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Abstract

Cells can maintain their functions despite fluctuations in intracellular parameters, such as protein activities and gene
expression levels. This commonly observed biological property of cells is called robustness. On the other hand, these
parameters have different limitations, each reflecting the property of the subsystem containing the parameter. The budding
yeast cell cycle is quite fragile upon overexpression of CDC14, but is robust upon overexpression of ESP1. The gene products
of both CDC14 and ESP1 are regulated by 1:1 binding with their inhibitors (Net1 and Pds1), and a mathematical model
predicts the extreme fragility of the cell cycle upon overexpression of CDC14 and ESP1 caused by dosage imbalance
between these genes. However, it has not been experimentally shown that dosage imbalance causes fragility of the cell
cycle. In this study, we measured the quantitative genetic interactions of these genes by performing combinatorial ‘‘genetic
tug-of-war’’ experiments. We first showed experimental evidence that dosage imbalance between CDC14 and NET1 causes
fragility. We also showed that fragility arising from dosage imbalance between ESP1 and PDS1 is masked by CDH1 and CLB2.
The masking function of CLB2 was stabilization of Pds1 by its phosphorylation. We finally modified Chen’s model according
to our findings. We thus propose that dosage imbalance causes fragility in biological systems.
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Introduction

Intracellular biochemical parameters, such as gene expression

levels and protein activities, are highly optimized in order to

maximize the performance of biological systems [1–4]. On the

other hand, these parameters operate within certain limitations to

maintain the function of the system against perturbations such as

environmental changes, mutations, and noise in biochemical

reactions. This robustness against fluctuations in parameters is

considered a common design principle of biological systems [5–7].

The cell cycle is a series of events that leads to cellular

duplication, and the regulatory system is highly sophisticated to

precisely maintain cellular integrity [8]. The budding yeast

Saccharomyces cerevisiae is an excellent model organism to understand

the principle of cell cycle regulation because of its ease in use with

molecular genetic techniques. Cell cycle regulation has been

integrated into a mathematical model called Chen’s model [9].

This model implements interactions of about 25 genes involved in

the budding yeast cell cycle to reproduce over 100 mutant

phenotypes, and thus, has become a standard for measuring the

robustness of the budding yeast cell cycle [10–12].

The robustness of a cellular system can be assessed by

perturbation analysis of the extent to which each intracellular

parameter can be changed without disrupting the function of the

system [1]. To assess the robustness of the budding yeast cell cycle,

we used a previously developed genetic experiment designated

‘‘genetic tug-of-war’’ (gTOW) to measure the copy number limit of

overexpression of certain target genes [13]. In gTOW, a target

gene with its native promoter is cloned into a special plasmid, and

the plasmid copy number can be increased just before cell death

(Figure 1) [13]. In this method, the copy number limit of gene

overexpression is measured as a fold increase and compared with

its native expression level.

Using gTOW, we measured the copy number limit of

overexpression of 30 cell cycle-related genes that varied from

,2 to .100 [13]. Although these numbers are thought to reflect

the robustness of the subsystems harboring these genes, it is not

easy to identify the molecular mechanism behind the phenomenon

causing the variation because robustness arises from interactions

between multiple components of the system. Analysis using

mathematical models helps to identify the mechanism responsible

for the robustness of biological systems [1,14]. We compared the

gTOW data with Chen’s model and discussed the mechanisms

underlying fragility and robustness of the yeast cell cycle in

response to overexpression of several genes [13].

In this study, we define a cellular system has robustness if its

normal mode of operation is hardly destroyed even when amount

of a certain component in the system largely fluctuates. And we

define a cellular system has fragility if its normal mode of operation

is easily destroyed when amount of a certain component fluctuates.

In this study, ‘‘fluctuation of component’’ corresponds to the

increase of gene copy number in the cell, and the increase of gene
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expression parameter in the computer simulation (both manipu-

lations cause gene overexpression). When the cell is viable despite

overexpression of a certain gene, we call that the cellular system

has robustness upon overexpression of the gene. When the cell is

not viable due to minor overexpression of a certain gene, we call

that the cellular system has fragility upon overexpression of the

gene.

We observed that the copy number limit for a mitotic

phosphatase gene CDC14 overexpression was very low (,2),

which was well predicted by Chen’s model (,2). In contrast, we

observed that the copy number limit for the separase gene ESP1

overexpression was quite high (.160), and the prediction of

Chen’s model (,1.4) was quite different from the upper limit in

vivo [13]. According to multiple reports [15–18], in Chen’s

model, enzymes such as Cdc14 phosphatase and separase are

regulated by direct 1:1 binding with their inhibitors (Net1 and

Pds1) (Figure 2A and 2C). And overexpression of CDC14 cured

the lethality brought about by overexpression of NET1 [18].

We thus predict that fragilities upon overexpression of these

genes arise from dosage imbalance between the enzymes and

their inhibitors [13]. However, it has not been shown that

dosage imbalance between CDC14 and NET1 causes fragility of

the yeast cell cycle. Moreover, there is a discrepancy between

predictions of the model and the experimental data in case of

the copy number limit of ESP1 as mentioned above. In this

study, we analyzed the molecular mechanisms under-

lying fragility of CDC14 regulation and robustness of ESP1

regulation.

On the basis of our observations, we suggest that dosage

imbalance between enzyme and its inhibitor causes cellular

fragility. We further suggest that knowledge about cellular

robustness can be effectively used to improve integrative

mathematical models.

Figure 1. Schematic representation of the genetic tug-of-war (gTOW) experiment. gTOW is an experimental method with which upper
limit of copy number of certain target genes can be determined. Details of the experiment are as described previously [13].
doi:10.1371/journal.pgen.1000919.g001

Author Summary

Normal cell functioning is dependent on balance between
protein interactions and gene regulations. Although the
balance is often perturbed by environmental changes,
mutations, and noise in biochemical reactions, cellular
systems can maintain their function despite these pertur-
bations. This property of cells, called robustness, is now
considered to be a design principle of biological systems
and has become a central theme for systems biology. We
previously developed an experimental method designated
‘‘genetic tug-of-war,’’ in which we assessed the robustness
of cellular systems upon overexpression of certain genes,
especially that of the budding yeast cell cycle. Although
the yeast cell cycle can be maintained despite significant
overexpression of most genes within the system, the cell
cycle halts upon just two-fold overexpression of M phase
phosphatase CDC14. In this study, we experimentally
showed that this fragility is caused by dosage imbalance
between CDC14 and NET1. Interestingly, fragility of
regulation of separase gene ESP1, potentially caused by
dosage imbalance, was masked by regulation of other
factors such as CDH1 and CLB2. We thus propose that
dosage imbalance causes fragility in biological systems.

Dosage Imbalance in the Yeast Cell Cycle
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Results

Dosage imbalance causes extreme fragility of the yeast
cell cycle upon overexpression of CDC14

To experimentally determine whether dosage imbalance

causes fragility of the yeast cell cycle upon overexpression of

certain genes, we first thoroughly analyzed the quantitative

relationship between CDC14 and NET1, as well as ESP1 and

PDS1 using Chen’s model. When the regulated enzyme (i.e.,

Cdc14 or Esp1) alone is overexpressed and its amount exceeds

that of its inhibitor (i.e., Net1 or Pds1), the cell cycle halts due to

abnormal chromosome separation (Figure S2A and S2C). When

the amount of enzyme and its inhibitor increased simultaneous-

ly, the cell cycle proceeds normally (Figure S2B and S2D). We

performed two parameter viability tests in which parameters for

expression of enzymes (Cdc14 and Esp1) and their inhibitors

(Net1 and Pds1) were systematically increased and the ability of

the cell cycle to persist with any combination of these

parameters was tested. Computational analysis showed that to

maintain the cell cycle, the absolute amount of enzymes and

their inhibitors did not matter, but the quantitative ratio was

important and needs to be conserved [(fold increase in

expression of NET1)/(fold increase in expression of

CDC14) = 0.95–1.95; (fold increase in expression of PDS1)/(fold

increase in expression of ESP1) = 0.56–2.20] (Figure 2B and

2D). If fragility upon overexpression of CDC14 is caused by

dosage imbalance against NET1, this conserved ratio should be

observed in vivo as well.

Similar to computational analysis, we designed an experiment

by adding another multicopy plasmid carrying NET1 into the

gTOW experiment of CDC14 (Figure 3A). This experiment called

‘‘2D-gTOW’’ is based on the fact that multicopy plasmids with

CDC14 or NET1 replicate with 2mDNA origin, exist as multi-copy

in a cell and their numbers vary among the cellular population

[19]. Moreover, the copy number of the gTOW plasmid can be

controlled by changing leucine concentration in growth media; the

average plasmid copy number within a cell is around 35 in the

presence of leucine but increases to more than 150 in the absence

of leucine (Figure 1) [13].

As expected, introduction of NET1 plasmid prevented cellular

death upon overexpression of CDC14 (Figure 3B). In the rescued

cells, the average plasmid copy number of CDC14 increased

dramatically (,40 copies per cell; Figure 3C), and the amount of

Cdc14 protein also increased accordingly (Figure 3D). We then

performed the two parameter viability test by measuring the copy

numbers of the plasmids in multiple independent experiments with

and without leucine in medium. Most importantly, the ratio

between CDC14 and NET1 was clearly conserved [(NET1 copy

Figure 2. Computational analysis of quantitative relationship between CDC14 and NET1 as well as ESP1 and PDS1. Diagrams
representing Cdc14 (A) and Esp1 (C) regulation by 1:1 binding with their inhibitors Net1 or Pds1. The molecular interactions were described with
previously described graphical notations using CellDesigner4.0 software [50,51] (A,D). (B,D) Results of two parameter viability test of Chen’s model.
The expression levels of CDC14 and NET1 (B) and ESP1 and PDS1 (D), were systematically changed. In (B), x-axis is the fold increase in the CDC14
transcription rate (ks,14) and y-axis is for that in the NET1 transcription rate (ks,net). In (D), x-axis is the fold increase in total concentration of ESP1
([Esp1]T) and y-axis is for that in the PDS1 transcription rate (k9s,pds, k0s1,pds and k0s2,pds). The viability test was performed using each parameter set
(detail of the viability test is described in Text S1 and Figure S1), and the results were shown in colors. Parameter space that gives ‘‘viable’’ solution is
shown in yellow, and parameter spaces that give ‘‘inviable’’ solutions are shown in the other colors. Red color means that the simulation results in M-
phase arrest, purple color means G1-arrest, and orange color means abnormal chromosomal separation result, respectively.
doi:10.1371/journal.pgen.1000919.g002

Dosage Imbalance in the Yeast Cell Cycle
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number)/(CDC14 copy number) = 1.38, R2 = 0.96]] (Figure 3E),

similar to that observed in computational analysis. Moreover,

when we use cdc14-1, a temperature-sensitive CDC14 gene with

reduced activity, the ratio was reduced but still conserved [(NET1

copy number)/(cdc14-1 copy number) = 0.77, R2 = 0.94]

(Figure 3F). We show for the first time that cellular fragility upon

overexpression of CDC14 is caused by dosage imbalance between

NET1 and CDC14.

Figure 3. Analysis of dosage relationship between CDC14 and NET1 using two-dimensional genetic tug-of-war (2D-gTOW). (A)
Schematic representation of 2D-gTOW experiment. (B) Multicopy NET1 rescued growth defect upon high copy number of CDC14. Cells with indicated
plasmids were spotted on the SC plate with indicated leucine condition. (C) pTOW (CDC14) copy number in 2D-gTOW experiment between CDC14
and NET1. Samples were taken from cells grown under leucine2 condition. (D) Quantification of Cdc14 and Net1 proteins from cells grown under
conditions as described in C, using western blot analysis. (E) Scatter plot of plasmid copy numbers possessing CDC14 and NET1 versus corresponding
plasmid vectors in 2D-gTOW experiments. Each plot represents individual experimental trials. (F) Scatter plot of plasmid copy numbers possessing
cdc14-1 and NET1.
doi:10.1371/journal.pgen.1000919.g003

Dosage Imbalance in the Yeast Cell Cycle
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Cellular fragility upon overexpression of ESP1 is masked
by CDH1 and CLB2

While there is evidence that Esp1 is regulated by 1:1 binding of

Pds1 [15,16], cellular fragility from dosage imbalance has not been

observed (i.e., the copy number limit of ESP1 overexpression is

high). We thus hypothesized that there was an additional

regulatory mechanism besides simple binding of Pds1 [13]. To

demonstrate ESP1 regulation by other factors, we performed

another 2D-gTOW experiment in various gene knockout mutants

(Figure 4A). Among 23 nonessential cell cycle gene knockouts,

cdh1D and clb2D strain showed significant reduction in the copy

number limit of ESP1 (Figure 4B). The fragility of these knockouts

upon overexpression of ESP1 was rescued by additional PDS1

plasmids (Figure 4C). Moreover, the ratio between ESP1 and PDS1

copy number was well conserved in cdh1D cells [(PDS1 copy

number)/(ESP1 copy number) = 1.27, R2 = 0.91] (Figure 4D), as

observed between CDC14 and NET1. This result indicates that

dosage imbalance between ESP1 and PDS1 actually causes cellular

fragility upon overexpression of ESP1, but additional regulations

by CDH1 and CLB2 mask the potential fragility.

Computational prediction of CLB2 function conferring
cellular robustness against overexpression of ESP1

Our study above indicated the existence of some factors regulating

ESP1 that are not incorporated into Chen’s model. We thus tried to

improve Chen’s model by seeking additional regulations to

reproduce the gTOW results. We should note that recently, a study

published more detailed model for M-phase-specific regulation [20].

Although this model implements additional regulations such as

signaling activity of Esp1 toward FEAR (Cdc14 early anaphase

release) pathway (see below), the model still predicted fragility upon

overexpression of ESP1 (Figure S3), indicating the regulation we are

seeking is not implemented in this model. We focused on regulation

by Clb2, a B-type cyclin-dependent kinase (B-CDK) subunit,

because there is evidence that B-CDK is involved in ESP1

regulation. In the budding yeast, B-CDK phosphorylates the

inhibitor Pds1 to regulate its localization [15] and stability in

metaphase [21]. In higher eukaryotes, CDK phosphorylates

separase (Esp1 homolog) to inhibit its protease activity [22].

However, it has never been shown whether any of these regulations

confer cellular robustness upon overexpression of Esp1.

Figure 4. Screening of regulators conferring cellular robustness upon overexpression of ESP1. (A) Schematic representation of screening
of additional regulators of ESP1. (B) Upper limit of copy numbers of ESP1 in knockout strains of cell cycle-related genes. The pTOW-ESP1 was
introduced into the knockout strains and the plasmid copy number was measured in cells grown under leucine2 condition. (C) pTOW-ESP1 copy
numbers in 2D-gTOW experiment between ESP1 and PDS1 in cdh1D and clb2D mutant cells. Samples were taken from cells grown under leucine2
condition. (D) Scatter plot of plasmid copy numbers possessing ESP1 and PDS1 in 2D-gTOW experiments. Each plot represents individual
experimental trials.
doi:10.1371/journal.pgen.1000919.g004

Dosage Imbalance in the Yeast Cell Cycle

PLoS Genetics | www.plosgenetics.org 5 April 2010 | Volume 6 | Issue 4 | e1000919



Therefore, we first modified Chen’s model by incorporating

each regulation into three independent computational models and

tested if they gave viable solution with; overexpression of ESP1,

overexpression of ESP1 in the absence of Clb2, and simultaneous

overexpression of ESP1 and PDS1 (Figure 5A and Table 1) (details

in Text S1, S2, S3, S4, S5, S6; Table S1, S2, S3; and Figure S1,

S4, S5, S6, S7, S8). Among them, the models for Esp1

phosphorylation and Pds1 stabilization could well reproduce the

behaviors of the cell in terms of copy number limits of ESP1

overexpression (Table 1).

Figure 5. Modified Chen’s models and simulation results of Pds1 stabilization model. (A) Graphical notations describing regulation of
Esp1 by Pds1 and other factors that were incorporated into Chen’s model. The molecular interactions were described as in Figure 2. (B) Time course
simulation of modified Chen’s model and its (C) pds1-2A mutant model (kkp1,pds = 0, kkp2,pds = 0). (D) Time course simulation with gradual increase
in the expression of ESP1 in modified Chen’s model and (E) its pds1-2A mutant model (kkp1,pds = 0, kkp2,pds = 0). The rate of expression of ESP1 was
increased by 12% of its original value per hour in D, and 2.4% per minute in E. Arrowhead indicates the time when the simulation results in cell cycle
failure (ESP1 is activated before spindle formation). Detailed simulation results are shown in Text S1 and Figure S8.
doi:10.1371/journal.pgen.1000919.g005

Dosage Imbalance in the Yeast Cell Cycle
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Quantitative regulation of Pds1 through phosphorylation
by B-CDK masks fragility arising from dosage imbalance
between Esp1 and Pds1

We next experimentally verified these regulations limiting the

ESP1 copy number. When phosphorylation by Clb2 is involved in

cellular robustness upon overexpression of ESP1, regulation can be

destroyed by introducing mutations in phosphorylation sites of the

target proteins. In Esp1 of the budding yeast, putative CDK

phosphorylation sites [(Thr/Ser)-Pro] are observed, which are

conserved among relative yeast species (Thr-1012, Ser-1025, and

Thr-1032) (Figure 6A). We substituted these amino acids with

alanine (esp1-AAA), and measured the copy number limit by

gTOW to verify the ESP1 phosphorylation model, and found that

the limit was .100 (Figure 6B). This indicates that direct

phosphorylation of Esp1 by Clb2 does not confer robustness upon

overexpression of ESP1.

A study reported that phosphorylation of Pds1 on Thr-27 and

Ser-71 by B-CDK stabilizes Pds1, and its regulation is required for

synchronization of chromosomal partition [21] (Figure 5A, Pds1

stabilization model). We thus built our model according to their

findings, and our model predicted that the copy number limit of

ESP1 was significantly reduced when phosphorylation of Pds1 was

inhibited (Figure 5D). We then measured the limit of ESP1 in the

alanine-substituted mutants on these phosphorylation sites (pds1-

2A), and found that the cell did not accept the high copy number of

ESP1 as observed in clb2D cells and the limit of overexpression was

significantly decreased (Figure 6C). This is the first evidence to show

that Pds1 phosphorylation is involved in cellular robustness upon

overexpression of ESP1. We should note that the decrease of the

limit of ESP1 overexpression in pds1-2A cells was not dramatic as in

clb2D cell (Figure 7), suggesting that there is another mechanism by

which clb2 confers cellular robustness against ESP1 overexpression.

One important but not reported assumption to build the Pds1

stabilization model was that the amount of Pds1 is in large excess

of Esp1 (Pds1:Esp1 is 112:1 on average during the cell cycle, see

Text S1), while their amount is almost the same in Chen’s model

(0.998:1). To confirm our assumption, we measured the

quantitative ratio of Pds1:Esp1 using TAP-tagged proteins.

Although we could not detect Esp1 expressed from the

chromosomal copy, the amount of Pds1 was at leaset more than

64-fold higher than Esp1 (Figure 6D and 6E), supporting our

assumption. We thus conclude that quantitative regulation of Pds1

through phosphorylation by B-CDK requires for masking the

fragility arising from dosage imbalance between Esp1 and Pds1.

CDH1 confers cellular robustness upon overexpression of
ESP1 through the different mechanism from CLB2

Esp1 is known to have two independent activities. One is a

protease activity to digest certain substrates such as Scc1 and Slk19

[23,24], and the other is a signaling function to activate FEAR

pathway that is a pathway to activate Cdc14 [20,25]. We thus

tested if either of these activities was the determinant of limit of

Esp1 overexpression in cdh1D and clb2D strains. We measured the

limit of esp1-C1531A, an ESP1 allele without separase activity [26]

in the wild type, cdh1D, clb2D, and pds1-2A strains respectively.

The limit of esp1-C1531A overexpression was increased in the

clb2D strain and the pds1-2A strain up to .100 copies (Figure 7).

Interestingly, however, the limit of esp1-C1531A overexpression

was still very low in the cdh1D strain (Figure 7). These results

indicate that CLB2 and CDH1 are involved in the robustness of

ESP1 regulation in different ways; CLB2 is involved in the

regulation associated with the protease activity, and CDH1 is

involved in the regulation associated with the FEAR signaling

activity.

Discussion

Knowing the mechanisms causing cellular fragility is important

for controlling cellular functions or finding novel drug targets

[27,28]. In this study, we demonstrated that dosage imbalance

between Cdc14 and Net1 causes significant cellular fragility upon

overexpression of CDC14 using computational and experimental

analysis. We believe that 2D-gTOW can be used as an

experimental technique to detect cellular fragility arising from

dosage imbalance. As in one of the examples, we were able to

detect potential fragility arising from dosage imbalance between

ESP1 and PDS1, although it was masked by CDH1 and CLB2.

Using this method, we would be able to show more examples of

dosage imbalances causing cellular fragility.

Because the strain having mutations on the phosphorylation

sites of Pds1 by Clb2 did not accept Esp1 overexpression

(Figure 6C), we concluded that the masking function of Clb2 is

performed through the stabilization of Pds1. On the other hand,

currently we could not explain the masking function of CDH1. The

function of CDH1 in Esp1 regulation is at least different from

CLB2, because the limit of overexpression of the esp1-C1531A

mutant was still low in the cdh1D strain, but high in the clb2D strain

(Figure 7). This fact suggests that the masking function of CDH1 is

performed through the process downstream of FEAR pathway,

which regulates the activity of Cdc14 phosphatase [25]. Cdh1 is a

component of ubiquitin-conjugating enzyme complex called APC

that degrades a number of proteins such as Clb2, Cdc5, Cdc20,

Cin8, etc. [29–33]. CDH1 will thus confer the robustness of Esp1

regulation through degradation of these M-phase components.

One possible function of Cdh1 to confer cellular robustness

against the overexpression of Esp1 is performed thorough a polo-

like kinase Cdc5, which also regulates Cdc14 activity [34]. When

Cdh1 is inactivated, the substrate Cdc5 activity will increase, and

Cdc14 will be activated. In the situation, the cell will be very

Table 1. Modified Chen’s models and validation in in silico simulation and in vivo experiment.

Model name Reference
Accept high
ESP1? (Simulation)

Accept high ESP1
in clb2D ? (Simulation)

Accept high ESP1 with
high PDS1? (Simulation) gTOW experiment

Chen’s [9] NO (,2) - YES (.256) -

Transport [15] YES (.256) NO (lethal) NO (,20) -

Esp1 phosphorylation [37] YES (.256) NO (,2) YES (.256) NO1

Pds1 phosphorylation [21] YES (.135) NO (,20) YES (.256) YES2

1 Upper limit of copy number of esp1-AAA (unphosphorylated form) is high (Figure 6A).
2 The cell with mutations in Pds1 phosphorylation sites does not accept high copy numbers of ESP1 (Figure 6C).
doi:10.1371/journal.pgen.1000919.t001

Dosage Imbalance in the Yeast Cell Cycle
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sensitive against further activation of Cdc14 by the FEAR pathway

due to the overexpression of Esp1. Alternatively, the masking

function of Cdh1 could be performed through Cdc20. Cdc20 is

another component of APC, which promotes the degradation of

Pds1 [35]. Because Cdc20 is a potential target of Cdh1 [32,33],

the activity of Cdc20 could be higher in the cdh1D strain. It is thus

possible that the amount of Pds1 is reduced in the cdh1D strain due

to the over-activation of Cdc20, which causes reduction of the

robustness of ESP1 regulation.

In addition to the mechanisms described above, there could be

other mechanisms that make the cellular system robust against

Esp1 overexpression. For example, Pds1 is considered as a

chaperone for Esp1 [36,37], which will make excess Esp1 over

Pds1 unstable. Although we did not adopt the Pds1 transport

model (Figure 6) to explain our finding, it is also a quite effective

mechanism to regulate the activity of Esp1. CDC55, a component

of PP2A phosphatase and a direct regulator and a downstream

effector of Esp1 [20,38]), will be also involved in the robustness.

M-phase regulations with components such as Cdc5 and Cdc55

should be implemented into the integrated model, and verified

further combinational gTOW experiments to uncover the whole

regulatory mechanisms conferring the cellular robustness against

Esp1 overexpression.

We should note that the reason why the clb2D cell and cdh1D
cell are fragile against overexpression of ESP1, could be arisen

from the same mechanistic consequence as the observation that

clb2D and cdh1D are synthetic lethal with pds1D [39,40], although

Pds1 phosphorylation by Clb2 should be an exception. Unfortu-

Figure 6. Experimental verification of the predicted models. (A) Conserved putative CDK phosphorylation sites in Esp1 among relative
budding yeast species. Alignment was performed using Saccharomyces Genome Database, (http://www.yeastgenome.org/). Arrowhead indicates
alanine-substituted residues in phosphorylation-negative mutant esp1-AAA. (B) Upper limit copy numbers of empty vector, ESP1, and esp1-AAA,
measured in gTOW for cells grown under leucine2 condition. (C) Left graph: The growth rate of cells with empty vector and ESP1 in the wild-type cell
(KK001) and cells expressing Pds1-2A (KK002). Right graph: Upper limit copy numbers of empty vector and ESP1 in the wild-type cell (KK001) and cells
expressing Pds1-2A (KK002). (D,E) Quantification of the molecular ratio between Pds1 and Esp1. TAP-tagged each protein expressed from the
chromosomal loci were detected by Western blotting. The blot (E) is the same blot as (D), but overexposed to detect 1/64 Pds1-TAP. Because Esp1
expressed from its chromosomal locus could not be detected, ESP1-TAP amplified from the chromosomal locus was cloned on to multicopy plasmd
(pTOWug2-Esp1-TAP) to confirm the gene was exactly expressing. Judging from the dilution series of Pds1-TAP, Pds1-TAP is at least 64 fold abundant
than Esp1-TAP.
doi:10.1371/journal.pgen.1000919.g006

Dosage Imbalance in the Yeast Cell Cycle
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nately, Chen’s model and our modified model do not reproduce

the behavior of pds1D mutant (i.e., viable in real cell, but essential

in the models [9], data not shown). We thus could not test these

phenotypes in our model. We hope that modifications of the

model by implementing the regulation above will solve the

discrepancy.

In the budding yeast cell, there are several genes, such as actin

encoding gene (ACT1) or beta-tubulin-encoding gene (TUB2), that

cause extreme fragility due to imbalance against binding partners

[41,42]. Dosage balance (i.e., stoichiometry) between histone

dimmer sets must be conserved for normal mitotic chromosome

transmission [43]. We thus hypothesize that dosage imbalance is a

common cause of cellular fragility. In regulation of CDC14, dosage

imbalance is exposed whereas in regulation of ESP1, it is masked.

In many cellular processes, it is likely that fragilities caused by

regulation through 1:1 binding (here we call ‘‘stoichiometric

regulation’’) will be masked. In the case of Esp1, what we found

here (and Chen’s model did not implement) was that the inhibitor

Pds1 was in large excess of the separase Esp1 (Figure 6). Excess of

the inhibitor could be a general mechanism by which the systems

are robust against dosage fluctuation of the enzyme. In case of

Cdc14 and Net1, the amount of both proteins within the cell are

the same order (Net1-TAP exists with 1.59E+03 molecules/cell

and Ccd14-TAP exists with 8.55E+03 molecules/cell) [44], this is

one of the reasons of the exposed fragility. However, as a trade off,

the excess inhibitor should be effectively and timely inactivated

when activation of the enzyme is required. Separase needs to be

activated accurately in the period of metaphase to anaphase

transition. Phosphorylation of Pds1 on Thr-27 and Ser-71 by Clb2

is the regulation that makes the precise inactivation (degradation)

of Pds1, which requires the cell cycle system to be robust against

overexpression of Esp1. Regulations conferring cellular robustness

might therefore be generally discovered around stoichiometric

regulations, as was observed in case of ESP1. Moreover, we may

be able to control cellular robustness by modifying the regulators

around stoichiometric regulation.

How is fragile regulation advantageous for a cell? Regulation by

simple protein-protein interactions is one of the simplest ways to

generate ultrasensitive responses in cellular systems [45,46], and

might have evolved to add novel regulations toward enzymes. For

example, multiple CDK inhibitors are present in yeasts to

mammalian cells, but they are quite diverse. While B-type cyclins

Clb2 (S. cerevisiae) and Cdc13 (S. pombe) are quite similar (BLAST E-

value 6e-79), their inhibitors Sic1 and Rum1 do not show any

similarity (BLAST E-value .0.05). This suggests that these factors

have evolved independently from different ancestor proteins to

achieve the common purpose of binding and inhibiting CDK. In

addition, drugs for molecular targeted therapy utilize the

mechanism of stoichiometric regulation against the target. This

is the only known enzymatic regulation thus far that humans can

design. In fission yeast and higher eukaryotes, no stoichiometric

regulator for Cdc14 phosphatase homologue is known to exist

[47]. We propose that during evolution, the budding yeast

uniquely acquired Cdc14 regulation with Net1, but it conversely

produced fragility caused by dosage imbalance as a trade-off. The

activity of Cdc14 itself is quite tightly regulated by two signalling

pathway designated FEAR and MEN (mitotic exit network), which

are found only in the budding yeast [48]. The budding yeast may

have uniquely acquired these regulations in order to buffer the

fragility due to the dosage imbalance.

Developing integrative cellular models with high predictive

ability is one of the goals of systems biology. However, it is

sometimes criticized that large-scale integrative cellular models are

indefinitely adjustable and can no longer be proven false [49]. For

this purpose, a general experimental technique to effectively

evaluate and refine models is needed. In this study, we evaluated a

model with data for cellular robustness obtained by gTOW, found

discrepancies, modified them according to the current knowledge

for reproducing robustness, and evaluated them with combinato-

rial gTOW. We believe that this analytical scheme will be effective

for further development of integrative cellular models.

Materials and Methods

Yeast strains and growth conditions
A wild-type yeast strain BY4741 (MATa, his3D1, leu2D0,

met15D0, ura3D0) and its derivatives with deletion of cell-cycle-

related genes (in Figure 4) were obtained from Open Biosystems

Inc. Haploid yeast strains KK001 (leu2D, ura3D, PDS1) and

KK002 (leu2D, ura3D, pds1-T27A, S71A) are progenies of LH651

and LH557 [21], respectively. To detect TAP-tagged Pds1 and

Esp1, derivatives of a yeast strain SC0000 (MATa, ade2, arg4, leu2-

3,112, trp1-289, ura3-52), SC4998 (PDS1-TAP-klURA3) and

SC1033 (ESP1-TAP-klURA3)(Euroscarf) were used. Yeast cells

were cultured in synthetic complete medium (SC) lacking

indicated amino acids. SC medium was prepared using YNB

with ammonium sulfate (MP Biomedicals, LLC) with DO

supplement (Clontech) and 2% glucose.

Plasmid constructions
Plasmids used in this study are listed in Table 2. pTOWug2 is a

pSBI40 derivative carrying URA3-GFP fusion gene instead of

URA3. pRS423-mRFP is a pRS423 derivative carrying HIS3-RFP

fusion gene instead of HIS3.

gTOW procedure
gTOW experiments were performed as described previously [13].

For 2D-gTOW, cells transformed with both pSBI40 and pRS423

derivatives were cultivated in SC without uracil and histidine, and

then they were transferred into SC without uracil, histidine, and

leucine. The copy numbers of pSBI40 and pRS423 derivatives were

measured using real-time PCR as described previously [13], except

that an HIS3 primer set (HIS3-1F, TTCCGGCTGGTCGCTAAT

and HIS3-1R, GCGCAAATCCTGATCCAAAC) was used to

measure the copy number of pRS423 derivatives. Data shown in

Figure 7. Limits of overexpression of esp1-C1531A in wild-type,
clb2D, and cdh1D mutant cells. Upper limit copy numbers of ESP1
and esp1-C1531A in wild-type, cdh1D, clb2D, and pds1-2A cells were
measured in leucine2 condition. Average copy number and SD are
large in clb2D cells in this experiment probably due to reversion
mutation.
doi:10.1371/journal.pgen.1000919.g007
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Figure 3C, Figure 4B and 4C, Figure 6B and 6C, and Figure 7 are

averages of at least four independent experiments.

Quantification of proteins
Cdc14 and Net1 proteins were quantified by western blot

analysis using their specific antibodies (sc12045 and sc27758;

Santa Cruz Biotechnology, Inc.) as described previously [13].

TAP-tagged proteins were detected using PAP (P1901l; Sigma-

Aldrich).

Computation
Numerical simulations were carried out using Matlab version

7.3.0. Chen’s model and Queralt’s model were implemented on

Matlab script files [9,20]. The code for Chen’s model was based on

that obtained from Dr. Cross. For details and codes used in this

study refer to Text S1.

Supporting Information

Figure S1 Viability test in Chen’s model. Detailed interpretation

is described in Text S1 (‘‘Viability test’’).

Found at: doi:10.1371/journal.pgen.1000919.s001 (0.84 MB PDF)

Figure S2 Time course simulation of Chen model with over-

expression of its components. (A–D) Time course simulation with

gradual increase of the expression of CDC14 alone (A, parameter

ks,14), both CDC14 and NET1 (B, parameter ks,14 and ks,net),

ESP1 alone (C, parameter [Esp1]T), and both ESP1 and PDS1 (D,

parameter [Esp1]T, k9s,pds, k0s1,pds, and k0s2,pds). Each parameter

was increased at the rate of 12% of its original value per hour.

Arrowhead indicates the timing when the simulation results

in the cell cycle failure (abnormal chromosomal segregation at

time).

Found at: doi:10.1371/journal.pgen.1000919.s002 (1.02 MB PDF)

Figure S3 Prediction of the behavior of Esp1 regulatory module

in Queralt’s model. (A) Two parameter viability test of Queralt’s

model. Simulation results are shown in colors when the expression

levels (copy numbers) of ESP1 and PDS1 increased. The x-axis is the

fold increase in transcription of ESP1(ks,separase) and the y-axis is that

in transcription rates of PDS1 (ks,separase). Cell was considered to be

viableonly if both sister chromosome segregation (the concentration

of Esp1 to increase above 0.1) and nuclear division (the

concentration of Clb2 dropping below 0.3) were executed in this

order. (B,C) Time course simulation of Queralt’s model when ESP1

(B) or both ESP1 and PDS1 (C) is/are over-expressed (5 fold).

Found at: doi:10.1371/journal.pgen.1000919.s003 (0.71 MB PDF)

Figure S4 Chen’s original model and its time course simulation. (A)

Process diagram describing the regulation of Esp1 by Pds1 and other

factors. The diagram was drawn using CellDesigner4.0. (B) Time

course simulation of wild type strain. (C,D) Time course simulation

with gradual increase of ESP1 expression alone (C), and both ESP1

and PDS1 (D) at the rate of 12% of its original value per hour.

Found at: doi:10.1371/journal.pgen.1000919.s004 (0.92 MB PDF)

Figure S5 Pds1 transport model and its time course simulation.

(A) Process diagram describing the regulation of Esp1 by Pds1 and

other factors. The diagram was drawn using CellDesigner4.0. (B)

Time course simulation of wild type strain. (C,D) Time course

simulation with gradual increase of ESP1 expression alone (C), and

both ESP1 and PDS1 (D) at the rate of 5% per minute.

Found at: doi:10.1371/journal.pgen.1000919.s005 (1.07 MB PDF)

Figure S6 Esp1 phosphorylation model and its time course

simulation. (A) Process diagram describing the regulation of Esp1

by Pds1 and other factors. The diagram was drawn using

CellDesigner4.0. (B) Time course simulation of wild type strain.

(C) Time course simulation with gradual increase of ESP1

expression alone at the rate of 12% of its original value per

hour.

Found at: doi:10.1371/journal.pgen.1000919.s006 (0.97 MB PDF)

Figure S7 Pds1 stabilization model and its time course

simulation. (A) Process diagram describing the regulation of

Table 2. Plasmids used in this study.*1

Plasmid Name Gene Up primer*2 Down primer*2 Description and Reference

pSBI40 [13]

pTOWug2 pSBI40 URA3-GFP

pRS423 [52]

pRS423mRFP pRS423 HIS3-RFP

pTOW-CDC14 CDC14 [13]

pTOW-cdc14-1 cdc14-1 OSBI0505 OSBI0045 [53]

pTOWug2-ESP1 ESP1 OSBI0083 OSBI0084 Present study

pTOWug-esp1-C1531A esp1-C1531A OSBI0083
OSBI0561

OSBI0562
OSBI0084

Present study

pTOWug2-esp1-AAA esp1-3A OSBI0083
OSBI0919

OSBI0920
OSBI0084

T1013A, S1026A, and T1022A. Present study

pTOWug2-ESP1-TAP ESP1-TAP OSBI0083 OSBI0084 Amplified from SC1033 genome.
Present study

pRS423-NET1 NET1 OSBI0156 OSBI0157 Present study

pRS423mRFP-PDS1 PDS1 OSBI0081 OSBI0082 Present study

*1 All plasmids were constructed using the gap-repair method using primers listed as described previously [13].
*2 The sequence of the primers used are described previously [13], except OSBI0561 (CCCCCAGCTTTTTACTGGGCgcGTCTTCAGCAGCGATGAAAT), OSBI0562 (ATTTCAT-

CGCTGCTGAAGACgcGCCCAGTAAAAAGCTGGGGG), OSBI0919 (CTCCTTCCAAGCATAGTACAGGATTGAAGCTTTGCGATgCACCAAGATCGTCGAGCATGgCGCCTAGAGGTA-
AGAATATA) and OSBI0920 (CATGCTCGACGATCTTGGTGcATCGCAAAGCTTCAATCCTGTACTATGCTT).

doi:10.1371/journal.pgen.1000919.t002
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Esp1 by Pds1 and other factors. The diagram was drawn using

CellDesigner4.0. (B) Time course simulation of wild type strain.

(C) Time course simulation with gradual increase of ESP1

expression alone at the rate of 12% of its original value per hour.

Found at: doi:10.1371/journal.pgen.1000919.s007 (0.88 MB PDF)

Figure S8 Detailed simulation result of the Pds1 stabilization

model. (A) wild type model (viable), (B) wild type model with

ESP16100 (viable), (C) pds1-2A model (viable), and (D) pds1-2A

model with ESP1630 (enviable due to the ordering error:

abnormal chromosome separation). Each event is numbered as;

(3)Spindle alignment ([SPN] increase through 1), (4) Sister

chromosome separation ([Esp1] increases through 0.1), and (5)

Cell division ([Clb2] decreases through 0.3).

Found at: doi:10.1371/journal.pgen.1000919.s008 (1.70 MB PDF)

Table S1 Parameter set (1/3) for simulating the ‘‘stabilization

model’’.

Found at: doi:10.1371/journal.pgen.1000919.s009 (0.02 MB

XLS)

Table S2 Parameter set (2/3) for simulating the ‘‘stabilization

model’’.

Found at: doi:10.1371/journal.pgen.1000919.s010 (0.02 MB

XLS)

Table S3 Parameter set (3/3) for simulating the ‘‘stabilization

model’’.

Found at: doi:10.1371/journal.pgen.1000919.s011 (0.03 MB

XLS)

Text S1 Supplementary methods for computation; viability test;

examination of the possible ESP1 regulation by CLB2.

Found at: doi:10.1371/journal.pgen.1000919.s012 (0.10 MB

DOC)

Text S2 Matlab m-file (1/5) for simulating the ‘‘stabilization

model’’.

Found at: doi:10.1371/journal.pgen.1000919.s013 (0.01 MB

TXT)

Text S3 Matlab m-file (2/5) for simulating the ‘‘stabilization

model’’.

Found at: doi:10.1371/journal.pgen.1000919.s014 (0.01 MB

TXT)

Text S4 Matlab m-file (3/5) for simulating the ‘‘stabilization

model’’.

Found at: doi:10.1371/journal.pgen.1000919.s015 (0.02 MB

TXT)

Text S5 Matlab m-file (4/5) for simulating the ‘‘stabilization

model’’.

Found at: doi:10.1371/journal.pgen.1000919.s016 (0.01 MB

TXT)

Text S6 Matlab m-file (5/5) for simulating the ‘‘stabilization

model’’.

Found at: doi:10.1371/journal.pgen.1000919.s017 (0.01 MB

TXT)
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