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Abstract: Aim: Evaluate the influence of doxycycline, an anti-inflammatory and matrix metallopro-
teinase (MMP) inhibitor, on the attenuation of chronic doxorubicin-induced cardiotoxicity in rats.
Methods: We allocated male Wistar rats into four groups: control (C), doxorubicin (D), doxycycline
(inhibitor of MMP, IM), and Dox + doxycycline (DIM). Groups IM and DIM received doxycycline
(5 mg/kg, IP) once a week for 4 weeks. In addition, 48 h after every doxycycline injection, groups
D and DIM received Dox (5 mg/kg, IP). We performed echocardiogram and evaluated TIMP-4 and
collagen I protein expression, MMP-2 activity, and oxidative stress and myocardial metabolism.
Results: Doxorubicin promotes left atrium (LA) and left ventricle (LV) dilatation and decreases in
LV fractional shortening, which was improved by doxycycline. Moreover, doxycycline attenuated
the LV cardiomyocyte hypertrophy and collagen type I expression. Doxorubicin increased phos-
phofructokinase and decreased beta-hydroxyacyl Co-A dehydrogenase, pyruvate dehydrogenase,
citrate synthase, and ATP synthase activity, which was partially attenuated by doxycycline. Lastly,
doxycycline improved antioxidant enzyme activity in the DIM group. Conclusion: Doxorubicin
increases oxidative stress and promotes changes in myocardial energy metabolism, accompanied by
structural and functional changes. Doxycycline attenuated the doxorubicin-induced cardiotoxicity, at
least in part, through changes in myocardial energy metabolism.

Keywords: doxycycline; myocardial energy metabolism; oxidative stress; MMP-2; collagen I; TIMP-4

1. Introduction

Doxorubicin (Dox) is an effective antineoplastic agent used for the treatment of multi-
ple cancer types, such as solid tumors and hematopoietic malignancies. Dox acts mainly as
an inhibitor of the DNA topoisomerase II enzyme, found predominantly in proliferating
cells, causing damage to the DNA and subsequently neoplastic cell death [1,2].

Despite the fact that Dox is considered a first-line treatment against cancer, its clinical
use often causes cumulative and dose-dependent cardiotoxicity, occurring in up to 26% of
the patients treated with the drug [3]. Once developed, Dox-induced cardiotoxicity carries
a poor prognosis, and patients can have a high chance of eventually dying of heart failure
instead of cancer itself [4,5]. Unfortunately, there is no effective method of preventing this
complication, and no medication is highly effective in the treatment of cardiotoxicity.

Several underlying mechanisms have been proposed for this complication. The most
accepted mechanism includes increased oxidative stress due to an excessive formation of
reactive oxygen species (ROS). ROS generation in Dox-induced cardiotoxicity is related to

J. Cardiovasc. Dev. Dis. 2022, 9, 254. https://doi.org/10.3390/jcdd9080254 https://www.mdpi.com/journal/jcdd

https://doi.org/10.3390/jcdd9080254
https://doi.org/10.3390/jcdd9080254
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcdd
https://www.mdpi.com
https://orcid.org/0000-0002-9023-5756
https://orcid.org/0000-0003-4060-870X
https://orcid.org/0000-0001-8493-5329
https://orcid.org/0000-0003-4412-1990
https://orcid.org/0000-0002-2875-9532
https://doi.org/10.3390/jcdd9080254
https://www.mdpi.com/journal/jcdd
https://www.mdpi.com/article/10.3390/jcdd9080254?type=check_update&version=1


J. Cardiovasc. Dev. Dis. 2022, 9, 254 2 of 15

changes in myocardial energy metabolism and mitochondrial dysfunction, impairment
in iron handling, and the presence of nitric oxide synthase [6,7]. Moreover, Dox deacti-
vates antioxidant substances such as glutathione peroxidase, superoxide dismutase, and
catalase [1].

It is well-established that oxidative environments lead to the activation of matrix met-
alloproteinases (MMPs), a superfamily of zinc-dependent endopeptidases that primarily
degrade extracellular matrix (ECM) proteins [8,9]. Specifically in the heart, MMP-2, also
known as gelatinase, regulates extracellular matrix turnover and plays an important role in
early myocardial injury, including in the acute model of Dox-induced cardiotoxicity [10–12].
The overactivation of MMP-2 in cardiac myocyte in response to increased oxidative stress
creates an imbalance between matrix synthesis and the degradation of contractile proteins,
which contributes to myocardium dysfunction and, ultimately, to progression to congestive
heart failure [11,13]. MMP activity is regulated by several processes, such as glutathiolation,
phosphorylation, and the specific inhibitor-denominated tissue inhibitor of matrix metallo-
proteinases (TIMP), the most important factor that determines MMP activity modulation.
There are four types of TIMPs; the most abundant TIMP in the heart is TIMP-4 [14,15].

Doxycycline, a tetracycline antibiotic, has been studied extensively in several hu-
man and animal diseases due to its nonselective MMP inhibition [16–19]. Although the
molecular mechanisms responsible for the inhibitory effect are not yet fully understood,
doxycycline at a sub-antimicrobial dose may be an attractive pharmacological tool as
a cardioprotective agent, considering that other MMPs may be involved in ventricular
remodeling [16]. In fact, studies have suggested that early short-term doxycycline ther-
apy ameliorates post-infarction remodeling and exerts protective effects on myocardial
ischemia/reperfusion injury in experimental [20,21] and clinical settings [22].

Additionally, a recent study showed that doxycycline ameliorated Dox-induced car-
diotoxicity by preventing myofilament lysis, titin proteolysis, and interstitial fibrosis in
mouse hearts [23]. However, its inhibitor effect targeting specifically the myocardial matrix
metalloproteinases has not yet been evaluated.

Considering that doxycycline exerted antioxidant and anti-inflammatory effects in the
treatment of chronic inflammation [18,24] and cardiovascular diseases [25–27], it is reason-
able to postulate that doxycycline could act together by different pathways of myocardial
aggression, such as improving energy metabolism [28]. Thus, we aimed to evaluate the in-
fluence of MMP inhibition by doxycycline on the attenuation of Dox-induced cardiotoxicity
in rats.

2. Material and Methods
2.1. Study Design

This research protocol was approved by the Animal Ethics Committee of Botucatu
Medical School (1259/2018) and complies with the Brazilian National Council for the
Control of Animal Experimentation standards. In this study, 80 male Wistar rats, weighing
200–250 g each, were kept in a controlled environment with a 12 h light/dark cycle at
23 ± 2 ◦C and free access to regular food and water. We measured food intake and body
weight during the experiment and randomly assigned the rats to 4 groups: control (C), Dox
(D), doxycycline (inhibitor of MMP, IM), and Dox + doxycycline (DIM). The IM and DIM
groups received an intraperitoneal (IP) injection of doxycycline (5 mg/kg) [29,30] once a
week for 4 weeks, whereas groups C and D received an equivalent volume of IP sterile
saline. Doxycycline is a potent non-selective MMP inhibitor, acting by interaction with the
zinc and/or calcium atoms within the structural center of these enzymes, dislodging it
from their receptors [18].

Additionally, 48 h after the doxycycline or saline injection, groups D and DIM received
an IP injection of Dox (5 mg/kg) once a week for 4 weeks, and groups C and IM received
an equivalent volume of IP sterile saline. Forty-eight hours after the last Dox or saline
injection, we performed an echocardiogram on all the animals, followed by the isolated
heart study (n = 10 per group) and euthanasia (thiopental injection, 120 mg/kg, IP). We
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then removed the hearts, washed them in fresh saline, and dissected, weighed, and stored
them at −80 ◦C.

Eight animals from each group were prepared only for isolated heart study since
retrograde perfusion used in this methodology may interfere in biochemical myocardial
variables. The remaining animals were reserved for additional analysis.

2.2. Echocardiogram

We anesthetized the rats with ketamine (50 mg/kg, IP) and xylazine (1 mg/kg, IP)
and evaluated them by a transthoracic echocardiographic examination (General Electric
Medical Systems, Vivid S6). We also evaluated the left ventricle diameter in systole (LVSD)
and diastole (LVDD) and interventricular septum, left atrium, and aorta diameters. We
analyzed systolic function via left ventricular fractional shortening ((LVDD—LVSD)/LVDD)
and diastolic function via E and A waves, E/A ratio, and isovolumetric relaxation time.
The examination was complemented by tissue Doppler evaluation of systolic (S′) and
diastolic initial (E′) and late (A′) motion of the mitral ring in the lateral and septal wall.
The S′ wave is related to systolic function, and the E′ and E′/E ratio are related to diastolic
function [5,31].

2.3. Isolated Heart Study

After the echocardiography analysis, the rats received sodium thiopental (80 mg/kg,
IP) and heparin (2000 UI, IP). We performed an isolated heart study using the Langendorff
technique previously described in [11]. In short, we subjected the rats to sternotomy un-
der artificial ventilation, and we isolated and cannulated the ascendant aorta; then, we
started retrograding perfusion with a modified Krebs–Henseleit solution. The hearts were
then transferred to the isolated heart study apparatus (Hugo Sachs Elektronik, March-
Hugstetten, Germany), paced at 200 to 250 beats/min, and we inserted a latex balloon
connected to a pressure transducer into the left ventricular cavity. The volume inside the
balloon was increased to change the diastolic pressure from 0 to 25 mmHg. After each
volume variation, we recorded diastolic and systolic left ventricular pressures, the maxi-
mum left ventricular pressure decrease rate (−dP/dt), and the maximum left ventricular
pressure development rate (+dP/dt) [11].

2.4. Western Blot: TIMP-4 and Collagen I Protein Expression

We homogenized samples of the left ventricle (50 mg) in 500 µL of RIPA buffer and
centrifuged them. We collected supernatants and quantified the total amount of protein by
the Bradford method. We performed electrophoresis in acrylamide gels and transferred
proteins to nitrocellulose membranes, which were incubated in 5% skimmed milk. After-
ward, we incubated membranes with primary antibodies for TIMP-4 (rabbit polyclonal
IgG, Boster Bio, Pleasanton, CA, USA) and type I collagen (mouse monoclonal IgG, Santa
Cruz Biotechnology, Santa Cruz, CA, USA) for 12 h, followed by incubation with secondary
antibodies. We performed immunodetection using chemiluminescence in an ImageQuant
LAS camera imaging system (General Electrics, Uppsala, Sweden). We analyzed images via
Gel-Pro 32 (Media Cybernetics, Rockville, MD USA) and used GAPDH (mouse monoclonal
IgG, Santa Cruz Biotechnology, Santa Cruz, CA, USA) for normalization.

2.5. Zymography: MMP-2 Activity

MMP-2 was analyzed accordingly to previous studies [11,32]. In short, we diluted
samples of left ventricular muscle (30 mg) in an extraction buffer (50 mM Tris pH 7.4,
0.2 M NaCl, 0.1% Triton X, and 10 mM CaCl2); then, we crushed and centrifuged them
before quantifying the protein amount in the samples via the Bradford method. Then, we
diluted samples with 20 µg of protein in a sample buffer (0.5 M Tris pH 6.8, 50% glycerol,
and 0.05% bromophenol blue) and loaded them into wells of 8% SDS-polyacrylamide
gel containing 1% gelatin. We performed electrophoresis at 110 V for 2 h in a Bio-Rad
mini-protean system in the presence of the running buffer (Tris-Glycine-SDS pH 8.3).
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Afterward, we washed the gels with Triton X-100 2.5% and Tris-HCl 50 mM pH 8.4 and
incubated them for 17 h at 37 ◦C with continuous agitation. Last, we stained the gel with
2.5% Coomassie brilliant blue followed by a 1 h bath in 30% methanol and 10% acetic acid
at room temperature. We photographed the gels and analyzed them by Gel-Pro 3.2 (Media
Cybernetics, Rockville, MD, USA). We included the same control sample in each gel to
normalize the results. We confirmed the MMP-2 position in the gels by a recombinant
rat/mouse MMP-2 standard (R&D System, Minneapolis, MN, USA).

2.6. Histology

After euthanasia, we cross-sectioned the left ventricle 5 mm from the apex and obtained
a 2 mm thick ring. We placed the ring in a 10% buffered formaldehyde solution, which
remained there for 24 h. We inserted the sections in paraffin and subsequently cut them with
a thickness of 4 µm and stained them with hematoxylin and eosin (HE). We used HE-stained
histological sections to analyze tissue integrity, the presence of inflammatory infiltrates, and
the myocyte cross-sectional area using the ImageJ program (Wayne Rasband—National
Institutes of Health, Bethesda, MD, USA).

2.7. Myocardial Energy Metabolism

We homogenized samples of left ventricular tissue (100 mg) in a sodium phosphate
buffer (pH 7.0, 0.1 M) and centrifuged them at 12,000 rpm for 30 min at −4 ◦C. We used
supernatants to determine lactate dehydrogenase (LDH), phosphofructokinase (PFK),
pyruvate dehydrogenase (PD), citrate synthase (CS), β-hydroxyacyl-CoA dehydrogenase
(BHACD), Complex I (NADH: ubiquinone oxidoreductase), Complex II (succinate dehydro-
genase), and ATP synthase, as previously described [5,33–35]. We determined all enzymatic
activity in the myocardium by spectrophotometry, with readings performed on a mQuant
microplate reader (BioTek Instruments, Winooski, VT, USA). We obtained all reagents from
Sigma-Aldrich (Saint Louis, MO, EUA).

2.8. Oxidative Stress

We used left ventricular tissue samples (50 mg) to measure lipid hydroperoxide, as a
marker of oxidative damage, glutathione peroxidase (E.C.1.11.1.9.), and superoxide dis-
mutase (E.C.1.15.1.1.) to measure antioxidant enzymatic activity (EC.1.11.1.6.). In brief,
we homogenized sample tissue in sodium phosphate buffer pH = 7.4 (0.01 M) and then
centrifuged it at 12,000 rpm for 30 min at −4 ◦C. We used the supernatants to determine
lipid hydroperoxide concentration by spectrophotometry [36]. Additionally, the same
supernatants contained the antioxidant enzymes by spectrophotometry described previ-
ously [37,38].

2.9. Statistical Analyses

Data are expressed as mean ± SD when presented through normal distribution. We
normalized variables with non-normal distribution by the mathematical transformation
to obtain normal distribution, an essential condition to performing a two-way analysis
of variance (ANOVA). We also presented the non-normalized data as mean ± SD. We
performed a statistical analysis by a two-way ANOVA. Only when we found an interaction
between two factors (Dox and doxycycline) did we perform comparisons between groups
by Holm–Sidak (C vs. D, C vs. IM, IM vs. DIM, and D vs. DIM). When there was no
interaction between the factors, we presented marginal data (the Dox effect alone or the
doxycycline effect alone, without comparisons between groups). The significance level
adopted was 5% for all analyses.
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3. Results
3.1. Body Weight and Fluid and Chow Intake

At the initial phase, the animals had a similar body weight. After the first week, the
animals that received Dox showed weight loss and lower feed intake, extending until the
end of the experiment, as seen in Figure 1.
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Figure 1. Body weight and chow intake. C, control group (n = 18); D, group treated with Dox (n = 20);
IM, group treated with doxycycline (n = 19); DIM, group treated with Dox + doxycycline (n = 21).
Initial, body weight immediately before the beginning of the experiment. We measured first food
intake 1 week after drug administration. p-value, comparison between groups in week 4 by two-way
ANOVA; pD, p-value for Dox effect; pIM, p-value for doxycycline effect; pi, p-value for the interaction
between the factors Dox and doxycycline.

3.2. Echocardiogram

The Dox treatment increased the left ventricular (LV) systolic diameter, the left atrial
(LA) diastolic diameter, the LA diastolic diameter/aorta ratio, the LV mass index, and the
isovolumetric relaxation time. Moreover, Dox treatment promoted a decrease in E-wave
and LV fractional shortening. During the tissue Doppler, Dox treatment decreased E′

and S′ and increased the E′/E ratio. When Dox was administered in association with the
doxycycline, we observed a decrease in the LA diastolic diameter and the LA diastolic
diameter/aorta ratio and an increase in the E′ wave, which characterized improvement
in diastolic function. Additionally, the DIM group exhibited increases in LV fractional
shortening and S′ when compared with the D group, which characterized improvement in
systolic function (Table 1).

Table 1. Morphological variables and cardiac function evaluated by echocardiogram.

Variables C (n = 18) D (n = 19) IM (n = 17) DIM (n = 20) pD pIM pi

HR (bpm) 302 ± 62.60 261 ± 56.80 302 ± 52.50 270 ± 83.8 0.020 0.762 0.764

LVSD (mm) 2.65 ± 0.45 3.51 ± 0.64 # 2.82 ± 0.18 2.90 ± 0.49 $ <0.001 0.050 <0.001

LVDD (mm) 6.60 ± 0.48 6.49 ± 0.76 6.80 ± 0.53 6.40 + 0.43 0.054 0.701 0.278

LADD (mm) 4.50 ± 0.18 4.96 ± 0.46 # 4.62 ± 0.16 4.38 ± 0.30 $& 0.006 0.056 0.006

Aorta (mm) 3.58 ± 0.16 3.44 ± 0.16 3.62 ± 0.14 3.47 ± 0.18 <0.001 0.434 0.821

LADD/aorta 1.26 ± 0.06 1.44 ± 0.11 # 1.28 ± 0.04 1.26 ± 0.08 $ <0.001 <0.001 <0.001

LVMI (g/kg) 1860 ± 275 2131 ± 345 1956 ± 198 2391 ± 230 <0.001 0.006 0.196

LVFS 0.60 ± 0.05 0.46 ± 0.07 # 0.58 ± 0.03 0.54 ± 0.06 $ <0.001 0.009 <0.001
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Table 1. Cont.

Variables C (n = 18) D (n = 19) IM (n = 17) DIM (n = 20) pD pIM pi

E wave (cm/s) 80.2 ± 16.00 66.4 ± 11.60 79.9 ± 8.99 75.3 ± 13.00 0.003 0.148 0.120

A wave (cm/s) 52.5 ± 16.30 47.0 ± 18.20 54.3 ± 12.80 47.7 ± 13.10 0.218 0.488 0.155

IVRT (ms) 23.8 ± 2.62 35.6 ± 6.42 22.7 ± 1.36 29.3 ± 6.42 0.006 0.294 0.160

E′m (cm/s) 5.75 ± 0.63 3.84 ± 1.23 # 5.35 ± 0.80 4.81 ± 1.78 $ <0.001 0.320 0.019

A′m (cm/s) 3.72 ± 0.33 4.07 ± 0.87 3.31 ± 0.72 4.33 ± 0.69 & <0.001 0.638 0.040

E/E′m 13.9 ± 1.84 18.4 ± 4.92 15.1 ± 1.64 17.0 ± 4.07 <0.001 0.872 0.109

S′m (cm/s) 5.74 ± 0.28 4.22 ± 0.79 # 5.58 ± 0.35 4.79 ± 0.86 $& 0.006 0.160 0.006

C, control group; D, group treated with Dox; IM, group treated with doxycycline; DIM, group treated with
Dox + doxycycline; LVSD, left ventricular (LV) systolic diameter; LVDD, LV diastolic diameter; LADD, left atrial
diastolic diameter; LVMI, LV mass index; LVFS, LV fractional shortening; E, peak velocity of early ventricular
filling; A, peak velocity of transmitral flow during atrial contraction; IVRT, isovolumetric relaxation time; E′m,
mean of displacement of the mitral ring in the lateral and septal walls during initial diastole in tissue Doppler;
A′m, mean of displacement of the mitral ring in the lateral and septal wall during late diastole in tissue Doppler;
S′m, mean of displacement of the mitral ring in the lateral and septal wall during systole in tissue Doppler. p-value,
two-way ANOVA; pD, p-value for Dox effect; pIM, p-value for doxycycline effect; pi, p-value for the interaction
between the factors Dox and doxycycline. #, different from C group; $, different from D group; &, different from
IM group.

3.3. Isolated Heart Study

There was no difference in the initial balloon volume; the maximum systolic pressure;
the maximum left ventricular pressure development rate (+dP/dt), which is related to
systolic function; or maximum left ventricular pressure decrease rate (−dP/dt), which is
related to the diastolic function between the groups, as displayed in Table 2.

Table 2. Left ventricular function evaluated by isolated heart study.

Variables C (n = 8) D (n = 5) IM (n = 6) DIM (n = 8) pD pIM pi

V0 75.0 ± 22.2 56.0 ± 16.4 67.5 ± 18.9 61.3 ± 24.6 0.147 0.895 0.456
+dP/dt 5219 ± 743.3 4100 ± 1413 3833 ± 1211 3641 ± 1407 0.177 0.062 0.335
−dP/dt 3891 ± 362.5 3175 ± 1134 3063 ± 1078 2719 ± 903.2 0.136 0.074 0.593

SP 201 ± 24.0 174.5 ± 43.4 164 ± 39.6 156 ± 37.0 0.230 0.071 0.540

C, control group; D, group treated with Dox; IM, group treated with doxycycline; DIM, group treated with
Dox + doxycycline; V0, initial balloon volume; +dP/dt, maximum left ventricular pressure development rate;
−dP/dt, maximum left ventricular pressure decrease rate; SP, maximum systolic pressure data are expressed
as mean ± SD. p-values are from two-way analysis of variance; pD, p-value for Dox effect, pIM, p-value for
doxycycline effect; pi, p-value for the interaction between the factors Dox and doxycycline.

3.4. Collagen Type I and TIMP-4 Protein Expression

TIMP-4 expression was similar between the groups. Dox treatment did not affect
collagen type I expression; however, the animals that received the MMP inhibitor did show
a decrease in collagen type I expression (Figure 2).

3.5. MMP-2 Activity

There was no difference in the MMP-2 activity among groups assessed through zy-
mography. Additionally, we did not observe the effect of doxycycline on MMP activity, as
demonstrated in Figure 3.
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Figure 3. MMP-2 activity. rMMP-2, MMP-2 recombinant used as a positive control; C, control group
(n = 11); D, group treated with Dox (n = 8); IM, group treated with doxycycline (n = 8); DIM, group
treated with Dox + doxycycline (n = 9); UA, arbitrary units; p-value, two-way ANOVA; pD, p-value
for Dox effect; pIM, p-value for doxycycline effect; pi, p-value for the interaction between the factors
Dox and doxycycline.
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3.6. Histology

We did not observe the presence of inflammatory infiltrate or changes in the myocar-
dial structural organization in any group. However, the D group had a greater cardiomy-
ocyte sectional area when compared with the C group, and the DIM group had a smaller
sectional area when compared with the D group, which may suggest that the doxycycline
was able to attenuate the LV cardiomyocyte hypertrophy, as seen in Figure 4.

1 
 

 
Figure 4. Histology and Cardiomyocyte Sectional Area. C, control group (n = 8); D, group treated with
Dox (n = 8); IM, group treated with doxycycline (n = 8); DIM, group treated with Dox + doxycycline
(n = 8); p-value, two-way ANOVA; pD, p-value for Dox effect; pIM, p-value for doxycycline effect;
pi, p-value for the interaction between the factors Dox and doxycycline; #, different from C group;
$, different from D group.

3.7. Myocardial Energy Metabolism

Dox treatment promotes increases in the activity of complex II of the mitochondrial
respiratory chain, lactate dehydrogenase, and phosphofructokinase enzymes, of which
these last two are related to cellular glucose metabolism. Additionally, we observed
a decrease in beta-hydroxyacyl Co-A dehydrogenase, pyruvate dehydrogenase, citrate
synthase, and ATP synthase activity in animals treated with Dox (p-value for the Dox
factor < 0.005). Doxycycline was able to improve lactate dehydrogenase, citrate synthase,
beta-hydroxyacyl Co-A dehydrogenase, and ATP synthase activity, partially attenuating
the alterations caused by Dox in cell metabolism (see Figure 5).

3.8. Oxidative Stress

Rats treated with Dox exhibited higher levels of myocardial lipid hydroperoxide,
accompanied by a decrease in the activity of the antioxidant enzymes superoxide dismutase
and glutathione peroxidase. The combined administration of Dox and doxycycline did
not reduce the oxidative damage given that we did not observe differences between the D
group and the DIM group, but doxycycline increased the activity of superoxide dismutase
and glutathione peroxidase, as seen in Figure 6.
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Figure 6. Oxidative stress. C, control group (n = 11); D, group treated with Dox (n = 9); IM, group
treated with doxycycline (n = 9); DIM, group treated with Dox + doxycycline (n = 10). p-value,
two-way ANOVA; pD, p-value for Dox effect; pIM, p-value for doxycycline effect; pi, p-value for the
interaction between the factor Dox and doxycycline; #, different from C group; $, different from D
group; &, different from IM group.
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4. Discussion

Increased oxidative stress has been implicated in the MMPS′ activation and also
in the onset of cardiotoxicity induced by Dox [11,13,31]. We demonstrated here that
the treatment with Dox promoted myocardial structural changes, systolic and diastolic
dysfunction in vivo, increased oxidative stress, and a shift in myocardial metabolism. On
the other hand, administration of doxycycline attenuated the structural changes and cardiac
dysfunction apart from improving, at least partially, the changes in energy metabolism
caused by Dox.

Currently, Dox is one of the most studied chemotherapy drugs due to its efficacy
in treating a wide range of cancers. However, Dox administration is related to a variety
of side effects in many tissues and organs, such as the liver, the kidneys, the skeletal
muscles, and the heart, its preferential target of toxicity [39,40]. Additionally, Dox could
cause gastrointestinal side effects such as inappetence, nausea, vomiting, and mucositis,
commonly seen in humans [41]. In this study, as previously shown in other studies [5,31],
Dox treatment promoted a decrease in food intake, followed by a decrease in body weight,
which could be attributed to its gastrointestinal toxicity.

Doxycycline is a tetracycline antibiotic widely used to treat many different bacterial
infections. Additionally, doxycycline is currently the only substance approved by the
FDA as an MMP inhibitor for the treatment of periodontitis [42] and rosacea [43] at sub-
antimicrobial doses. However, due to its wide range of nonantibiotic properties and
relative safety profile, extensive pre-clinical and clinical studies have been investigating
doxycycline therapeutic approaches, with promising results. Reports in several medical
settings have shown ameliorating the severity of diabetic retinopathy [44] and proliferative
vitreoretinopathy [45], inhibiting the proliferation and proapoptotic effect in human cancer
cells [46–49], positive effects on osteoarthritis and posttraumatic arthritis progression [50],
and reduction of cardiac dysfunction in different models of heart damage [22,51,52].

Previous studies have also observed that doxycycline was beneficial in the manage-
ment of patients after ST-elevation myocardial infarction (STEMI) in reducing LV remod-
eling [53]. However, its effects in the clinical setting of cardiotoxicity induced by Dox are
still unknown.

When we analyzed the cardiac function in vivo by echocardiogram, we observed
cardiac chamber dilatation accompanied by systolic and diastolic dysfunction in rats
that received Dox. Doxycycline was able to attenuate these changes. This result was
also demonstrated recently by Chan et al. [23], where MMP inhibition with doxycycline
ameliorated systolic and diastolic dysfunction by reducing the loss in the left ventricular
ejection fraction, fractional shortening, and E′/A′ in mice treated with Dox for 4 weeks.

The functional improvement evidenced by echocardiography analyses was not re-
produced when we evaluated ex vivo cardiac function by the isolated heart study tech-
nique. However, it is noteworthy that results obtained in this technique are under no
influence of intrathoracic pressure, neuroendocrine regulation, or inotropic effects. Hence,
we suggest that the ventricular dysfunction observed in the model of Dox-induced car-
diotoxicity depends on factors other than the specific properties of the myocardium and its
contractile capacity.

Following the morphological changes on the echocardiogram, we identified cardiomy-
ocyte hypertrophy only in the D group, which may occur as an adaptive response to the
functional overload exerted on the heart [54]. In the cardiac remodeling process, there is an
increase in protein synthesis as a result of pressure and/or volume overload, leading to
interstitial fibrosis and modification of the interstitial matrix composition [55].

The cardiac extracellular matrix is composed primarily of collagen type I, accounting
for approximately 85% to 90% of the collagenous matrix that provides mechanical support
and regulates several cellular functions of cardiovascular tissue [56]. Although we did not
observe differences in collagen protein expression in cardiac tissue exposed to Dox, we
identified a decrease in collagen type I protein expression among animals that received
the doxycycline, as shown previously [57]. Given that collagen type I content is related
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to myocardial stiffness, the lowest collagen type I content could be contributed to the
attenuation of LV dysfunction.

Collagens and other extracellular matrix proteins dynamics are regulated by several
factors but mostly by MMP activity. In situations of cardiac injury, a large increase in the
proteolytic activity of MMPs occurs, promoting changes in the cardiac matrix composi-
tion [12]. The tissue inhibitor of metalloproteinases 4 (TIMP-4) expressed in the heart binds
to MMP-2 and -9, and thus, it regulates its activity. Additionally, TIMPs seem to be involved
in other tissue processes, such as cellular proliferation and apoptosis [58,59].

Contrary to our expectations, we did not observe differences in MMP-2 activity or
TIMP-4 protein expression in cardiac tissue, which could explain the decrease in collagen
I expression among animals that received doxycycline. However, collagen synthesis and
degradation can be regulated by other cellular types, such as fibroblasts, and other path-
ways, such as MMP-9, TIMP-2, the renin-angiotensin system, and transforming growth
factor-β (TGF-β), which were not evaluated in this study.

TIMP-2 has the specific ability to stimulate collagen synthesis, and MMP-9 seems to be
more activated in heart failure with reduced ejection fraction and dilated cardiomyopathies
than MMP-2 [60]. Transforming growth factor-β (TGF-β) is one of the most important
profibrotic stimuli in several tissues. It also regulates cell proliferation, apoptosis, differ-
entiation, autophagy, and the immune response [61]. In the experimental model of renal
disease induced by cisplatin, doxycycline decreased gene expression for TGF-β [62]; it may
be the pathway related to the decrease of collagen type I expression in our study.

Moreover, it may be that MMP-2 activation occurs earlier and more acutely to allow
the rearrangement of myofibrils and supporting tissue that accompanies the process of
cardiac remodeling and dilation. Because we evaluated the animals in a chronic model, the
balance between MMP activation and extracellular matrix formation and deposition may
already have been balancing.

Cardiac injury leads to a shift in heart energy metabolism; the myocardium starts
to use mainly glucose to generate ATP because it is less costly for the tissue than fatty
acids. Concerning this, Dox treatment increased the activity of enzymes related to glucose
metabolism (phosphofructokinase and lactate dehydrogenase) and decreased the activity
of enzymes related to lipid metabolism (β-hydroxyacyl Co-A dehydrogenase) as well as
citrate synthase activity (the first enzyme of the Krebs cycle) and ATP synthase of the
mitochondrial phosphorylation, as demonstrated in our previous studies [5,31]. The ad-
ministration of doxycycline attenuated these metabolic alterations, bringing the myocardial
metabolism closer to the physiological situation; we observed an improvement in the
activity of lactate dehydrogenase, β-hydroxyacyl Co-A dehydrogenase, citrate synthase,
and ATP synthase.

The exact mechanism behind this improvement is not completely understood. It
may have been mediated by the immunomodulation promoted by doxycycline [62–64].
Additionally, doxycycline treatment decreased the mitochondrial fragmentation induced by
oxidative stress and improved the protein expression of molecules related to mitochondrial
dynamics in the model of heart failure secondary to isoproterenol administration [65].

Energy metabolism changes and the impairment of mitochondrial oxidative phospho-
rylation can lead to increases in the generation of reactive oxygen species and, consequently,
rising oxidative stress. Indeed, Dox treatment promoted greater levels of lipid hydroper-
oxide, considered a marker of oxidative damage to the lipids of the cellular membrane.
Despite the supposed improvement in mitochondrial function, doxycycline did not decrease
the cardiac lipid hydroperoxide concentration; rather, it increased superoxide dismutase
(SOD) and glutathione peroxidase (GPx) activity.

It was already reported that doxycycline could directly increase SOD gene expres-
sion [62] and the enzymatic activity of SOD and GPx in heart tissue [29]. Moreover,
doxycycline was able to counteracts doxorubicin-imposed oxidative stress in a model of
acute cardiotoxicity induced by Dox, exhibiting cytoprotective properties by both decreas-
ing reactive oxygen species generation and elevating SOD and GPx activities [29]. Similarly,
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an increase in the antioxidant enzymes and decrease in oxygen species production was also
observed after doxycycline treatment in different experimental models [26,66].

Additionally, this antioxidant property could be related to a decrease in the activation
of Nrf-2 (a redox-sensitive transcription factor), the modulation of NF-kB activity (related
to the antioxidant enzymes and transcription of inflammatory cytokines), and the well-
established doxycyclinE’s effect in reducing the levels of a range of pro-inflammatory
cytokines such as IL-1β, IL-6, IL-8, and TNF-α [27,67]. Unfortunately, we did not evaluate
the inflammatory status in the present study.

Although we did not completely elucidate the specific mechanism involved in benefi-
cial effect of doxycycline in Dox-induced cardiotoxicity, it seems to be related to the changes
in myocardial energy metabolism and oxidative stress.

5. Conclusions

The chronic administration of Dox caused an increase in oxidative stress and promoted
changes in myocardial energy metabolism, accompanied by structural and functional car-
diac alterations characterizing cardiotoxicity. Even though doxycycline did not modify
MMP-2 activity or TIMP-4 expression in this chronic model, its administration attenu-
ated the Dox-induced cardiotoxicity, at least in part, for the changes in myocardial energy
metabolism and the decrease in myocardial collagen type I content. These unprecedented
results suggest a promising therapeutic property of doxycyclinE’s protection against car-
diotoxicity caused by Dox and demonstrate its potential benefit in targeting multiple
pathways involved in cardiac remodeling, which lends us to an interesting perspective in
the future research.
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