CA, USA) following manufacturer’s protocol. Briefly, 1 microgram of total RNA was
purified using oligo-dT coated magnetic beads, fragmented and then reverse transcribed into cDNA.
The cDNA was blunt-ended and ligated to indexed adaptors and amplified using 15 cycles of PCR.
Indexed libraries were paired-end sequenced using an Illumina HiSeq 2500 instrument. Sequences
were processed using the CASAVA workflow to produce Fastq files.

4.3. Pathology

Patient samples were fixed and paraffin-embedded following standard protocols. Slides
prepared by hematoxylin and eosin staining were analyzed for tumor purity and Chemotherapy
Response Score [26,27] by a board-certified pathologist with extensive experience in gynecologic
malignancies (KM).

4.4. Analysis of RNA-Seq Data

Mapping and transcript abundance: RNA Seq data were aligned to the GRCh38 reference genome
using Tophat with default options [49]. Reads were filtered based on a mapping quality score ≥30
and we required that sequences uniquely mapped to the genome. Transcripts were quantified using
Cufflinks to calculate fragments per kilobase of exon per million fragments (FPKM) values and
featureCount to calculate absolute read counts [49,50]. FPKM values for all genes and all samples are
provided in Table S5.

Differential gene expression was determined using the EdgeR software package [33]. We used
pairwise analysis for pre- versus post-NACT comparisons and selected genes with an FDR p-value
<0.001 and fold change > +/− 1.5. We used an FDR p-value < 0.05 for sensitive versus resistant samples
and the additional requirement that the minimum value − standard deviation in the upregulated
group was greater than the maximum value + standard deviation in the comparison group. EdgeR
uses an overdispersed Poisson model with empirical Bayes methods to account for both biological and
technical variability when determining differentially expressed genes [33].

Hierarchical clustering was performed using Cluster 3.0 and visualized using TreeView v. 1.1.6r4
using average linkage with a Euclidean similarity metric [51,52]. K-means clustering was performed
using Cluster 3.0 with 1000 runs using a Euclidian Distance similarity matrix. Genes used for clustering
were selected based on expression levels > 5 fpkm and an average deviation > 50 when comparing
pre- to post-NACT samples (366 genes fulfilled these criteria). Average deviation was calculated
using the Avedev function in Microsoft Excel, which calculates the average of absolute deviations
from the mean in a given set of data. Principal component analysis was performed using the prcomp
function in R, using genes that were consistently expressed in either all of the pre-NACT samples or all
post-NACT samples, i.e., all samples had an FPKM > 5 (6748 genes fulfilled this criteria). Gene set
enrichment analysis (GSEA) was performed using the MSigDB Hallmarks 50 gene sets (C1 v6.1),
the Curated 4738 gene sets (C2 v6.1), and the Oncogenic Signatures 168 gene sets (C6 v6.1) [31,32].
GSEA uses a combination of statistical tests to identify enrichment in these pre-defined hallmark gene
lists. Overrepresentation Analysis was performed using the online tool, Consensus Site Pathway
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Database (CPDB) http://consensuspathdb.org [53]. The stromal, immune, and ESTIMATEScores were
calculated using the ‘estimate’ R package v1.0.13.

4.5. Quantitative RT-PCR

Half a microgram of total RNA was reverse-transcribed using the SuperScript® III First-Strand
Synthesis SuperMix for qRT-PCR reverse transcription kit (Invitrogen Life Technologies, Carlsbad, CA,
USA) following the manufacturer’s specifications. RT-qPCR was performed in triplicate using 10-fold
diluted cDNA, FastStart Essential DNA Green Master mix (Roche, Basel, Switzerland), and specific
primers for CCNB2, CDC20, CCN1, LIPE and EPYC. Samples were run in the LightCycler 96 (Roche).
Data were normalized to human TATA-box binding protein and fold change was calculated using the
delta-delta Ct method. Primer sequences are included in Table S13.

4.6. Statistical Considerations

This was a pilot project and the sample size was limited by budgetary constraints; as such,
a sample size calculation was not undertaken and the demographic parameters are descriptive.

5. Conclusions

Numerous changes in tumor gene expression profiles after exposure to NACT were identified in
this pilot study. One provocative finding was that the response to chemotherapy was similar across
all patients, suggesting a common evolution during chemotherapy. A second provocative finding
was that the molecular subtypes changed, but not in a consistent direction, suggesting a plasticity
that could hinder the ability to use these subtypes as prognostic or predictive tools. A caveat to this
is that in our study molecular subtypes were inferred from metastatic samples, while the original
subtypes were defined using primary samples. The study is also limited by its small sample size;
therefore, no conclusions can be drawn regarding whether these changes are correlated with platinum
resistance or whether they affect prognosis. Nevertheless, these intriguing findings raise many
questions and warrant a closer and more detailed analysis of the immediate response to chemotherapy
in future studies.
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