Jerry P. Jasinski tribute

Received 15 January 2022 Accepted 23 January 2022

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; picoline; sulfate; transition metal; coordination chemistry; cobalt complexes.

CCDC reference: 2143864

Supporting information: this article has supporting information at journals.iucr.org/e

A cuboidal $[Cu_4(SO_4)_4]$ structure supported by β -picoline ligands

Ava M. Park,^a James A. Golen^b and David R. Manke^{b*}

^aPortsmouth Abbey School, 285 Cory's Lane, Portsmouth, RI, 02871, USA, and ^bUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA. *Correspondence e-mail: dmanke@umassd.edu

The solid-state structure of the cobalt– β -picoline–sulfate complex tetra- μ_3 -sulfato-tetrakis[bis(3-methylpyridine)cobalt(II)], [Co₄(SO₄)₄(C₆H₇N)₈], is reported. The tetrameric cobalt cluster contains a cuboidal core comprised of four cobalt(II) cations and four sulfate anions at alternate cube vertices. The cobalt corners are each capped with two β -picoline ligands. The sulfate anions adopt a rare [3.2110] bridging motif, and the cuboidal cluster is unprecedented in coordination chemistry.

1. Chemical context

For the past few years, our lab has examined the solid-state structures of first-row transition-metal-pyridine-sulfate complexes (Park et al., 2019; Pham et al., 2018; Roy et al., 2018). Despite the first such compound being reported in 1886 (Jørgensen, 1886; Manke, 2021), the structures of only two had been described in the literature when we started exploring this class of compounds. A series of these structures including Fe, Co, Ni, and Zn, showed one-dimensional coordination polymers exhibiting sulfate dianions bridging in μ -sulfato- $\kappa^2 O:O'$ modes. Interestingly, by modifying growth conditions, cobalt demonstrated two additional crystalline forms with variation in the bridging mode of sulfate ions that was not observed for the other metals. We have also explored the structural chemistry of such complexes with substituted pyridines, including γ -picoline, which showed similar structural chemistry to that observed with the pyridine ligand (Pham et al., 2019). When we looked at the reaction of cobalt sulfate with β -picoline, a unique structure was obtained, a tetramer exhibiting an unprecedented cuboidal $Cu_4(SO_4)_4$ core, described herein.

108

Figure 1

The asymmetric unit of the title compound showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

2. Structural commentary

The asymmetric unit of the title compound contains one cobalt cation, one sulfate anion, and two β -picoline ligands (Fig. 1). When grown out, the cobalt center demonstrates a pseudo-octahedral coordination environment. This consists of two β -picoline nitrogen atoms, two oxygen atoms of a chelating sulfate ligand, one oxygen atom of a second sulfate anion, which bridges to another metal, and one terminal oxygen atom of a third sulfate ligand. The grown-out structure forms a tetramer of $(\beta$ -pic)₂CoSO₄ units, demonstrating a cuboidal

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H$	
	$-\mathrm{H}\cdot\cdot A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 9 1

Symmetry codes: (i) y, -x + 1, -z + 1; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + \frac{1}{2}$.

core in which four vertices are occupied by cobalt cations, and the other four vertices are occupied by sulfate anions (Fig. 2). The sulfate anions all bridge three Co²⁺ cations, demonstrating [3.2110] bridging by Harris notation (Fig. 3). Harris notation is written as $[X \cdot YYYY]$ where X is the number of metals that a ligand bridges, and the Ys are the number of metals connected to each donor atom in the ligand (Papatriantafyllopoulou et al., 2009). The [3.2110] bridging motif is rare in sulfates and has only been observed in 1D coordination polymers of copper (Li et al., 2008) and lanthanide/iron mixed-metal 3D coordination polymers (He et al., 2017). There are two C-H...O interactions between the ortho hydrogens of one β -picoline ligand and the oxygens of two sulfate ions (Table 1). This results in a plane-to-plane angle between the CoN₃O plane and the pyridine ring of 16.25 (9)°. These interactions are not present in the second unique picoline ligand, giving a larger plane-to-plane angle of 26.95 $(9)^{\circ}$.

3. Supramolecular features

The crystal packing for the compound is shown in Fig. 4. The are weak C-H···O interactions between the *trans*-hydrogen atom of one picoline ligand and one of the terminal sulfate oxygens of a neighboring cuboid $[C3-H3···O2^{ii}]$; symmetry code: (ii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} - z$, Table 1). This interaction might

Figure 3 The cuboidal tetramer of the title compound. H atoms have been omitted for clarity.

Jerry P. Jasinski tribute

Figure 4

The crystal packing of the title compound shown along the c axis. H atoms have been omitted for clarity.

assist in the interdigitation of the cuboids in the structure. No significant π - π interactions are observed.

Table 2 Experimental details.

$[Co_4(SO_4)_4(C_6H_7N)_8]$
1364.96
Tetragonal, $P\overline{4}2_1c$
298
15.6121 (16), 11.8359 (13)
2884.9 (7)
2
Μο Κα
1.35
$0.24 \times 0.22 \times 0.20$
Bruker D8 Venture CMOS
Multi-scan (<i>SADABS</i> ; Bruker, 2018)
0.517, 0.562
54595, 2744, 2624
0.037
0.611
0.019, 0.046, 1.14
2744
184
H-atom parameters constrained
0.16, -0.20
Flack x determined using 1117 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)
0.007 (4)

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT2014 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), and publCIF (Westrip, 2010).

4. Database survey

The reported structures demonstrating sulfate ions with [3.2110] bridging modes are with copper (DOHKIV, DOHKIB: Li et al., 2008) or mixtures of lanthanides with iron (He et al., 2017), including dysprosium (DADNOO), erbium (DADPEG), europium (DADNII), gadolinium (DADNUU) and samarium (DADPAC). The prior structures of metalpyridine sulfate complexes include three variations with pyridine (QIBFOZ: Pham et al., 2018; QOXJAR, QOXJEV: Park et al., 2019) and one with γ -picoline (ROFMIL: Pham et al., 2019), all of which demonstrate 1D coordination polymers that are structurally quite different than the cuboidal compound reported here.

5. Synthesis and crystallization

32 mg of CoSO₄·7H₂O were dissolved in 2.0 mL of 3-methylpyridine (Aldrich) and heated at 343 K for 24 h. Dark-pink crystals suitable for X-ray analysis were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in calculated positions $[C-H = 0.93 \text{ Å} (sp^2) \text{ and } 0.96 \text{ Å} (sp^3)].$ Isotropic displacement parameters were set to $1.2U_{eq}C(sp^2)$ or $1.5U_{eq}C(sp^{3})$.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

- Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- He, X., Cheng, W., Lin, Q., Dong, Y. & Xu, Y. (2017). Cryst. Growth Des. 17, 347-354.
- Jørgensen, S. M. (1886). J. Prakt. Chem. 33, 489-538.
- Li, G., Xing, Y., Song, S., Xu, N., Liu, X. & Su, Z. (2008). J. Solid State Chem. 181, 2406-2411.
- Manke, D. R. (2021). Bull. Hist. Chem. 46, 179-185.
- Papatriantafyllopoulou, C., Manessi-Zoupa, E., Escuer, A. & Perlepes, S. P. (2009). Inorg. Chim. Acta, 362, 634-650.
- Park, A. M., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. E75, 1888-1891.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259
- Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. E74, 857-861.
- Pham, D. N. K., Roy, M., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2019). Acta Cryst. C75, 568-574.
- Roy, M., Pham, D. N. K., Kreider-Mueller, A., Golen, J. A. & Manke, D. R. (2018). Acta Cryst. C74, 263-268.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2022). E78, 108-110 [https://doi.org/10.1107/S2056989022000780]

A cuboidal [Cu₄(SO₄)₄] structure supported by β -picoline ligands

Ava M. Park, James A. Golen and David R. Manke

Computing details

Data collection: *APEX3* (Bruker, 2018); cell refinement: *SAINT* (Bruker, 2018); data reduction: *SAINT* (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Tetra-µ₃-sulfato-tetrakis[bis(3-methylpyridine)cobalt(II)]

Crystal data

 $\begin{bmatrix} Co_4(SO_4)_4(C_6H_7N)_8 \end{bmatrix}$ $M_r = 1364.96$ Tetragonal, $P42_1c$ a = 15.6121 (16) Å c = 11.8359 (13) Å V = 2884.9 (7) Å³ Z = 2F(000) = 1400

Data collection

Bruker D8 Venture CMOS
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
$T_{\min} = 0.517, \ T_{\max} = 0.562$
54595 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.046$ S = 1.142744 reflections 184 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $D_x = 1.571 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9496 reflections $\theta = 2.9-25.7^{\circ}$ $\mu = 1.35 \text{ mm}^{-1}$ T = 298 KBLOCK, pink $0.24 \times 0.22 \times 0.20 \text{ mm}$

2744 independent reflections 2624 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 25.7^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -19 \rightarrow 19$ $k = -19 \rightarrow 19$ $l = -14 \rightarrow 14$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0165P)^{2} + 1.2064P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc² λ^{3} /sin(2 θ)]^{-1/4} Extinction coefficient: 0.0049 (4) Absolute structure: Flack *x* determined using 1117 quotients [(*I*⁺)-(*I*⁻)]/[(*I*⁺)+(*I*)] (Parsons et al., 2013) Absolute structure parameter: 0.007 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.64636 (2)	0.49053 (2)	0.41389 (3)	0.02066 (11)
S1	0.52522 (4)	0.64004 (4)	0.35520 (5)	0.02043 (15)
01	0.58168 (12)	0.57205 (12)	0.30908 (15)	0.0267 (4)
O2	0.49144 (15)	0.69145 (13)	0.26473 (17)	0.0370 (5)
O3	0.45605 (11)	0.59894 (11)	0.42553 (16)	0.0240 (4)
O4	0.57304 (12)	0.69234 (11)	0.43961 (15)	0.0258 (4)
N1	0.75982 (14)	0.57112 (15)	0.4121 (2)	0.0319 (5)
N2	0.70169 (16)	0.42286 (15)	0.2775 (2)	0.0293 (5)
C1	0.82170 (19)	0.5691 (2)	0.4896 (3)	0.0400 (7)
H1	0.813680	0.534627	0.552786	0.048*
C2	0.8976 (2)	0.6156 (2)	0.4819 (3)	0.0489 (8)
C3	0.9084 (2)	0.6660 (2)	0.3863 (3)	0.0546 (10)
H3	0.958296	0.697697	0.376688	0.065*
C4	0.8451 (2)	0.6690 (2)	0.3064 (3)	0.0541 (10)
H4	0.851466	0.702977	0.242445	0.065*
C5	0.7719 (2)	0.6210 (2)	0.3218 (3)	0.0434 (8)
Н5	0.729157	0.623471	0.267110	0.052*
C6	0.9650 (3)	0.6110 (3)	0.5724 (4)	0.0829 (15)
H6A	0.946445	0.572676	0.630913	0.124*
H6B	0.973938	0.667009	0.603611	0.124*
H6C	1.017567	0.590328	0.540358	0.124*
C7	0.6638 (2)	0.4183 (2)	0.1768 (3)	0.0340 (7)
H7	0.611734	0.446338	0.167140	0.041*
C8	0.6978 (2)	0.3738 (2)	0.0853 (3)	0.0422 (7)
C9	0.7741 (2)	0.3311 (2)	0.1032 (3)	0.0499 (9)
H9	0.798504	0.299413	0.045000	0.060*
C10	0.8143 (2)	0.3351 (2)	0.2062 (3)	0.0490 (9)
H10	0.865907	0.306837	0.218114	0.059*
C11	0.7766 (2)	0.3817 (2)	0.2914 (3)	0.0386 (8)
H11	0.803962	0.384829	0.361126	0.046*
C12	0.6512 (3)	0.3707 (3)	-0.0255 (3)	0.0732 (12)
H12A	0.590895	0.377919	-0.012705	0.110*
H12B	0.661205	0.316328	-0.061099	0.110*
H12C	0.671634	0.415746	-0.073630	0.110*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.01998 (17)	0.02203 (18)	0.01997 (16)	0.00207 (14)	0.00180 (15)	0.00176 (14)

supporting information

S 1	0.0216 (3)	0.0201 (3)	0.0196 (3)	0.0031 (3)	0.0031 (2)	0.0046 (3)
01	0.0293 (10)	0.0290 (10)	0.0218 (9)	0.0075 (8)	0.0056 (8)	0.0029 (8)
O2	0.0435 (12)	0.0380 (11)	0.0297 (10)	0.0114 (11)	-0.0007 (10)	0.0133 (9)
O3	0.0227 (9)	0.0272 (9)	0.0223 (9)	-0.0037 (7)	0.0042 (8)	0.0004 (8)
O4	0.0259 (9)	0.0213 (9)	0.0301 (11)	-0.0045 (8)	0.0048 (8)	0.0015 (7)
N1	0.0281 (12)	0.0299 (12)	0.0378 (13)	-0.0040 (10)	0.0080 (12)	0.0009 (12)
N2	0.0305 (12)	0.0272 (12)	0.0301 (13)	0.0033 (11)	0.0070 (11)	0.0008 (11)
C1	0.0349 (16)	0.0417 (17)	0.0434 (18)	-0.0091 (14)	0.0040 (14)	0.0014 (14)
C2	0.0337 (16)	0.051 (2)	0.062 (2)	-0.0128 (14)	0.0054 (17)	-0.0051 (19)
C3	0.0408 (19)	0.043 (2)	0.080 (3)	-0.0156 (16)	0.0191 (18)	0.0026 (18)
C4	0.052 (2)	0.042 (2)	0.068 (3)	-0.0086 (16)	0.019 (2)	0.0151 (18)
C5	0.0396 (18)	0.0437 (19)	0.0470 (19)	-0.0036 (15)	0.0103 (16)	0.0107 (16)
C6	0.048 (2)	0.102 (4)	0.098 (4)	-0.026 (2)	-0.017 (3)	0.002 (3)
C7	0.0376 (17)	0.0333 (15)	0.0310 (15)	-0.0005 (13)	0.0067 (13)	0.0015 (13)
C8	0.061 (2)	0.0340 (16)	0.0314 (15)	-0.0070 (14)	0.0115 (17)	-0.0043 (14)
C9	0.067 (2)	0.0349 (17)	0.048 (2)	0.0039 (16)	0.0277 (18)	-0.0072 (15)
C10	0.047 (2)	0.0364 (18)	0.063 (2)	0.0135 (15)	0.0187 (18)	-0.0001 (16)
C11	0.0369 (18)	0.0342 (17)	0.045 (2)	0.0085 (14)	0.0064 (14)	0.0007 (14)
C12	0.107 (4)	0.076 (3)	0.036 (2)	-0.002 (3)	-0.002 (3)	-0.012 (2)

Geometric parameters (Å, °)

Co1-S1 ⁱ	2.7458 (7)	C3—C4	1.368 (6)
Col—Ol	2.0441 (19)	C4—H4	0.9300
Co1–O3 ⁱ	2.2037 (19)	C4—C5	1.379 (5)
Co1—O3 ⁱⁱ	2.1274 (18)	С5—Н5	0.9300
Co1—O4 ⁱ	2.1229 (18)	C6—H6A	0.9600
Co1—N1	2.173 (2)	C6—H6B	0.9600
Co1—N2	2.114 (2)	С6—Н6С	0.9600
S1—01	1.4839 (19)	С7—Н7	0.9300
S1—O2	1.438 (2)	C7—C8	1.391 (4)
S1—O3	1.5069 (18)	C8—C9	1.382 (5)
S1—O4	1.491 (2)	C8—C12	1.501 (5)
N1C1	1.332 (4)	С9—Н9	0.9300
N1C5	1.336 (4)	C9—C10	1.371 (6)
N2—C7	1.333 (4)	C10—H10	0.9300
N2-C11	1.345 (4)	C10—C11	1.376 (5)
C1—H1	0.9300	C11—H11	0.9300
C1—C2	1.392 (4)	C12—H12A	0.9600
C2—C3	1.389 (5)	C12—H12B	0.9600
C2—C6	1.503 (5)	C12—H12C	0.9600
С3—Н3	0.9300		
O1—Co1—S1 ⁱ	129.94 (5)	N1—C1—H1	118.0
01-Co1-03 ⁱⁱ	94.41 (7)	N1-C1-C2	124.0 (3)
01-Co1-O3 ⁱ	97.00 (7)	C2—C1—H1	118.0
01-Co1-O4 ⁱ	162.52 (7)	C1—C2—C6	121.6 (4)
O1—Co1—N1	92.08 (9)	C3—C2—C1	116.9 (3)

01—Co1—N2	92.84 (9)	C3—C2—C6	121.5 (3)
O3 ⁱ —Co1—S1 ⁱ	33.21 (5)	С2—С3—Н3	120.2
O3 ⁱⁱ —Co1—S1 ⁱ	81.36 (5)	C4—C3—C2	119.7 (3)
O3 ⁱⁱ —Co1—O3 ⁱ	86.57 (8)	С4—С3—Н3	120.2
O3 ⁱⁱ —Co1—N1	173.44 (9)	C3—C4—H4	120.4
$O4^{i}$ —Co1—S1 ⁱ	32.58 (5)	C3—C4—C5	119.3 (3)
$O4^{i}$ —Co1—O3 ⁱⁱ	83.94 (7)	C5—C4—H4	120.4
$O4^{i}$ —Co1—O3 ⁱ	65.55 (7)	N1—C5—C4	122.6 (4)
$O4^{i}$ —Co1—N1	90.16 (9)	N1—C5—H5	118.7
$N1-Co1-S1^{i}$	95.20 (8)	C4—C5—H5	118.7
$N1-Co1-O3^{i}$	93.61 (8)	C2—C6—H6A	109 5
N_2 —Co1—S1 ⁱ	136 90 (7)	C2—C6—H6B	109.5
N_{2} Col O_{1}^{i}	170 11 (9)	$C_2 = C_6 = H_6C$	109.5
$N_{2} = C_{01} = O_{3}^{ii}$	91 63 (8)	H_{6A} C_{6} H_{6B}	109.5
N2—Co1—O4 ⁱ	104 59 (8)		109.5
$N_2 = Co1 = O4$	87.07.(9)	H6B - C6 - H6C	109.5
$\Omega_1 = S_1 = C_0 I^{iii}$	116 43 (7)	N2 C7 H7	118.2
01 - 51 - 03	110.43(7) 108.02(10)	N2 = C7 = C8	110.2
01 - 51 - 03	100.92(10) 100.03(11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123.0 (3)
$02 \ S1 \ Co1^{111}$	109.93(11) 122.48(0)	C_{3} C_{7} C_{8} C_{12}	110.2
02 - 51 - 01	133.40(9) 110.07(11)	C^{-}	120.8(3)
02 - 51 - 01	110.07(11) 112.71(12)	$C_{9} = C_{0} = C_{1}^{2}$	110.0(3)
02 - 51 - 03	112.71(12) 112.15(12)	$C_{2} = C_{2} = C_{12}$	122.4 (5)
02 - 51 - 04	112.13(12)	$C_{0} = C_{0} = H_{0}$	119.7
$03 - 51 - 01^{$	55.22 (7)	C10 - C9 - C8	120.6 (3)
04 - 51 - 02	50.06(7)	C10-C9-H9	119.7
04 - 51 - 03	102.82 (11)	C9—C10—H10	120.6
	121.04 (10)	C9—C10—C11	118.7 (3)
	124.11 (9)	C11—C10—H10	120.6
$S1 = O3 = Co1^{\circ}$	141.48 (12)	N2—C11—C10	122.3 (3)
	93.57 (9)	N2—C11—H11	118.9
S1—O4—Co1 ^m	97.36 (9)	C10—C11—H11	118.9
C1—N1—Co1	124.8 (2)	C8—C12—H12A	109.5
C1—N1—C5	117.5 (3)	C8—C12—H12B	109.5
C5—N1—Co1	117.4 (2)	C8—C12—H12C	109.5
C7—N2—Co1	121.9 (2)	H12A—C12—H12B	109.5
C7—N2—C11	118.1 (3)	H12A—C12—H12C	109.5
C11—N2—Co1	120.0 (2)	H12B—C12—H12C	109.5
$C_{01} = S_{1} = O_{1} = C_{01}$	-1.75 (15)	$04 - 81 - 03 - C_{01}$	-7.25(10)
C_{01}^{111} S1 C_{01}^{111} C $_{01}^{111}$	-1686(2)	$N_1 - C_1 - C_2 - C_3$	-0.5(5)
C_{01} N1 C1 C2	173.0(2)	N1 = C1 = C2 = C3	170.7(4)
Col N1 C5 C4	-174.0(3)	$N_{1} = C_{1} = C_{2} = C_{0}$	1/9.7(4)
$C_{01} = N_1 = C_3 = C_4$	1/4.0(3) -170 4 (2)	$N_2 = C_7 = C_8 = C_7$	1.3(3)
$C_{01} = N_2 = C_1 = C$	1/3.4(2) 178 A (2)	112 - 0 - 012	1/9.3(3)
$01 $ $81 $ $02 $ $C_{2}1$	1/0.4(2) 100.24(0)	$C_1 = C_2 = C_4$	0.4(3)
$01 - 51 - 05 - 001^{$	-50.3(2)	$C_1 - C_2 - C_3 - C_4$	-0.6(5)
$01 - 51 - 05 - 001^{\circ}$	-108.20(10)	$C_2 = C_3 = C_4 = C_5$	-0.1(6)
$01 - 51 - 04 - 001^{$	-108.29(10)	C_{5} C_{4} C_{1} C_{2}	-0.1(0)
02-51-01-001	1/0.04 (13)	C_{2} NI- C_{1} C2	-0.1 (5)

supporting information

O2—S1—O3—Co1 ⁱⁱⁱ	-128.20 (11)	C6—C2—C3—C4	-179.4 (4)
O2—S1—O3—Co1 ⁱⁱ	63.1 (2)	C7—N2—C11—C10	-0.6 (4)
O2—S1—O4—Co1 ⁱⁱⁱ	128.92 (11)	C7—C8—C9—C10	-1.5 (5)
O3—S1—O1—Co1	-59.31 (15)	C8—C9—C10—C11	0.6 (5)
O3—S1—O4—Co1 ⁱⁱⁱ	7.57 (11)	C9—C10—C11—N2	0.5 (5)
O4—S1—O1—Co1	52.63 (15)	C11—N2—C7—C8	-0.5 (4)
O4—S1—O3—Co1 ⁱⁱ	-175.90 (17)	C12—C8—C9—C10	-179.4 (3)

Symmetry codes: (i) *y*, -*x*+1, -*z*+1; (ii) -*x*+1, -*y*+1, *z*; (iii) -*y*+1, *x*, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···O4 ⁱ	0.93	2.53	3.116 (4)	121
C3—H3····O2 ^{iv}	0.93	2.46	3.135 (4)	129
С5—Н5…О1	0.93	2.49	3.070 (4)	121

Symmetry codes: (i) y, -x+1, -z+1; (iv) x+1/2, -y+3/2, -z+1/2.