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Obesity is associated with an increased risk of insulin resistance (IR) and type 2 diabetes
mellitus (T2DM) which is a multi-factorial disease associated with a dysregulated
metabolism and can be prevented in pre-diabetic individuals with impaired glucose
tolerance. A metabolomic approach emphasizing metabolic pathways is critical to
our understanding of this heterogeneous disease. This study aimed to characterize
the serum metabolomic fingerprint and multi-metabolite signatures associated with
IR and T2DM. Here, we have used untargeted high-performance chemical isotope
labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) to identify candidate
biomarkers of IR and T2DM in sera from 30 adults of normal weight, 26 obese
adults, and 16 adults newly diagnosed with T2DM. Among the 3633 peak pairs
detected, 62% were either identified or matched. A group of 78 metabolites were
up-regulated and 111 metabolites were down-regulated comparing obese to lean
group while 459 metabolites were up-regulated and 166 metabolites were down-
regulated comparing T2DM to obese groups. Several metabolites were identified as
IR potential biomarkers, including amino acids (Asn, Gln, and His), methionine (Met)
sulfoxide, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, serotonin, L-2-amino-3-
oxobutanoic acid, and 4,6-dihydroxyquinoline. T2DM was associated with dysregulation
of 42 metabolites, including amino acids, amino acids metabolites, and dipeptides.
In conclusion, these pilot data have identified IR and T2DM metabolomics panels as
potential novel biomarkers of IR and identified metabolites associated with T2DM,
with possible diagnostic and therapeutic applications. Further studies to confirm these
associations in prospective cohorts are warranted.

Keywords: type 2 diabetes mellitus, insulin resistance, obesity, untargeted metabolomics profiling, clinical
metabolic panel, chemical isotope labeling liquid chromatography

Abbreviations: AAA, aromatic amino acids; ACN, acetonitrile; Asn, asparagine; BCAA, branched-chain amino acid; BMI,
body mass index; CIL, chemical isotope labeling; DnsCl, dansyl chloride; FA, formic acid; Gln, glutamine; HG, hyperglycemia;
His, histidine; HOMA-IR, homeostatic model assessment; INSR, insulin receptor; IR, insulin resistance; IRS-1, insulin
receptor substrate-1; LC-MS, liquid chromatography-mass spectrometry; LDL, low-density lipoprotein; LHD, lower high-
density lipoprotein; NEFAs, non-esterified fatty acids; PLS-DA, partial least squares discriminant analysis; T2DM, type 2
diabetes mellitus; Trig, triglycerides.
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INTRODUCTION

Obesity is considered the most crucial factor in the development
of several metabolic diseases such as T2DM. The prevalence
of obesity in the Middle East is increasing, where about
70% of males above 20 years old are overweight compared
to females (74%) in Saudi Arabia (Ng et al., 2014). Obesity
and T2DM are conditions that are interlinked biochemically,
metabolically, and at multiple levels making it difficult to
discern the differences in their pathologies. Although closely
interconnected, not all individuals with obesity develop diabetes
and remain metabolically healthy, while a majority of patients
diagnosed with T2DM are obese (predominant central obesity).
The strong bidirectional relationship existing between obesity
and T2DM is causally linked by IR (Al-Goblan et al., 2014) as
a result of an increased chronic low-grade inflammation and
oxidative stress, which are characteristics of both states. IR is
characterized by a decreased tissue responsiveness to circulating
insulin levels leading to defects in uptake and oxidation of
glucose, a decrease in glycogen synthesis, decreased ability to
suppress lipid oxidation, and the existence of a pro-oxidant state.
The presence of IR far precedes the onset and presentation of the
clinical symptoms of T2DM due to HG, delaying its prediction,
diagnosis, and management by several years (Sas et al., 2015).

Insulin resistance, commonly observed in patients with
obesity, affects multiple organs, including the adipose tissue,
muscle, and liver, and attenuates insulin signaling pathways.
In obese individuals, adipose tissue releases bigger amounts
of NEFAs that promote triglyceride accumulation, resulting in
worsening IR and β-cell dysfunction (Scheen, 2003). Shortly after
an acute increase in plasma NEFA levels in humans, IR starts
to develop. On the other hand, when the level of plasma NEFA
decreases, as in antilipolytic agent used cases, peripheral insulin
uptake improves. It has also been proposed the connection of
NEFA and fatty acids delivery and intracellular metabolism to
the levels of intracellular content of fatty acid metabolites such
as diacylglycerol (DAG), which activates a serine (Ser)/threonine
kinase cascade leading to Ser/threonine phosphorylation of IRS-
1 and INSR substrate-2 (IRS-2), and a reduced ability of these
molecules to activate PI3K (Snel et al., 2012). Subsequently,
events downstream of INSR signaling are diminished due to the
lipotoxicity giving rise to IR in obese individuals. Initiation of
IR forms the first phase in the pathogenesis of T2DM followed
sequentially by elevations in plasma glucose levels (that stimulate
β-cells to secrete higher amounts of insulin), oxidative stress (that
accelerates β-cell insufficiency) exacerbating the existing HG,
ultimately leading to apoptosis (β-cell death) and development
of overt T2DM (Cernea and Dobreanu, 2013).

Metabolomics has recently become a powerful method
to measure subtle biochemical changes in several diseases
(Adamski, 2016). Several metabolites associated with IR and
obesity have been identified in T2DM including BCAAs,
AAA, mannose, fructose, α-hydroxybutyrate, and phospholipids
(Wang et al., 2011; Ferrannini et al., 2013; Yu et al., 2016). The
onset of T2DM is relatively long, and symptoms of T2DM can
occur at a very late stage without acute metabolic disturbances,
making it difficult for early diagnosis (Sas et al., 2015). The

current clinical practice for T2DM diagnoses, such as fasting
glucose and glucose tolerance tests, lacks efficient early diagnose
of T2DM. Identification of sensitive in vivo biomarkers that
could reflect the early onset of T2DM would be crucial for
the identification of high-risk asymptomatic diabetic individuals
for better prevention. To identify metabolomics patterns for IR
and T2DM individuals, a high-performance CIL LC-MS was
utilized in this study. Our goal is to identify potential metabolic
biomarkers for IR and T2DM, other than HOMA-IR and HG.
CIL is used to modify the chemical and physical properties
of metabolites for much-improved separation and enhanced
detection sensitivity, thereby increasing the number of detectable
metabolites (Jacob et al., 2019a; Dahabiyeh et al., 2020). Using
differential isotope labeling also provides more accurate and
precise quantification of metabolite concentration differences in
comparative samples (i.e., relative quantification) (Jacob et al.,
2019a; Dahabiyeh et al., 2020).

MATERIALS AND METHODS

Subjects
All subjects were recruited from a primary healthcare hospital
located at King Abdulaziz Medical City in Riyadh, Saudi Arabia.
All subjects underwent a medical check-up at the Department
of Medicine and were screened for medical history. The
anthropometric measurements included weight, height, waist,
and hip circumferences. The study participants comprised of
three groups: 30 adults of normal weight, 26 obese adults, and 16
adults newly diagnosed with T2DM. Exclusion criteria included
(1) patients with coronary event or procedure (myocardial
infarction, unstable angina, coronary artery bypass surgery, or
coronary angioplasty) in the previous 3 months; (2) patient on
steroids; (3) hepatic disease (transaminase > 3 times normal);
(4) renal impairment (serum creatinine > 1.5 mg/dL); (5)
history of drug or alcohol abuse; (6) participation in any other
concurrent clinical trials; (7) any other life-threatening diseases;
and (8) use of an investigational agent within 30 days of study.
Institutional review board (IRB) approval was obtained from
both King Abdulaziz Medical City Ethics Committee (Protocol
# RC12/105), and King Faisal Specialist Hospital and Research
Center (KFSHRC) (RAC# 2170 013), and all study participants
signed a written informed consent form. All volunteers were
properly instructed to fast for 12 h before the day appointed
for vein puncture.

Chemicals and Reagents
Liquid chromatography-mass spectrometry grade reagents,
including water, ACN, methanol, and FA, were purchased from
Fisher Scientific (Ottawa, ON). 13C-DnsCl was available from
Nova Medical Testing, Inc. (Edmonton, Canada) with the
procedures published previously (Zhao et al., 2019).

Metabolomic Profiling Workflow
Supplementary Figure S1 shows the schematic of the overall
metabolomics analysis workflow. Each sample was derivatized
by 12C-DnsCl, while a pooled sample generated by mixing of
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aliquots of all individual samples was labeled by 13C-DnsCl.
The 13C-labeled pool sample served as an internal standard
for all 12C-labeled individual samples. The sample amount of
each sample was normalized using the LC-UV method (Wu and
Li, 2012). The 12C-labeled individual sample was mixed with
the same mole amount of 13C-labeled pool. The mixture was
injected onto LC-MS. All the labeled metabolites were detected
as peak pairs on mass spectra. The peak area ratios were used
for quantitative metabolomics analysis; the same 13C-labeled pool
was spiked into all 12C-labeled individual samples, and thus the
peak ratio values of a labeled metabolite in different samples
reflected the concentration differences of this metabolite in these
samples. In other words, every 12C-labeled metabolite from an
individual sample had its corresponding 13C-labeled metabolite
in the pooled sample as a reference, resulting in high accuracy for
relative quantification (Jacob et al., 2019a; Dahabiyeh et al., 2020).

Serum Samples and Dansylation
Labeling
Serum samples including lean control (n = 30), obese (n = 26),
and T2DM (n = 16) were collected and stored at−80◦C. A 15 µL
sample was used and the metabolites were extracted by protein
precipitation with 45 µL of methanol. After 2 h incubation
at −20◦C, 45 µL of supernatant was dried and then mixed
with 25 µL of water, 12.5 µL of ACN, 12.5 µL of sodium
carbonate/sodium bicarbonate buffer, and 25 µL of 12C-DnsCl
or 13C-DnsCl (18 mg/mL in ACN). The mixture was incubated
at 40◦C for 45 min and 5 µL of 250 mM NaOH were added and
incubated for 10 min at 40◦C. Twenty-five µL of 425 mM FA in
1:1 ACN/H2O was added to consume excess NaOH.

LC-UV
Before LC-MS injections, sample normalization was performed
to minimize variations in the total sample amount of individual
samples when comparing samples. A step-gradient LC-UV
method measured the total concentration of dansyl labeled
metabolites (Wu and Li, 2012). In brief, 5 µL of the labeled
sample was injected into a Phenomena’s Kinetes C18 column
(2.1 mm× 5 cm, 1.7 µm particle size, 100 Å pore size) connected
to a Waters ACQUITY UPLC system (Waters, Milford, MA,
United States). Mobile phase A was 0.1% (v/v) FA in 5% (v/v)
ACN, and mobile phase B was 0.1% (v/v) FA in ACN. The
6.5 min LC gradient including: t = 0 min, 0% B; t = 1 min,
0% B; t = 1.1 min, 95% B; t = 2.6 min, 95% B; t = 3.1 min,
0% B, and the flow rate was 0.45 mL/min. PDA detector was
operated at 338 nm. The area under the peak representing the
total concentration of dansyl-labeled metabolites was integrated
using Waters Empower (V6.00).

LC-MS
Each sample was labeled by 12C-DnsCl and mixed in equal
mole amount with a 13C-labeled pool sample based on the
quantification results from LC-UV analysis. The samples were
analyzed by a Dionex Ultimate 3000 UHPLC System (Thermo
Scientific, Sunnyvale, CA, United States) connected to Maxis II
quadrupole time-of-flight (Q-TOF) mass spectrometer (Bruker,

Billerica, MA, United States). The analytes were separated using
a reversed-phase Eclipse Plus C18 column (2.1 mm × 10 cm,
1.8 µm particle size, 95 Å pore size) (Agilent Inc., Santa Clara,
CA, United States). Mobile phase A was 0.1% (v/v) FA in 5%
(v/v) ACN, and solvent B was 0.1% (v/v) FA in ACN. The
LC gradient was: t = 0 min, 20% B; t = 3.5 min, 35% B;
t = 18 min, 65% B; t = 21 min, 99% B; t = 34 min, 99% B,
and flow rate of 0.18 mL/min. MS conditions were as follows:
polarity, positive; dry temperature, 230◦C; dry gas, 8 L/min;
capillary voltage, 4500 V; nebulizer, 1.0 bar; endplate offset, 500 V;
spectra rate, 1.0 Hz.

The quality control (QC) sample was prepared by mixing
the 12C- and 13C-labeled pooled samples in equal mole. A QC
injection was performed every 15 LC-MS sample runs. In total,
there were 14 QC samples injected and analyzed. Peak pairs
with ratio values having >±25% RSD in the QC samples
were filtered out.

Data Analysis
The MS spectra of the detected analytes were converted into.cvs
files using Bruker Daltonics Data Analysis 4.3 software. The raw
data generated from multiple LC-MS runs were processed by
peak picking, peak pairing, and peak-pair filtering to remove
redundant peaks (IsoMS; Zhou et al., 2014). IsoMS files from
each injection were aligned together based on the peak’s accurate
mass and retention time to generate the aligned file. The missing
peak pair information in aligned files was re-extracted from
raw data by Zerofill software (Huan and Li, 2015). The final
metabolite-intensity data file was used for statistical analysis after
normalization and/or scaling. The PLS-DA was performed by
MetaboAnalyst1.

Metabolite identification was carried out using the three-
tier metabolite identification approach (Zhao et al., 2019). In
tier 1, peak pairs were searched against a labeled metabolite
library (CIL Library) based on accurate mass and retention
time. The CIL Library (i.e., dansyl amines and phenols) contains
711 experimental entries, including metabolites and dipeptides
(Huan et al., 2015). In tier 2, linked identity library (LI Library)
was used for identification of the remaining peak pairs. LI
Library includes metabolic-pathway-related metabolites (more
than 7000 entries extracted from the KEGG database), providing
high-confidence putative identification results based on accurate
mass and predicted retention time matches. In tier 3, the
remaining peak pairs were searched, based on accurate mass
match, against the MyCompoundID (MCID) library composed
of 8021 known human endogenous metabolites (zero-reaction
library) and their predicted metabolic products from one
metabolic reaction (375,809 compounds) (one-reaction library)
and two metabolic reactions (10,583,901 compounds) (two-
reaction library) (Li et al., 2013). The identified features were
processed for building the IR and T2DM models using Multiple
Professional Profiler (MPP) Software (Agilent Inc., Santa Clara,
CA, United States) to construct the Venn diagrams, clustering
heat maps, and the profiles.

1www.metaboanalyst.ca
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RESULTS

Demographic Data of Study Participants
Demographic data of study participants are summarized
in Table 1. The study groups are lean, obese, and newly
diagnosed obese with T2DM. Both obese and T2DM
groups were significantly older than the normal weight
group. Few subjects from groups 2 and 3 were on statins
or other cholesterol-lowering agents, angiotensin-converting
enzyme inhibitors (ACE-I) or other anti-hypertensives, non-
steroidal anti-inflammatory drugs, or anti-oxidants and
they were on stable doses for the last 2 months of their
participation in the study. T2DM group had significantly
higher LDL and Trig and HDL when compared to the healthy
disease-free groups.

Metabolomics Results
Based on the unique characteristics of the peak pair of the
CIL LC-MS method, 3633 peak pairs were detected in the
participants’ samples (the full data can be found in https://www.
ebi.ac.uk/metabolights/MTBLS2098) (Supplementary Table S1).
The IsoMS software filtered out redundant peak pairs such
as those from adduct ions, dimers, multimers, etc., to retain
only one peak pair ([M + H]+) for each metabolite. Thus, the
number of peak pairs detected reflects the number of detected
metabolites. From the detected peak pairs, 216 metabolites were
positively identified using both retention time and accurate mass
searching against the labeled metabolite library (CIL Library).
One hundred thirty-five peak pairs were putatively identified
based on accurate mass and predicted retention time matches
by searching against the LI Library. Six hundred and eleven
and 1296 metabolites were putatively matched with the zero-
reaction and one-reaction library via accurate mass only by
searching against the MCID library, respectively. Thus, 62.2% of
the 3633 peak pairs detected were either identified or matched,
which shows the significant coverage of the submetabolome using
the dansylation labeling LC-MS method for the serum samples
analyzed in this study.

TABLE 1 | Demographic data of study participants.

Lean (n = 30) Obese (n = 26) T2DM (n = 16)

Age (years) 25.7 ± 5.77 36.2 ± 12.12† 49.4 ± 12.12†‡

Geniler (FM) (11/19) (17/9) (4/12)

BMI (kg/m2) 23.0 ± 1.48 38.8+8.59† 32.7 ± 7.61†

Glucose (mmol/L) 5.1 ± 0.5 5.4 ± 0.67 10.2 ± 4.99†‡

HbA1c – 5.3 ± 1.73 8.7 ± 2.82†

LDL(mmol/L) 2.5 ± 0.94 3.0 ± 0.81 3.6 ± 0.72†

HDL (mmol/L) 1.35 ± 0.16 1.18 ± 0.27† 1.01 ± 0.21†

Trig (mmol/L) 0.83 ± 0.33 1.26 ± 0.61 2.01 ± 1.04†

Insulin (µU/mL) 4.59 ± 2.04 9.98 ± 6.17† 7.44 ± 8.53

HOMA-IR 1.03 ± 0.56 2.30 ± 1.44† 2.80 ± 2.55

Results are presented as Mean ± SD. †p < 0.05 vs normal weight subjects.
‡P < 0.05 vs obese.

Statistical Analysis Between Study
Groups
Multivariate statistical analysis was performed to analyze the
serum metabolome dataset. PLS-DA was first performed to
reveal the distinct separation between the groups visually. The
metabolome dataset was analyzed to see the separation between
lean and obese groups, as shown in Supplementary Figure S2A,
where the clusters of two groups were separated with Q2 = 0.737
and R2 = 0.972. Univariate analysis to further analyze the
metabolome changes using volcano plots was performed on
the metabolome set. In the volcano plot, the x-axis is the fold
change (FC) of the obese group over the lean control group,
and the y-axis is the p-value from the t-test for comparing
the two groups., The q-value (false discovery rate) less than
0.05, and FC > 1.5 (or FC < 0.67) were used to determine
metabolites with significance, that has been calculated using R
Script. Herein, the cutoff p-value equals q-value, which is 0.05.
The FC criterion chosen was based on the technical accuracy and
reproducibility, i.e., for dansylation LC-MS, the errors and RSD
values are less than ± 25%. Thus, we conservatively used ± 50%
change as the criterion. In Supplementary Figure S2B, a total of
189 metabolites were dysregulated. Among them, 78 metabolites
were up-regulated (FC > 1.5) and 111 metabolites were down-
regulated (FC < 0.67) comparing obese to lean group. By
searching against our dansyl standard library using these 189
metabolites, 30 of them were positively identified.

A clear separation was observed with Q2 = 0.885 and
R2 = 0.985 from the PLS-DA score plot of T2DM and obese
groups in Supplementary Figure S2C. The clear separation
illustrates that obese and T2DM groups experienced some
significant metabolome alterations. From the volcano plot
showed in Supplementary Figure S2D, 459 metabolites were
up-regulated (FC > 1.5), and 166 metabolites were down-
regulated (FC < 0.67) comparing T2DM to obese groups. The
cut-off p-value here is 0.038 (when q-value = 0.05). Sixty-seven
metabolites out of 625 were positively identified using the Dnsyl
library. PLS-DA analysis was also performed to the lean vs T2DM.
Two clusters were well separated on the PLS-DA score plot
with Q2 = 0.809 and R2 = 0.977 as shown in Supplementary
Figure S2E. From the volcano plot showed in Supplementary
Figure S2F, 189 metabolites were up-regulated (FC > 1.5), and
117 metabolites were down-regulated (FC < 0.67) comparing
lean to T2DM groups. The cut-off p-value here is 0.068 (when
q-value = 0.05). Three hundred and five metabolites were
common between the three groups and were used in the
downstream analysis for building the IR and T2DM models.

Metabolic Profile for Study Confounder
Metabolomics expression in human serum is highly sensitive to
specific physiological changes such as age, BMI, LDL-cholesterol
(LDL-C), etc. (Jacob et al., 2019b). In this study, BMI, age, and
LDL-C are the main confounders that were considered in the
downstream data analysis. The values of these confounders for
the study participants were integrated into the metabolomics
dataset. Pearson similarity test (R = 0.95–1) reveals 27 metabolites
depend on BMI (Figure 1A), and 56 metabolites on age
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FIGURE 1 | Pearson similarity tests (r = 0.95–1) were filtered out with 27, 56, and 42 metabolites as (A) BMI-dependent; (B) age-dependent, and
(C) LDL-C-dependent, respectively.

(Figure 1B), while 42 depend on LDL-C (Figure 1C). These
confounders-related metabolites were excluded from IR and
T2DM metabolic profiles. HOMA-IR and glucose-dependent
metabolites were also determined using the same similarity
approach as the other diabetic confounders and used to compare
them with the final metabolic pattern of IR and T2DM.

IR Metabolic Pattern
Insulin resistance metabolic pattern was built using a model
where dysregulated metabolites in obesity remained unchanged
in T2DM compared to the lean group. After one-way ANOVA
and Tukey honest significant difference (HSD) analysis,
significantly different metabolites for each pair of groups were
demonstrated in a Venn diagram by applying IR metabolic model
on overall detected features, 351 identified and unidentified
metabolites fell within this IR pattern (Supplementary
Figure S3A), only 66 feature were up-regulated and 100 down-
regulated in both obese and T2DM compared to lean as shown
in Supplementary Figures S3B–D. The identified metabolites
between the study groups (n = 305) were further analyzed to
extract the IR metabolic pattern (Figure 2A). IR metabolic group
were 43 metabolites that are statistically significant between both
the lean vs obese and lean vs T2DM groups, and insignificant
between obese vs T2DM. Figure 2B shows the breakdown of
the 43 metabolites based on FC analysis (FC > 1.5 or <0.67),
where 18 metabolites (G18) were up-regulated in both obese
and T2DM compared to lean group (Figure 2C), while nine

metabolites (G9) were down-regulated in both obese and
T2DM compared to lean (Figure 2D). Among the identified IR
metabolic panel, the up- and down-regulated metabolites (G18,
and G9, respectively) were further analyzed to exclude BMI-,
age, and LDL-C-related metabolites (Supplementary Figures
S4A,B). Only nine metabolites were down-regulated in obesity
and T2DM and are independent of these three confounders
(Supplementary Figure S4B).

T2DM Metabolomics Pattern
In this study, a metabolomics pattern for T2DM has been
determined by extracting the metabolites that significantly
unchanged between the lean and obese groups and significantly
dysregulated in T2DM compared to both lean and obese groups.
As shown in Supplementary Figure S5A, out of 3633 detected
features, 605 metabolites were dysregulated in T2DM compared
to both lean and obese groups based on one-way ANOVA Tukey
HSD cutoff (FDRp < 0.05). A total number of 529 significantly
changed metabolites were filtered out based on FC analysis
(FC > 1.5 or < 0.67) (Supplementary Figure S5B). One hundred
eighty metabolites were down-regulated (G180) (Supplementary
Figure S5C), and 349 (G349) were up-regulated (Supplementary
Figure S5D) in T2DM compared to both lean and obese groups.
Applying the same analysis on the identified molecules (n = 305),
62 metabolites were dysregulated in T2DM compared to both
lean and obese groups (FDRp < 0.05), as shown in Figure 3A.
Fifty-six metabolites out of 60 were significantly dysregulated
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FIGURE 2 | IR metabolic model based on the positively identified features. (A) A Venn diagram showing that out of 3633 detected features, only 305 (˜8%)
metabolites were positively identified. 43 (G43) significant metabolites were considered a metabolic pattern for IR, where they were statistically significant between
lean vs obese and lean vs T2D, and insignificant between obese vs T2D (FDR-corrected p-value < 0.05). (B) A Venn diagram showing the number of the up- and
down-regulated metabolites after fold change analysis (cutoff l.5) on the significant metabolites (G43) (nine and 18 metabolites, respectively). (C) The expression
profile of G18 and (D) G9 metabolites.

based on FC analysis (FC > 1.5 or < 0.67) (Figure 3B), where
31 metabolites were up-regulated (Figure 3C), and 23 down-
regulated (Figure 3D) in T2DM compared to other groups.
After applying the confounder filters (BMI, age, and LDL-C) on
these 54 metabolites (Supplementary Figures S6A,B), T2DM
metabolic profile, 19, and 23 metabolites were up-regulated
and down-regulated as BMI, age, and LDL-C-independent
metabolites, respectively, as summarized in Figure 4.

Biomarkers Evaluation for IR and T2DM
Metabolic Patterns
The nine metabolites of IR metabolic pattern are independent
of glucose, HOMA-IR, and insulin as shown in Supplementary
Figures S7A–C. On the other hand, the 42 metabolites of
T2DM metabolic pattern were found to be HOMA-IR- and
insulin-independent. However, only 11 metabolites were found
to be glucose-dependent and up-regulated in T2DM compared
to other groups (Supplementary Figure S7A). Heat maps
that show cluster analysis of the entire average expression of
each metabolite for IR specific panels (n = 9) (Figure 5A)
and T2DM specific (n = 42) (Figure 5B) were generated
after excluding all confounder related metabolites. The glucose-
dependent metabolites are highlighted in these heat maps,
which were created by Entities Hierarchical clustering for the

average normalized data, and the similarity-based on Pearson.
Also, two metabolites were gender-dependent and are up-
regulated in males (prolyl-leucine and prolyl-isoleucine). The
nine metabolites that represent IR metabolic pattern were
analyzed as potential biomarkers, where the area under the
curve (AUC) of the receiver operating characteristic (ROC)
analysis was found 0.77 for the top changed five metabolites;
serotonin, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate,
Asn, His, and methionine (Met) sulfoxide, when the comparison
was done between the lean and obese groups (Figures 6A,B).
Another comparison for the ability of this panel to predict
IR in T2DM patients was performed for the same set of
metabolites and found five metabolites (serotonin, 2-methyl-
3-hydroxy-5-formylpyridine-4-carboxylate, His, Met sulfoxide,
and 4, 6-dihydroxyquinoline) to have AUC 0.79 (Figures 6C,D).

The T2DM metabolic panel with 42 metabolites was evaluated
for being used as potential biomarkers using the AUC of the
ROC analysis. Pipecolate, cytidine, homogentistic acid, cystenyl-
glycine, phosphoethanolamin, 7-caraboxy-7-carbaguanidine,
glutaminyl-leucine, 3,4-dihydroxymandelate, hydroquinone, and
alanyl-Ser were found to be the highest to predict hyperglycemic
diabetic patients from lean and obese with AUC 0.958 and
0.975, respectively.

The top-scoring IPA metabolomic networks “cell-to-cell
signaling and interaction, molecular transport, small molecule
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FIGURE 3 | T2DM metabolic model based on the identified features only. (A) Among the positively identified metabolites, 62 features were considered T2DM
metabolic profile, where they are statistically significant between lean and T2DM, and obese and T2DM, and insignificant between lean and obese (FDR-corrected
p-value < 0.051). (B) Fold change analysis (cutoff 13) separates these 62 significant metabolites into up- and down-regulated in T2DM compared to both lean and
obese groups (31 and 23 metabolites, respectively). (C) Representative profile of the up-regulated (G31) and (D) down-regulated (G23) metabolites.

biochemistry” (Figure 8A), and “cellular compromise, lipid
metabolism, small molecule biochemistry” (Figure 8B), are
depicted for IR and T2DM metabolic patterns, respectively.

DISCUSSION

Insulin resistance is observed when higher than normal insulin
concentrations are needed to achieve normal metabolic responses
or when normal insulin concentrations fail to achieve a normal
metabolic response (Kahn, 1978; Campbell et al., 1988). IR
can be identified earlier than insulin secretion failure and is
not always associated with the development of diabetes when
islet cell secretion can keep up with normal insulin demand.
Many methods and indices are available for the estimation of
IR. At present, the most reliable reference methods available
for estimating IR are hyperinsulinemic-euglycemic clamp and
intravenous glucose tolerance test. The glucose clamp approach
has several limitations such as time-consuming, labor-intensive,
expensive, and requires an experienced operator to manage the
technical difficulties. Other simple methods, from which indices
can be derived, include homeostasis model assessment (HOMA-
IR), quantitative insulin sensitivity check index (QUICKI), and
Matsuda index developed by Matsuda and DeFronzo (1999).
These indices are used in epidemiological and clinical studies

to predict diabetes development in a non-diabetic population.
HOMA-IR is a model of the relationship between insulin and
glucose dynamics that predicts fasting steady-state insulin and
glucose concentrations for a wide range of possible combinations
of IR and β-cell function. HOMA-IR values inversely connected
to insulin sensitivity (Gutch et al., 2015). Nevertheless, HOMA-
IR has limitations in subjects with a lower BMI, a lower β-cell
function, and high fasting glucose levels such as lean T2DM with
insulin secretory defects (Kang et al., 2005). Recently, Quantose
IR Test has been introduced commercially. Quantose IR Test is a
fasting blood test that measures a panel of biomarkers comprised
of a small organic acid [alpha-hydroxybutyric acid (AHB), two
lipids (oleic acid and linoleoylglycerophosphocholine (LGPC)],
and insulin. In our present study, the top five metabolites;
serotonin, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate,
Asn, His, and Met sulfoxide were found to have a significantly
high discriminatory capacity in identifying IR. Aside from these,
we also identified three amino acids (Gln, Asn, and His) and 4,6
dihydroxyquinoline [product of tryptophan (Trp) metabolism]
to be associated with the IR metabolic profile. A high-fat
diet in animal models reduced the levels of Gln and Asn
(gluconeogenic amino acids) and 4,6-dihydroxyquinoline (Liu
et al., 2017). Higher levels of Gln and His (suppressor of hepatic
gluconeogenesis) are known to be significantly associated with a
lower risk for incident T2DM (Kimura et al., 2013; Chen et al.,
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FIGURE 4 | IR and T2DM metabolic panel data mining scheme. IR metabolic model was generated based on the fold change difference (FC cutoff 1.5) and
statistically significant features between lean vs obese and lean vs T2D, and insignificance between obese vs T2D (FDR-corrected p-value < 0.05; n = 27
metabolites; 18 up-regulated, and nine down-regulated) T2DM metabolic panels were built based on fold change (FC cutoff 1.5), and statistical significance between
lean and T2DM, and obese and T2DM, and insignificance between lean and obese (FDR-corrected p-value < 0.05) (n = 54 metabolites: 31 were up-regulated, and
23 down-regulated). These panels underwent several filtration stages to exclude BMI, age, and LDL-C effects. Eventually, the remaining metabolites in each panel
were correlated with HOMA-IR and glucose levels.

2019) while lower levels of circulating Asn are associated with
increased BMI, IR, and HG (Banerji, 2015; Ottosson et al., 2018).
Consistent with these findings, we found a decrease in the levels
of Asn in obese T2DM compared to the obese and the lean
groups, while the levels of Gln and His were lowered more in the
obese than the obese T2DM patients.

Several studies have shown a correlation between certain
amino acids and the development of diabetes years later.
The mechanism by which elevations in plasma of certain
amino acids links to the development of T2DM is currently
unclear (Yamada et al., 2015; Chen et al., 2019; Vangipurapu
et al., 2019). Glutamate (Glu) was the most strongly associated
metabolite with T2DM, followed by increased levels of BCAA
(Ottosson et al., 2018). Glu and Asn were both associated
with a composite endpoint of developing T2DM or coronary

artery disease (CAD; Ottosson et al., 2018). On the other hand,
high Gln concentrations were associated with a decreased risk
of incident T2DM (Chen et al., 2019) and decreased blood
glucose in adolescents with T1DM after exercise while IR was
unaltered during the euglycemic clamp (Torres-Santiago et al.,
2017). Gln supplementation also reduced waist circumference in
overweight and obese humans and improved insulin sensitivity
in DIO Wistar rats (Abboud et al., 2019). Similarly, His oral
supplementation improved IR (DiNicolantonio et al., 2018).
His metabolism in T2DM may affect insulin sensitivity. His
metabolism by the gut microbiota, in some T2DM patients,
increases imidazole propionate levels which can decrease insulin
sensitivity (Koh et al., 2018). Reduction of Gln, Asn, and
His in obese and T2DM in this study is consistent with the
previous reports of their role in increasing insulin sensitivity.
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FIGURE 5 | (A) A heat map for IR metabolic panel (n = 9), where all of them are glucose, insulin, and HOMA-IR independent. (B) A heat map for T2DM specific
metabolic panel (n = 42) after excluding BMI, age, LDL-C, and HOMA related metabolites, where 11 of them are glucose dependent (*). The heat maps were created
by entities hierarchical clustering for the average normalized data, where the similarity based on Euclidean. Two metabolites were gender dependent (up-regulated in
male, #).

Metabolites detected in the serum were decreased in obese
and T2DM groups compared to lean subjects. Prominent
decreases were also observed for metabolites from amino
acids including 4,6-dihydroxyquinoline, Met sulfoxide, and L-
2-amino-3-oxobutanoic acid. It is interesting to note that 4,6-
dihydroxyquinoline was reported to be inhibited in high-fat
diet-fed rats compared to normal diet controls (Liu et al., 2017).
On the other hand, Met is one of the most susceptible to reactive
oxygen species (ROS), resulting in both S and R diasteroisomeric
forms (oxidation) of Met sulfoxide. Two Met residues in serum
albumin (Met-111 and Met-147) are highly oxidized to Met
sulfoxide in patients with diabetes (Suzuki et al., 2016) and the
higher Met sulfoxide content in apoA-I from diabetic patients
is consistent with lipid peroxidation products levels in plasma
(Brock et al., 2008). Oxidative damage, mainly Met sulfoxide
residues apolipoprotein B100 of LDL, was also increased in
T2DM (Rabbani et al., 2010). The data on Met sulfoxide in this
study contradict these studies and require further examination to
elucidate the reduction of Met sulfoxide and its relation to IR.

Other serum metabolites that were reduced in IR include
2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, and
serotonin or 5-hydroxytryptamine (5-HT). Reduction in
2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, an
intermediate metabolite in vitamin B6 metabolism, observed

in this study is consistent with the fact that vitamin B6 has
been reported to help regulate blood glucose levels and insulin
release (Liu et al., 2016). Moreover, low B6 levels have been
associated with diabetic complications, such as neuropathy and
retinopathy (Ellis et al., 1991; Nix et al., 2015), and to help
in reducing diabetes complications (Kannan and Jain, 2004).
Serotonin improves insulin sensitivity through serotonylation
of Rab4, which likely represents the converging point between
insulin and serotonin signaling cascades (Al-Zoairy et al., 2017).
Bioinformatic and network pathway analysis carried out using
IPA identified dysregulation of insulin as the central node in
the pathway related to IR (Figure 8A). The second node with
the highest connectivity in the network was serotonin, which
showed that the highly interconnected regulation of serotonin
with insulin altering the insulin signaling pathway. Moreover,
5-hydroxyindoleacetic acid (5HIAA), a breakdown product of
serotonin, is down-regulated in the urine of diabetic patients.
Serotonin plays a key role in controlling insulin secretion and its
absence could lead to diabetes (Robinson, 2009). Elevation of the
brain serotonin level may be regarded as an effective approach to
treat T2DM and its complications (Derkach et al., 2015).

Branched-chain amino acids, including essential amino acids,
play key roles in the energy homeostasis regulation, nutrition
metabolism, gut health, immunity, and diseases. A positive
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FIGURE 6 | (A,B) Lean vs obese ROC analysis for IR top five metabolites. (C,D) Lean vs T2DM.

association between increased circulating BCAAs with higher
T2DM risk (Lotta et al., 2016) and IR in obese or diabetic
patients (Zhao et al., 2016) has been reported. Similarly, AAA
are strongly associated with the development of T2DM and
IR (Yang et al., 2018). In a recent prospective study, aimed
at identifying novel metabolic biomarkers predictive of future
diabetes in 11,896 young adults from four Finnish cohorts, the
strongest biomarkers of diabetes risk were BCAA and AAA
(Ahola-Olli et al., 2019). In another targeted metabolomics
platform, BCAA, AAA [phenylalanine (Phe) and tyrosine (Tyr)],
Glu/Gln, Met, and C3 and C5 acylcarnitines were found to
be strongly associated with IR (Newgard et al., 2009; Chen
et al., 2016). A dramatic drop in BCAA and C3 and C5
acylcarnitines was observed in obese cases with T2DM following
gastric bypass or gastric sleeve (Laferrere et al., 2011; Magkos
et al., 2013). Furthermore, Leu, Ile, Val, Phe, and Tyr levels
in plasma were also found to be associated with future
development of T2DM (Wang et al., 2011; Chen et al., 2016).
However, results seem to be controversial in different races,
diets, and distinct tissues (Zhao et al., 2016). Recently, Lone
et al. reported an association between five essential [Ile, Leu,
lysine (Lys), Phe, and Val] and five non-essential [alanine
(Ala), Glu, Gln, glycine (Gly), and Tyr] amino acids and the

prevalence of T2DM (Lu et al., 2019). Association with the
incidence of T2DM and four essential (Ile, Leu, Trp, and Val)
and two non-essential (Gln and Tyr) amino acids was also
reported while the accumulation of Gln and Gly was associated
with T2DM lower risk (Lu et al., 2019). Moreover, abnormal
circulating amino acid profiles in obesity, T2DM, and metabolic
syndrome as measured by UPLC-TQ-MS demonstrated a decline
in serum Gly and an increase in Val, Ile, Glu, and proline
(Pro) in obesity, metabolic syndrome, and T2DM (Okekunle
et al., 2017). In our study, arginine (Arg), Ser, Asp, and Gly
were inhibited in T2DM whereas Asn, Gln, and His serum
levels were lower in IR. The metabolomics profile of T2DM
in our study showed the involvement of AAA through the
presence of their intermediates. Metabolites of Phe, namely,
homogentistic acid and 4-Amino-4-deoxychorismate, and of Tyr;
3,4 hydroxymandelic acid and hydroquinone, were identified.
All these variations stem from using different methodologies
and instrumentations and the fact that T2DM is a disease
caused by a complex interchange between genetic, epigenetic,
and environmental factors (diet and activity level), and that
diabetes affects many major organs, including the heart, blood
vessels, nerves, eyes, and kidneys. Additionally, genetic factors
can make some people more vulnerable to diabetes. Thus, it

Frontiers in Molecular Biosciences | www.frontiersin.org 10 December 2020 | Volume 7 | Article 609806

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-609806 December 8, 2020 Time: 18:39 # 11

Gu et al. Distinctive Metabolome of Insulin Resistance and T2DM

FIGURE 7 | (A,B) Lean vs T2DM ROC analysis for T2DM top 10 metabolites. (C,D) Obese vs T2DM.

is hard to identify distinct metabolic patterns that could serve
as metabolic biomarkers for IR and T2DM. Moreover, in our
study, we excluded age, BMI, and LDL-C in the analysis. This
resulted in a reduction of the number of metabolites correlating
with IR and T2DM. Age was considered as a confounder factor
since both obese and T2DM groups were significantly older
than the normal weight group. This represents a limitation
for the study. Other confounders could impact IR and T2DM
metabolome panels.

An interesting metabolite that was inhibited in T2DM in our
study is pipecolate or 2 aminoadipic acid (2-AAA) which is an
intermediate of the Lys degradation pathway. Previous studies
have shown that circulating pipecolate levels were strongly
associated with obesity and metabolic syndrome and had the
ability to predict the risk of future T2DM, HG, increasing
insulin secretion in early IR, and had a lesser role in the setting
of advanced IR or T2DM (Wang et al., 2013; Libert et al.,
2018). In turn, pipecolate reported to enhance insulin secretion
in cell-based, islet, and animal model systems (Wang et al.,
2013), and contribute to a compensatory mechanism by up-
regulating insulin secretion to maintain glucose homeostasis in

early IR. It has been found to independently act on β-cells
of the pancreas to regulate the release of insulin at glucose-
dependant concentrations. It augments the release of insulin at
2.5 mmol/L whereas higher levels of glucose (>11.1 mmol/L)
inhibit this augmentation. This was also seen in our metabolic
profile where levels of pipecolic acid were reduced in T2DM
compared to the obese while those in the obese were higher
than their lean counterparts. In another study, Wang et al.
showed that treatment of diet-induced obesity with pipecolic acid
significantly reduced body weight, fat accumulation, and lowered
fasting glucose. Pipecolate regulating glycolipid metabolism is
independent of diet and exercise, implying that improving
its level can be a mean to treat diabetes (Xu et al., 2019).
Our observations of a decrease in the levels of pipecolate
in established T2DM cases are consistent with the previous
findings and a possible explanation could be that pipecolate
contribution to maintaining glucose homeostasis is overcome in
established diabetes. In this scenario, an early measurement of
pipecolate could serve as a novel potential metabolic marker of
hyperglycemia that would predict a predisposition to T2DM and
would be used in diabetes risk assessment.
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FIGURE 8 | Depicted top scoring I PA metabolomic networks. (A) “Cell-to-cell signaling and interaction, molecular transport, small molecule biochemistry“ for IR
metabolomic panel and (B) “cellular compromise, lip id metabolism, small molecule biochemistry” for T2DM metabolomic panel. The dotted lines indicate indirect
and the straight lines indicate direct relationships. Nodes colored red represent up-regulation and green represent down-regulation. The interaction networks were
generated through the use of IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/).
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Few dipeptides are known to be associated with physiological
or cell-signaling effects such as ophthalmic acid in cystic
fibrosis (DiBattista et al., 2019). However, most are simply
short-lived intermediates on their way to degradation pathways
following further proteolysis. His-Ala is a dipeptide resulting
from incomplete breakdown of protein digestion or protein
catabolism. In this study, His-Ala is inhibited in T2DM.
Interestingly, His-Ala has been patented for reducing uric
acid (Patent# JP2004359663A). High levels of uric acid in
the blood are associated with increased risk of developing
diabetes (Xiong et al., 2019). On the other hand, T2DM is
associated with high serum uric acid levels and thus levels
of His-Ala could be inhibited by uric acids. Peptidases play
a pivotal role in the production, degradation, and regulation
of peptides in vivo (Tiruppathi et al., 1990; Rosenblum and
Kozarich, 2003). Prolyl peptidases are characterized by a
biochemical preference for cleaving Pro-containing peptides.
Prolyl peptidases family includes prolyl endopeptidase, prolyl
endopeptidase-like, dipeptidyl peptidase 4 (DPP4), DPP7, DPP8,
DPP9, and fibroblast activation protein (Lone et al., 2010).
DPP4 (also known as CD26) selectively cleaves dipeptides
from peptides and proteins containing Pro or Ala in the
N-terminal penultimate position (Gorrell et al., 2001; Kirby
et al., 2009). This proteolysis can alter activities of target
substrates, including the functional activity of bioactive
peptides or facilitated degradation of macromolecules by
other peptidases. DPP4 plays a major role in glucose and
insulin metabolism (Rohrborn et al., 2015). DPP4 does cleave
Ala containing dipeptides and thus lowering levels of His-
Ala could result from higher levels of DPP4 in diabetes.
Similarly, six serum dipeptides had concentrations lower
in T2DM than obese and control groups. These include
Glu-Ser, Gly-Ala, Prol-Gly, Leu-Gln, Arg-Pro, and Arg-Glu
dipeptides. Lower serum levels of these peptides could result
from increased peptidases and could represent a target for
T2DM treatment. On the other hand, other serum dipeptides
concentrations are increased in T2DM. These include dipeptides
Cys-Gly, Ala-Ser, Ala-Glu, and BCAA-Pro dipeptides, Pro-
Val, Pro-Leu, Pro-Ile. Among these dipeptides, only Ala-Glu
and Ala-Ser are glucose-dependent metabolites. Further
investigations are needed to clarify the role of these dipeptides in
diabetes.

We identified phosphoethanolamine (PE) and diethanolamine
in T2DM metabolomics profile. PE and diethanolamine
are substrates for the synthesis of phospholipids,
phosphatidylcholine (PC), and phosphatidylethanolamine
(PtdE). PE is the crucial metabolite determining the rate-limiting
step of the reaction, to produce CDP–ethanolamine via the
cytidine dependant CDP-ethanolamine metabolic pathways,
which, together with DAG, generates PtdE (Steenbergen
et al., 2005). Phospholipids are major components of all
cellular membranes with PtdE being the major phospholipid
of the mitochondrion. The CDP-ethanolamine pathway is an
important regulator of hepatic lipid homeostasis (Leonardi
et al., 2009). The involvement of PtdE and more importantly
the PtdE/PC ratio points to alterations in phospholipid pathway
that regulates muscle IR, insulin sensitivity, and to the presence

of endoplasmic reticulum stress and mitochondrial dysfunction
(Fu et al., 2011; Meikle et al., 2013). Interestingly, we also
identified two metabolites participating in the folate metabolism,
namely, 7-craboxy-7-carbaguanidine and pyrimidodiazepine.
Folate is a cofactor known to regulate major metabolic
pathways including the phospholipid pathways. Decreased
levels of folate in an animal study showed optimal folate levels
determine the synthesis of PC via the methylation of PtdE,
giving further credence to our findings of dysregulation of
phospholipids with T2DM (Zhao et al., 2018). Besides, folate
deficiency is known to predispose to obesity, lipid disorders,
and T2DM, and an increase in the metabolites involved in
its synthesis may account for a compensatory mechanism
(Li et al., 2017).

Another interesting finding in our metabolomic profiling of
T2DM is the dysregulation of the pyrimidine metabolic pathway;
cytidine, 5-amino-6-(5’-phospho-D-ribitylamino) uracil, uracil,
and aminoacrylate. Cytidine is an important molecule required
for the synthesis of di/triphosphates that act as a fundamental
source of energy for cellular reactions and are involved in
signaling pathways. Aside from being intracellular energy
molecules, nucleotides play an important role as extracellular
signaling molecules and have been described for adenosine
(Burnstock and Novak, 2013) and uridine (Yamamoto et al.,
2010) in terms of glucose regulation, IR, and diabetes. We
found a decrease in the levels of uracil in our study. Previous
studies have shown changes in the levels of nitrogen compounds,
such as nucleotides, nucleosides, and their metabolites, vary
considerably, depending on the degree of IR in obese subjects
(Yang et al., 2018). By the same inference, this role can be
extended to cytidine which is being reported in this study.
Network pathway analysis relating to HG centered around
dysregulation of signaling pathways related to ERK, p38 MAPK,
and Akt (Figure 8B). Ser and threonine kinases are known
regulators of cellular functions that include glucose metabolism,
glycogen synthesis, protein synthesis, cell proliferation, cell
hypertrophy, and cell death. These signaling pathways also
regulate proinsulin, another node identified in the network map.
Interactions of Akt and p38 MAPK are important mediators
of insulin action via modulating INSR substrate and GLUT 4
activity. HG alters the Akt and members of the MAP kinase
family signaling proteins there contributing to type 2 diabetes
(Rane et al., 2001). Interpretation of the metabolome database
thus contributes to the development of a comprehensive and
accessible dataset of detected metabolites in obese and obese
T2DM plasma samples for the discovery of disease associations
and diagnoses in future research.

The current study is the lack of an independent external
validation cohort. We plan to expand this work in the future
by recruiting more subjects from multiple centers. Another
limitation of the current study is the coverage of small molecules.
While CIL LC-MS offers a high-coverage analysis of a chemical-
group-based submetabolome, the current work only profiled
the amine/phenol submetabolome. Other submetabolomes (e.g.,
acids, carbonyls, and hydroxyls) need to be examined in the
future. In addition, we did not examine the lipidome. The
results reported in this study demonstrated significant changes
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in comparative groups, suggesting that global metabolome and
lipidome analysis is warranted in future studies where larger
cohorts of samples will be collected in order to increase both
coverage and statistical power.

CONCLUSION

Metabolomics is an emerging approach for studying metabolic
changes connected to disease development and progression.
Metabolite-profiling techniques improvement is providing the
increased extent of coverage of the human metabolome and
advances have led to the application to defining predictive
biomarkers and pathways for diseases including T2DM. Different
metabolomic profiles have been reported in obesity and
T2DM. This study identified nine metabolomics profile for
IR and 42 for T2DM after the exclusion of confounders
(age, BMI, and LDL-C). Identification and characterization
of the metabolomic pattern in obese subjects might aid in
identifying subjects at a high risk of developing metabolic diseases
such as T2DM, thus allowing early treatment intervention.
Future studies are required to establish causal relationships
between metabolic biomarkers identified in this study for
IR and T2DM and to examine their predictive values for
developing T2DM.
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