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We studied disparity-evoked responses in natural
scenes using high-density electroencephalography (EEG)
in an event-related design. Thirty natural scenes that
mainly included outdoor settings with trees and
buildings were used. Twenty-four subjects viewed a
series of trials composed of sequential two-alternative
temporal forced-choice presentation of two different
versions (two-dimensional [2D] vs. three-dimensional
[3D]) of the same scene interleaved by a scrambled
image with the same power spectrum. Scenes were
viewed orthostereoscopically at 3 m through a pair of
shutter glasses. After each trial, participants indicated
with a key press which version of the scene was 3D.
Performance on the discrimination was .90%.
Participants who were more accurate also tended to
respond faster; scenes that were reported more
accurately as 3D also led to faster reaction times. We
compared visual evoked potentials elicited by
scrambled, 2D, and 3D scenes using reliable component
analysis to reduce dimensionality. The disparity-evoked
response to natural scene stimuli, measured from the
difference potential between 2D and 3D scenes,
comprised a sustained relative negativity in the
dominant response component. The magnitude of the
disparity-specific response was correlated with the
observer’s stereoacuity. Scenes with more
homogeneous depth maps also tended to elicit large
disparity-specific responses. Finally, the magnitude of
the disparity-specific response was correlated with the
magnitude of the differential response between
scrambled and 2D scenes, suggesting that monocular
higher-order scene statistics modulate disparity-specific
responses.

Introduction

We live in a three-dimensional (3D) world and
constantly and effortlessly construct 3D percepts from
two-dimensional (2D) retinal images. This efficiency
has been shaped over evolutionary and developmental
time scales through exposure to sensory stimuli
encountered in the natural environment. Natural scenes
give rise to many cues for depth, some of which are
monocular, but one of the most important cues is the
binocular disparity cue arising from the slightly
different viewpoints of the two eyes (Wheatstone,
1838). Depth induced by binocular disparity can be
more compelling, robust, and immersive than depth
perception induced by monocular cues (Patterson &
Martin, 1992; Wheatstone, 1838). By using carefully
designed stimuli such as bars, gratings, and random dot
stereograms in highly controlled experimental settings,
much progress has been made toward identifying
perceptual and neural representations of disparity
(Backus, Fleet, Parker, & Heeger, 2001; Parker, 2007;
Welchman, 2016).

It has long been hoped that the insights gained from
reduced stimuli in controlled experimental settings will
generalize to an understanding of responses measured
in complex natural viewing situations (Carandini et
al., 2005; Felsen & Dan, 2005). However, both neural
and perceptual results suggest that natural image
responses are not readily predictable from responses
to simple stimuli. For example, computational models
based on cell properties derived from simple stimuli
typically explain only 30% to 40% of the variance of
responses to natural scenes (David, Vinje, & Gallant,
2004). The sensitivity of complex cells to the presence
of their preferred features is higher in natural images
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than in random stimuli, and this is not predicted by a
standard model of complex cells (Felsen, Touryan,
Han, & Dan, 2005). The response properties of higher
visual areas are likely to be even more closely
associated with the characteristics of natural stimuli
(Tanaka, 1996).

Turning to the case of binocular vision, stereoacuity
measurements using real depth instruments (e.g., the
Howard-Dolman apparatus and the Frisby Stereo
Test) often yield better thresholds than those using
simulated depth (Howard, 1919; McKee & Taylor,
2010; Zaroff, Knutelska, & Frumkes, 2003). Natural
image stimuli dominate artificial stimuli in perceptual
rivalry even when the images are matched for contrast,
luminance, and energy (Baker & Graf, 2009). The
classic repetition-related change in hemodynamic re-
sponse for 2D planar images is surprisingly weaker
when observers are viewing real-world 3D objects
(Snow et al., 2011). These discrepancies may arise
because natural vision, and especially stereoscopic
vision, differs from the situation of reduced cue
experiments in at least three aspects: (a) ‘‘Pure
disparity’’ does not exist in the natural environment
where depth cues other than disparity are also
available. (b) Visual stimuli are rarely presented in
isolation, and the brain activation from a complex
scene may not be a linear summation of the activation
of individual simple components (such as spots, lines,
edges, surfaces) in the scene. (c) Viewing devices such as
stereoscopes can create cue conflicts (Hoffman, Gir-
shick, Akeley, & Banks, 2008; Howard, 1919; McKee &
Taylor, 2010).

Therefore, to understand disparity processing in the
context of everyday life, we need to present our visual
system with ecologically relevant natural images.
Although this might be considered challenging be-
cause of the relative lack of stimulus control over the
multiple depth cues, real-world scenes are actually
highly regular and thus exploitable in laboratory
studies (Geisler & Diehl, 2002; Simoncelli & Olshau-
sen, 2001). Surprisingly, only a handful of studies have
studied neural correlates of stereopsis using natural-
istic images. The first such study used electroenceph-
alography (EEG) and source localization to identify
brain areas relevant to depth perception in natural
images (Fischmeister & Bauer, 2006). In agreement
with functional imaging studies in humans, they
observed higher activations in the parietal cortex
extending into occipital regions while processing
binocular disparity cues. They also demonstrated the
feasibility of adopting more realistic alternatives to
stimuli based solely on one type of depth cues. More
recently, a functional magnetic resonance imaging
study has shown that binocular disparity increases
intersubject correlations of brain networks and
enhances the experience of immersion when viewing

complex 3D movies (Gaebler et al., 2014). Further-
more, visual search task response times in a complex
natural space are significantly shorter when binocular
depth information is available, with area V3A
showing greater activation during search tasks con-
taining binocular cues (Ogawa & Macaluso, 2015).

In the present study, we used high-density EEG
recordings and an event-related design to compare
responses evoked by 2D natural and scrambled images
to determine how natural scene structure affects the
disparity-specific spatiotemporal response distribu-
tion. We then compared these responses to those
generated by matching intact natural images presented
in 3D to determine how the simple addition of
disparity modulates the response to natural scenes.
Finally, based on a growing body of psychophysical
evidence describing a large range of individual
difference in stereoacuity in the normal population
(Bosten et al., 2015; Howard, 1919), we compared
differential 3D versus 2D response across participants.
We found robust differences in spatiotemporal re-
sponse patterns between each of the three levels of
image structure (random 2D, natural 2D, natural 3D).
By analyzing responses to individual scenes, we found
a correlation between the structure of the scene depth
map and the magnitude of disparity response elicited.
By analyzing 2D versus 3D differential responses in
individual observers, we found a correlation between
brain responses and perceptual sensitivity to disparity.
In addition, the higher-order image structure in
natural scenes modulated disparity responses both for
scenes and observers.

Methods

Participants

Twenty-four healthy adults (13 men) aged between
18 and 33 years (mean ¼ 24.3 years) participated in
this study. All participants had normal or corrected-
to-normal visual acuity, and the average logMar
visual acuities of their left and right eyes were each 0
(corresponding to a Snellen acuity of 20/20). They
reported no difficulty perceiving stereoscopic depth
when viewing 3D pictures, and their average stereo-
acuity as measured by Randott stereotest (Stereo
Optical, Inc., Chicago, IL) was 27.06 arcsec. The study
was approved by the Stanford University Institutional
Review Board, and all participants gave written
informed consent prior to the experiment. The
procedure is in accordance with the Declaration of
Helsinki.
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Stimulus presentation and trial structure

Thirty high-quality stereo image pairs of outdoor
scenes from McCann (2015) were used. Briefly, each
image pair was collected using two camera station
points spaced 65 mm apart, mimicking the average
distance between the two eyes of adult males (Dodgson,
2004). The corresponding depth map for each image
was obtained using a scanning laser range finder. The
outdoor scenes included trees, lawns, buildings, signs,
and fences. All images were resampled to a resolution
of 1,920 pixels width 3 1,080 pixels height. The images
were presented at a 3-m viewing distance, and this
resulted in images of natural size (orthostereoscopic
presentation) with minimal conflict between vergence
and accommodation. A scrambled version of each
scene was generated by applying the Portilla-Simoncelli
algorithm (http://www.cns.nyu.edu/;lcv/texture/) to
the monocular half images. This procedure produces an
image without recognizable content but with an
identical power spectrum and second-order correlations
over locations, scales, and orientations (Portilla &

Simoncelli, 2000). A comprehensive description of the
natural-scene capture pipeline can be found in Burge,
McCann, and Geisler (2016). Thumbnails of the 30
images used can be seen in Figure 1.

Image pairs were presented using in-house software
on a Sony Bravia (model XBR-65HX929) 3D TV
(143.4380.7 cm) at a resolution of 1,92031,080 pixels.
Active shutter glasses were used to present separate
images to each eye: They were either a stereo-pair in the
3D condition or copies of the right eye image in the two
2D conditions. A single trial was defined as a sequence
of four epochs, during which two versions of the same
scene (2D vs. 3D) were presented sequentially, with
each natural scene image preceded by a scrambled
version of the that image (see Figure 2). The scrambled
images are always pairs of 2D scrambled versions of the
right eye images. During each trial, a cross was placed
in the center of the scrambled image at the plane of the
screen when viewed stereoscopically. Stereo disparities
of the intact images were rendered behind the fixation
cross. The participant was instructed to maintain
fixation on the cross and to reduce blinks and

Figure 1. Thumbnails of experimental stimuli.
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movements to a minimum. Each image presentation
epoch lasted 750 ms, and the overall duration of a trial
was 3 s. A block consisted of 60 trials, in which each
version of a scene was shown twice in the two different
sequences (2D first or 3D first). A total of four blocks
of trials was administered to each participant, and the
scene presentation order within each block was
randomized. A two-alternative temporal forced-choice
procedure was used in which the participants were
instructed to respond with a button press to indicate
whether the second or fourth stimulus epoch contained
a 3D image.

EEG acquisition and preprocessing

The EEG data were collected using 128-channel
HydroCell Geodesic Sensor Nets and a NetAmps 400
system (Electrical Geodesics Inc., Eugene, OR). The
EEG was bandpass filtered from 0.1 to 50 Hz and
digitized at a rate of 432 Hz (Net Amps 400 TM,
Electrical Geodesics). Individual electrodes were
adjusted until impedances were below 50 kX before
starting the recording. Artifact rejection was per-
formed offline according to a sample-by-sample
threshold procedure to remove noisy electrodes and
replace them with the average of the six nearest
neighboring electrodes. On average, less than 5% of
the electrodes were substituted; these electrodes were
mainly located near the forehead or the ears, and
substituting them is unlikely to affect our results. The
EEG was then re-referenced to the common average of
all the remaining electrodes. Epochs with more than
15% of the data samples exceeding 30 lV were
excluded on a sensor-by-sensor basis. Typically, these
epochs included movements or blinks. A 131-ms delay
between the onset of EEG recording and the stimulus
onset caused by the EEG recording system (66 ms)
and the BRAVIA monitor (65 ms) has been corrected
in analysis.

Statistical analysis

Reliable-component analysis

Reliable-component analysis (RCA) is a newly
developed technique that aims to combine electrode
potentials linearly to reduce the dimensionality of high-
density EEG data and to identify distributed sources of
neural activity (Dmochowski, Greaves, & Norcia, 2015;
Dmochowski, Sajda, Dias, & Parra, 2012). RCA is
based on the fundamental assumption underlying
evoked responses, namely, that the signal of interest is
spatiotemporally reproducible across trials (Dmo-
chowski & Norcia, 2015). RCA works by obtaining a
linear spatial filter W by explicitly maximizing the ratio
of across- to within-trial covariance, for example,

argmax qðWÞ ¼ WTRacrossW

WTRwithinW

where Rwithin denotes the within-trial covariance matrix
and Racross denotes the across-trial covariance matrix.
The solution is known to be a conventional eigenvalue
problem:

ðR�1acrossRwithinÞW ¼
1

q
W

When performing the eigenvalue decomposition, we
regularized the within-trial pooled covariance by
keeping only the first K dimensions. In the present
data, K ¼ 6 corresponded to the ‘‘knee’’ of the
eigenvalue spectrum representation of Rwithin. The bulk
of the across-trial reliability is captured in the first C
dimensions., where C is much less than the number of
electrodes. The proportion of reliability explained by
the first C reliable components (RCs) can be quantified
by the following measure:

g Cð Þ ¼
Pc

i¼1 kiPD
i¼1 ki

The first C column of the weight matrix W is then used
to project the original EEG data into the component
space.

Figure 2. Experiment trial structure. The 2D images display identical image pairs to left and right eyes. The 3D images display 3D

stereo pairs to left and right eyes. A block consisted of 60 trials, with each scene showing up twice. A uniform gray background was

displayed between each trial.
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Data from all 24 subjects were considered for
learning the RCs. Because the overall accuracy was
greater than 90%, both correct and incorrect trials were
used. For each trial, we extracted the first 1,500 ms of
the recording corresponding to the presentation of a
scrambled scene followed by the first presentation of an
intact natural scene, with the 2D or 3D scene versions
being equiprobable. For the purposes of the current
study, the second half of each trial was not analyzed
because that neural response may be subject to a
priming effect that does not occur for the first image
presentation (i.e., when the subject saw a 2D image
during the first interval, he or she could expect to see a
3D image during the second interval). RCs were
learned for scrambled images during the initial 750-ms
interval (5,760 trials) and separately for the 2D and 3D
images presented in the second 750-ms interval (2,880
trials each).

Waveform permutation testing

To compare the waveforms between different
experimental conditions, we projected the sensor data
averaged across all the trials within each condition
onto the first three spatial filters maximizing reliability
over the separate 2D, 3D, or scrambled trials.
Differences between the resulting waveforms were
identified by a permutation test devised by Blair and
Karniski (1993) and described in detail in Appelbaum,
Wade, Vildavski, Pettet, and Norcia (2006). Specifi-
cally, to determine at which time points the RC
amplitudes differ between 2D and 3D scenes, the
differences between 2D and 3D were calculated for
each subject at each time point, resulting in a m 3 n
difference matrix YD, where m is the number of time
points and n is the number of subjects. The mean and
variance across subjects are denoted as lD and r2

D.
Then, a vector of t scores was obtained through the
following statistic:

t ¼ lDffiffiffiffiffiffi
r2

D
n�1

q

From the above vector, we determined the longest
consecutive sequence of t scores having a p value
,0.05, and this longest sequence is denoted as tL. If
there are no differences between the experimental
conditions, then the sign of the difference between 2D
and 3D at each time point would be positive or
negative in a random fashion. Therefore, we can
simulate the distribution of the difference matrix
under the null hypothesis by randomly permuting the
signs of the columns of YD. Considering 10,000
permutations of signs for the columns YD, we
accumulate a permutation sample space of Y�D and a
nonparametric reference distribution for t�L. The

critical value tC is then determined by the top 5%
cutoff in the reference distribution of t�L. We reject the
null hypothesis if the length of any consecutive
sequence of significant t scores in the original, non-
randomized data exceeded tC (Appelbaum et al.,
2006). Because each permutation sample contributes
only its longest significant sequence to the reference
distribution, this procedure implicitly compensates for
the problem of multiple comparisons and is a valid
test for the omnibus hypothesis of no difference
between the waveforms at any time point. Further-
more, this test not only detects significant departures
from the null hypothesis but also localizes the time
periods when such departures occur. However, be-
cause the correction procedure is tied to the length of
the data and the somewhat arbitrary choice of keeping
familywise error at 5%, we therefore also present the
uncorrected significance values visualized as red to
yellow color maps in the figures. By evaluating the
data using both statistical approaches, we are better
able to identify time periods when the responses
depart from the null hypothesis.

Spatial topographies

To depict the spatial topographies of the RCs, we
examined the scalp projection of the activity recovered
by the filters. Specifically, let W denote a matrix whose
columns represent the weight vectors generated by
RCA. The projections of the recovered sources onto the
sensor data are given by A¼RwithinW(WTRwithinW)�1.
The columns of A represent the pattern of electric
potentials that would be observed on the scalp if only
the source signal recovered by W was active, informing
us of the approximate location of the underlying
neuronal sources (Haufe et al., 2014; Parra, Spence,
Gerson, & Sajda, 2005).

Quantification of 2D versus 3D spatiotemporal
differences

Each individual scene or subject can exhibit or elicit
a different spatiotemporal response pattern under 2D
versus 3D conditions. To quantify these differences in
component space, for each scene (subject), we
averaged trials within each condition (96 trials for
each scene and 120 trials for each subject) and used the
weights of the first RC component to project the 128-
channel sensor data from the 2D and 3D responses
onto the dimension-reduced component space. The
response difference between the 2D and 3D stimuli—
the disparity response—was quantified by the Euclid-
ean distance between the waveforms. Waveform
permutation testing was performed to localize the time
period when significant differences occurred.
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Multiple regression analysis

A multiple regression model was used to explore the
underlying factors related to the individual scene and
subject differences in disparity responses. For individ-
ual scenes, we determined whether response time,
response amplitude to low-level image statistics,
response amplitude to the high-level scene structure
(the ‘‘sceneness’’ of the stimuli), and median and
standard deviation of the corresponding depth map of
each scene affect how different its 2D versus 3D
responses are. The response amplitude driven by low-
level image statistics was quantified by as the Euclidean
distance between the corresponding waveform gener-
ated by the onset of the scrambled image and the zero
vector. The response to the higher-order image
structure that defines sceneness was quantified as the
differential response between the 2D natural scene
response and the scrambled image response that
preceded it, again through the Euclidean distance
between the waveforms. For individual subjects, the
independent variables included age, stereoacuity, re-
sponse time for each scene, response amplitude to the
scrambled version of the scene, and the sceneness
metric of the stimuli.

Results

The goal of this study is to understand how retinal
disparity in natural scenes modulates neural responses.
By employing the RCA methods described above, we
reduced the high-dimensional sensor-space data to a
small set of components that correspond to the most
reliable cortical sources of stimulus-related activity.

Behavioral results

The accuracy for discriminating 2D from 3D images
in the two-alternatives force-choice task was greater
than 90%, with a mean response time of 2,981 ms from
the onset of the initial scrambled image. Eleven
participants responded during the presentation of the
fourth interval (2,250 to ;3,000 ms), and 13 responded
after presentation of the last image (.3,000 ms).
Although not instructed to respond quickly, a signif-
icant negative correlation was found between the
participants’ response time and accuracy averaged over
scenes (r¼�0.65, n¼ 24, p , 0.001); participants were
faster when they were more accurate. When looking at
the reaction time and accuracy for each scene averaged
across participants, again, a significant negative corre-
lation was found (r¼�0.66, n¼ 30, p , 0.001). Scenes
that were reported more accurately as 3D also led to
faster response times.

RC selection

Averaged across 2D and 3D responses, the de-
scending eigenvalues corresponding to the first five RCs
were 0.093, 0.068, 0.025, 0.021, and 0.015, and the
reliability explained by the first three RCs was
collectively 80.89% (Figure 3). Consequently, we chose
to retain the first three RCs but focus primarily on the
first RC component for individual differences and
scene-level analysis as each of these subanalyses used a
smaller fraction of the entire data.

2D versus scrambled natural scene responses

We first analyzed the difference in evoked response
between 2D natural scenes and their scrambled
versions. Any differences in these responses can be
attributed to the high-order statistical regularities
present in natural scenes. The evoked response
waveforms and their corresponding spatial topogra-
phies for the first three RC components (RC1, RC2,
RC3) are shown in Figure 4. Each RC component has a
characteristic time course and topography, and signif-
icant differences between scrambled and intact natural
images were present for each RC. These differences
emerged at different time points, as reflected by the
asterisks in the red/yellow bars on the horizontal axis.

RC1 was maximal at midline posterior electrodes
over early visual cortex for both scrambled (Figure 4b)
and intact 2D scenes (Figure 4c), with the response to
2D scenes being located slightly more anteriorly.
Response amplitude increased sharply around 50 ms
after the stimulus onset for both scrambled and intact
2D images. The 2D response reached an initial peak 20
ms later than the response for the scrambled images
(105 ms vs. 85 ms). After this initial response peak, the
response for the 2D image comprised a sustained
deviation from zero, whereas the response to the
scrambled image was more transient, as reflected by the
decrease in response starting around 220 ms after
stimulus onset. The response to scrambled images was
significantly larger during 125 to 240 ms but dropped
quickly after the initial peak, resulting a switch over of
the two curves at 290 ms, where the differences were
significant between 325 and 750 ms.

Both of the RC2 topographies showed maxima over
the medial frontocentral cortex, with the topography of
the scrambled image extending more toward the
anterior-posterior direction (Figure 4e) and the topog-
raphy of the 2D image extending more laterally (Figure
4f). Both time courses for RC2 showed a negativity at
100 ms followed by a positive peak at 200 ms. The
response for scrambled scene went back to baseline
after the second peak, whereas the response for the 2D
scene sustained to the end of the stimulus presentation.
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The 2D response was significantly larger than that of
scrambled scene between 315 and 750 ms (Figure 4d).

The RC3 topography of the scrambled image was
maximal over the medial-parietal electrodes (Figure
4h), whereas that for the 2D images was right
lateralized (Figure 4i). The RC3 waveform for scram-
bled images comprised a multiphasic pattern at about
70 to 170 ms that was not present for the 2D image.
The response to the 2D scenes was significantly more
negative between 320 and 480 ms (Figure 4g).

2D versus 3D natural scene responses

The main interest of the current study is to measure
differences in the neural response to 2D versus 3D
natural scenes. The first three RC waveforms and their
corresponding spatial topographies are shown in
Figure 5. The spatial distribution of 2D responses
associated with the first component, replotted from
Figure 4, peaked over the occipital-parietal cortex
(Figure 5b). The corresponding maximum of the
topography for the 3D scene response was displaced
posteriorly (Figure 5c). Both RC1 and RC2 waveforms
differed significantly between 2D and 3D conditions,
starting at different time points, whereas RC3 did not.
Waveform comparisons for RC1 showed that the onset
of differential 2D versus 3D responses started at 95 ms,
about 45 ms after an initially identical pattern of
amplitude increase starting at 50 ms (Figure 5a).
Compared with the response to 2D scenes, the response
to 3D scenes initially peaked at 95 ms versus 105 ms.

The differential response comprises a relative negativity
for 3D versus 2D scenes that continues throughout the
750-ms image presentations. Activity of RC1 signifi-
cantly discriminated 2D and 3D responses throughout
the extended time period after the onset of the
differential response.

The RC2 topographies differed in terms of the
location of their positive maximum, with the maximum
response to 2D images being located more anteriorly
than that for 3D images (Figure 5e, f). RC2 also
showed significant differences between the two condi-
tions. In terms of response dynamics, there is a
continuous, ramplike increase in amplitude for 3D
response after stimulus onset, peaking at about 450 ms
(Figure 5d). By contrast, the 2D response had a sharp
negative peak at about 100 ms. Although the waveform
differences from 50 to 150 ms did not pass the multiple
comparison correction, we believe the effect is still of
interest. The permutation test run correction for
significant differences is good for detecting sustained
differences but may not be powerful enough to detect
transient differences. Following this negative peak, the
amplitude of 2D response increased in a ramplike
fashion, but the response was significantly smaller than
for the 3D response from 240 to 490 ms.

The topography of RC3 showed right-hemisphere
lateralization (Figure 5h, i), but waveforms did not
differ between the two conditions (Figure 5g).

From the overall picture of the three RC compo-
nents, it was evident that the largest differences
between experimental conditions were captured by the
first few RCs, as the waveform differences gradually

Figure 3. A scree plot of percentage of reliability explained by the first 10 RC components. The first three RC components explained

40.28%, 29.67%, and 10.94% trial-to-trial reliability, respectively, and the subsequent components explained decreasingly smaller

proportions of the reliability.
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Figure 4. Comparison of intact 2D (blue) and scrambled (green) image onset responses. The pale blue and green lines plot the

standard error of the mean. The RC waveforms were compared between the two conditions by a waveform permutation test, with

the red/yellow bars on the horizontal axis indicating the time points at which a significant difference occurred, uncorrected for

multiple comparisons. Differences surviving multiple comparison correction are reflected by the asterisks (N ¼ 24, p , 0.05,

corrected). RC1: The temporal dynamics differed between scrambled and 2D scenes during 125 to 240 ms and 325 to 750 ms. Both

spatial topographies exhibited poles over the occipital cortex. RC2: The temporal dynamics differed from 315 to 750 ms. The RC2

topographies both showed increased activity over the medial frontocentral cortex, with the topography of the scrambled image

extending more toward the anterior-posterior direction and the topography of the 2D image extending more laterally. RC3: The

temporal dynamics differed from 320 to 480 ms. The topography of the 2D scene showed a right hemisphere lateralization.
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Figure 5. Comparison of intact 2D (blue) and intact 3D (red) image onset responses. The pale blue and red lines plot the standard

error of the mean. The RC waveforms were compared between the two conditions by waveform permutation tests. The yellow/red

bars on the horizontal axis indicate the time points at which a significant difference occurred, uncorrected for multiple comparisons.

Runs of significant values surviving multiple comparison correction are indicated by the asterisks (N¼ 24, p , 0.05, corrected). RC1:

The temporal dynamics differed between 2D and 3D scenes as early as 95 ms. Spatial topographies exhibited poles over the occipital-

parietal cortex, with that of 3D scenes being more posteriorly displaced. RC2: The temporal dynamics differed from 240 to 490 ms.

Both RC2 topographies showed increased activity over the medial-parietal cortex, with the topography of the 3D image more toward

the occipital-parietal junction. RC3: The temporal dynamics did not differ between conditions. The spatial topographies for both

conditions showed a right-hemisphere lateralization.
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decreased in magnitude as we proceed further down the
RC spectrum (see Figure 8 for a direct comparison of
the waveforms of the scrambled, 2D, and 3D image
responses).

Scene-level differences

Each scene differs not only in terms of its 2D layout
and content but also in its 3D depth structure. It is thus
natural to ask whether the magnitude of the disparity
response elicited by different scenes depends on the
content of the scene. To answer this question, we
projected the sensor data into the space of the first RC
separately for each scene. The magnitude of the
disparity response was quantified by the Euclidean
distance between each 2D and 3D waveform. Figure 6
ranks each scene according to the distance calculated.
A substantial number of the 30 scenes showed
significant run-corrected differences between the 2D
and 3D responses. There was a spectrum of disparity-
specific response magnitudes, with the strongest re-
sponse being five times as large as the weakest response
in terms of the Euclidean distance metric.

A multiple linear regression was then performed to
explain the variations of the differential disparity
response (Euclidean distance between 2D and 3D
responses per scene) based on scene response time,
scene response amplitude to low-level image statistics
(the scrambled scene response magnitude), the scene-
ness of the scene (the difference between scrambled and
2D image responses), and median and the standard
deviation of the depth maps of each scene. A significant
regression equation was found, F(4, 25)¼ 2.822, p ¼
0.038, with an adjusted R2 of 0.24, where the standard
deviations of the depth maps and sceneness were each
significant predictors of disparity response magnitude.
Less variability in the depth map and stronger response
to sceneness predicted larger disparity responses (p¼
0.044 and 0.004, respectively, see Table 1).

Individual differences

Psychophysical studies have reported a substantial
range of individual differences in stereoacuity for
simple stimuli, with the distribution of stereoacuity
being positively skewed (Bosten et al., 2015; Coutant &
Westheimer, 1993; Howard, 1919). Our participants
had a range of ‘‘high-grade’’ stereopsis on the Rand-dot
test that quantifies stereoacuity on the basis of a graded
set of disparate circle targets. Among the 24 subjects,
18 showed relatively large differences between the 2D
and 3D response amplitude that survived the run-
corrected significance criterion (Figure 7). The rest
showed very similar responses for both conditions, and
their responses did not differ reliably between 2D and

3D natural scenes. Among those who showed differ-
ences between 2D and 3D conditions, there is also a
spectrum of differences. For example, compared with
subject 1147, who showed the biggest difference
between 2D and 3D response, subject 1308 had a
difference three times smaller in terms of the Euclidean
distance metric.

A multiple linear regression was performed to
explain the variations of the disparity response based
on age, stereoacuity, response time, response amplitude
to low-level image statistics, and the sceneness of the
stimuli. A significant regression equation was found,
F(5, 18)¼ 4.922, p¼ 0.005, with an adjusted R2 of 0.46,
where the stereoacuity and the sceneness were signif-
icant predictors of disparity response magnitude.
Lower stereoacuity threshold and a stronger response
to sceneness predicted a larger disparity response (p ¼
0.038 and 0.013, respectively, see Table 2). Sceneness
was thus a significant predictor of both scene- and
individual-level differences in disparity responses mag-
nitude. Parameters related to disparity, per se (depth
map variability), and stereoacuity were also predictive
but to a lesser degree.

Discussion

The neural basis of disparity processing has been
almost exclusively studied using artificial stimuli such
as random-dot stereograms (RDS) or stimuli based on
gratings, shading, or perspective alone. In the present
study, we have extended these previous findings by
using stereoscopic natural scenes. Our high-density
EEG recordings allowed us to measure ensemble
neuronal responses to natural scenes and to identify
three sources that are sensitive to the presence of
disparity to images of natural scenes. Moreover, we
showed that the magnitude of the disparity-specific
responses depends on the degree to which the high-level
structure of the 2D scene itself elicits a differential
response. In the following discussion, we will mainly
focus on the interpretation of the first RC that
summarizes more than 40% of the trial-to-trial
reliability. The second component and its possible
implications will be discussed at the end.

Natural scene content modulates the evoked
response

Although images can be compactly described by the
amplitude and the phase of their Fourier spectrum, the
‘‘content’’ of an image that results in its meaningful
appearance is mainly determined by its phase structure
(Field, 1987; Morgan, Ross, & Hayes, 1991; Oppen-
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Figure 6. Individual scene differences in eliciting 2D and 3D neural responses. The pale blue and red lines plot the standard error of

the mean. Sensor data were projected to the first RC space for each scene. The disparity response was quantified by the Euclidean

distance between each 2D and 3D waveform, and scenes were ranked according to the magnitude of the distance and plotted in

order from top left to bottom right. The RC waveforms were compared between the two conditions by waveform permutation test.

The red/yellow bars on the horizontal axis indicate the time points at which a significant difference occurred, uncorrected for multiple

comparisons. Those survived multiple comparison correction are reflected by the asterisks (n trials¼ 97, p , 0.05, corrected). Note

that the order of the scenes presented in Figure 1 has been arranged to correspond to the order presented in Figure 6.
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Figure 7. Individual subject differences in perceiving 3D natural scenes. The pale blue and red lines plot the standard error of the

mean. Sensor data were projected to the first RC space for each individual. Individual differences in disparity response were

quantified by the Euclidean distance between each 2D and 3D waveform. Participants’ data were ranked according to the magnitude

of the distances, and the waveforms are plotted in order from top left to bottom right. The RC waveforms were compared between

the two conditions by waveform permutation test. The red/yellow bars on the horizontal axis indicate the time points at which a

significant difference occurred, uncorrected for multiple comparisons. Those survived multiple comparison correction are reflected by

the asterisks (n trials ¼ 120, p , 0.05 corrected).
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heim & Lim, 1981). The evoked response after the onset
of the first image in our trial sequence—a 2D scrambled
image—from a uniform gray background reflects the
population response to the low-level spectral features of
a particular scene and a set of second-order statistics.
The response after the onset of a 2D image from the
baseline of its scrambled counterpart is driven by a
combination of local contrast change and the intro-
duction of higher-order structure.

The higher-order content of the natural scene is
resolved no later than 125 ms, when the two waveforms
of the dominant RC1 component diverge after an
initial period of 50 ms of common activity. After this
time point, the intact scene response is more sustained
than the scrambled image response, suggesting contin-
ued processing of image structural content and
monocular depth cues. Although no studies have
directly compared the neural responses between
scrambled and intact images of natural scenes,

responses to other categories of natural images, such as

faces, have shown the effect of high-level phase

information on brain activation patterns. For example,

Bieniek, Pernet, and Rousselet (2012) found that early

event-related potentials (ERPs) to faces and objects are

due to phase information, with almost no contribution

from the amplitude spectrum. Similarly, Rousselet,

Pernet, Bennett, and Sekuler (2008) manipulated phase

information systematically along a continuum in a face

discrimination task, and they found the mean ERP was

modulated strongly by the level of integrity of the

image phase information. Although a few other studies

have found correlations between phase information

and behavioral task performance (Baker, Yoonessi, &

Arsenault, 2008; Emrith, Chantler, Green, Maloney, &

Clarke, 2010; Joubert, Rousselet, Fabre-Thorpe, &

Fize, 2009), we did not find such correlation in the

current study, possibly because of the ceiling effect of

the accuracy and reaction time.

Figure 8. An example of a monocular image and its corresponding depth map. It can be observed that the two images appear to be

similar in contours and structures.

Coefficients Estimate

Standard

error

t

Value Pr(.jtj)

(Intercept) 327.63 240.04 1.37 0.18

Response to scrambled

scene (lV)
0.09 0.51 0.17 0.86

Response time (ms) �0.11 0.08 �1.34 0.19

Response to sceneness

(lV)
1.13 0.36 3.15 0.004**

Median of depth map 0.62 0.97 0.64 0.53

Standard deviation of

depth map

�1.42 0.67 �2.12 0.044*

Table 1. Multiple regression analysis tablet for individual scene
differences in terms of disparity response. Notes: Standard
deviation of the depth maps and the ‘‘sceneness’’ are
significant predictors of disparity response magnitude. Residual
standard error: 25.22 on 24 df. Multiple R

2: 0.3702, adjusted R
2:

0.239. F-statistic: 2.822 on 5 and 24 df, p-value: 0.0384.
* denotes p , 0.05; ** denotes p , 0.005.

Coefficients Estimate

Standard

error

t

Value Pr(.jtj)

(Intercept) 167.95 98.40 1.70 0.10

Age �3.36 1.99 �1.69 0.11

Stereoacuity (arcsec) �0.95 0.43 �2.24 0.038*

Response time (ms) �0.003 0.02 �0.14 0.89

Response to scrambled

scene (lV)
�0.14 0.23 �0.61 0.55

Response to sceneness

(lV)
0.69 0.25 2.75 0.013*

Table 2. Multiple regression analysis output for individual
subject differences in terms of disparity response. Notes:
Stereoacuity and the ‘‘sceneness’’ are significant predictors of
disparity response magnitude. Residual standard error: 37.16 on
18 df. Multiple R

2: 0.5775, adjusted R
2: 0.4602. F-statistic:

4.922 on 5 and 18 df, p value: 0.005166. * denotes p , 0.05.
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Disparity structure modulates the evoked
response

The differential visual evoked potential (VEP)
responses between 2D and 3D natural scenes can be
attributed to the responses related to the processing of
binocular disparity cues because this is the only
stimulus attribute that differs between conditions. The
response to disparity measured here is broadly similar
to that measured with dynamic random-dot stereo-
grams (DRDS). Studies based on DRDS have reported
an onset latency of typically about 100 ms (Fahle,
Quenzer, Braun, & Spang, 2003; Lehmann & Julesz,
1978; Michel, Henggeler, & Lehmann, 1992; Neill &
Fenelon, 1988; Regan & Spekreijse, 1970; S�ahinoğlu,
2004), consistent with the onset time of 95 ms found in
the current study. One of the earliest studies of evoked
cortical responses to DRDS (Lehmann & Julesz, 1978)
found a negative-going response in the hemisphere
ipsilateral to the hemiretina of stimulation. Several
subsequent studies confirmed this relative negativity
associated with disparity-specific responses (Fahle et
al., 2003; Julesz, Kropfl, & Petrig, 1980; Manning,
Finlay, Dewis, & Dunlop, 1992; Skrandies, 2001). In
agreement with these results, our results showed that
although the global appearance of evoked brain
activity is similar in both 2D and 3D conditions, the 3D
waveform amplitude is significantly more negative for a
sustained period. In addition, the scalp topography of
RC1 for 3D responses is similar to that of previous
EEG studies, being maximal at posterior occipital
electrodes lying over early visual cortex (Lehmann &
Julesz, 1978; Manning et al., 1992; Neill & Fenelon,
1988; Skrandies, 1991). It will be of interest in the
future to use inverse modeling procedures to localize
the sources derived from reliability components anal-
ysis. RCA produces multiple statistically defined
sources that presumably correspond to a set of
distributed electrical sources in cortex. However, at this
point, there is no validated approach for using RC
component topographies as input to source modeling
procedures, and we are thus cautious in interpreting the
anatomical site of their generation.

Depth structure and sceneness interact with
disparity response of individual scenes

We found that different natural scenes can elicit
different magnitudes of disparity-specific response,
with some scenes eliciting large differences between the
2D and 3D versions (i.e., larger disparity response) and
others eliciting small differences (Figure 6). Such
variations are related to the depth structure of the
image and to the response to the higher-order structure
inherent in the scene—its ‘‘sceneness.’’ With respect to

depth structure, images with more homogeneous depth
maps elicited larger responses. The homogeneity of the
depth map may indicate the relative complexity of the
image. Intuitively, depth structure of smoother images
will be easier to perceive than that of images with
complex and discontinuous features. This has been
confirmed in the field of stereo-displays and image
processing, where researchers have found that the
perceived stereoscopic image quality can be increased
by decreasing the standard deviation of its depth map
by applying Gaussian filters (Alain, Tam, & Zhang,
2003; Fehn, 2003; Tam, Alain, Zhang, Martin, &
Renaud, 2004). A preference for simpler depth struc-
ture may be a consequence of the very limited spatial
resolution of the disparity system (Banks, Gepshtein, &
Landy, 2004; Bradshaw & Rogers, 1999; Reynaud,
Gao, & Hess, 2015; Tyler, 1974).

A novel result from our approach is our finding that
the size of the disparity response depends on the size of
the differential response to 2D versus scrambled
images. Images in which the difference between
scrambled and 2D response was larger also produce
large disparity-specific responses. Past studies have
reported that a higher-order image structure can
interact with many perceptual phenomena (the term
interact is used throughout the article for its literal
meaning, not the statistical sense of interaction). For
example, higher-order image statistics contribute im-
portantly to boundary segmentation (Baker et al.,
2008) as well as to detection of uniform photometric
changes in natural images (Yoonessi, 2008). Strong
preferences for images with natural phase spectra have
been found during binocular rivalry, and such pre-
dominance could not be accounted for by the
observer’s bias toward recognizable features. (Baker &
Graf, 2009). Here, we add disparity processing to that
list of perceptual phenomena.

We discovered this linkage between monocular scene
structure and 3D responses through a correlational
approach based on simple image statistics and brain
responses: We used depth map summary statistics and
our neural sceneness metric to predict 2D versus 3D
response differences. Different scenes contain different
amounts of phase/higher-order structural information.
It will be of interest to determine what image features
drive sceneness and its relationship to 3D responses.
Each image also had its own depth map. Simple visual
inspection of the depth maps shows a strong relation-
ship to the monocular scene structure (Figure 8). For
example, the prominent tree in the natural scene
displayed in Figure 8 is readily discernable in its
corresponding depth map. This similarity suggests that
the statistical linkage between 2D image structure and
3D responses may be driven via commonalities/
consistencies between 2D and 3D cues for scene
structure that are inherent in stereoscopic natural
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images. Future studies could be designed to systemat-
ically vary these relationships to test this hypothesis.
One thing worth mentioning is that the proportion of
variability in the data set that is accounted for by our
multiple regression model is only 23.9%. This suggests
that although the associations are statistically signifi-
cant, a substantial portion of the variance in the evoked
response remains to be explained. How to best define
perceptually relevant depth structure is an open
question. We have used very simple metrics to
summarize the depth structure in our images. In the
future, it will be important to develop a more detailed
understanding of the actual statistics of depth maps
(Gibaldi, Canessa, & Sabatini, 2017; Hunter &
Hibbard, 2015; Liu, Bovik, & Cormack, 2008) and
natural scenes (Groen, Ghebreab, Prins, Lamme, &
Scholte, 2013; Scholte, Ghebreab, Waldorp, Smeulders,
& Lamme, 2009) so that better summary statistics can
be developed for use in computational models of
disparity processing that can make predictions on
images (Didyk, Ritschel, Eisemann, Myszkowski, &
Seidel, 2011; Read & Cumming, 2017).

Stereoacuity and sceneness interact with
disparity response of individual subjects

We also found substantial individual differences in
the magnitude of the response to disparity. It has
previously been shown using behavioral measures that
there are substantial individual differences in stereo-
scopic vision in adults who have excellent monocular
visual acuity in each eye (Bosten et al., 2015; Howard,
1919; Richards, 1970). When analyzing the cortical
responses of individuals, our multiple regression
analysis showed that both stereoacuity and sceneness of
the image contribute to individual variations in the
disparity response. Individuals who have better ste-
reoacuity and higher sensitivity to high-level scene
information (i.e., larger difference in responses to intact
2D and scrambled images) tend to have larger
disparity-specific responses. The relationship between
stereoacuity and evoked response magnitude is weak
but not surprising. Chao, Odom, and Karr (1988)
measured participants’ stereoacuity through the Titmus
test and found a strong linear relationship between
measured stereoacuity and VEP amplitude. Lower VEP
amplitude has also been found to be associated with
longer durations of disparity detection (Manning et al.,
1992). What is somewhat surprising is that it was
possible to measure a small but statistically reliable
association between the VEP and behavior despite the
restricted range of stereoacuity present in our partic-
ipants. In the future, natural scene evoked responses
may be useful in defining what drives individual
differences, as this may be relevant both clinically and

for applications in 3D display engineering (Patterson,
2015; Underwood, 1975; Wilmer, 2008).

Interpretation of the higher RC components

The neural system responding to disparity in natural
images is not a simple one, and it cannot be entirely
explained by a single dimension–reduced component.
In addition to the first RC, the waveforms for the
second and third components also differ between
scrambled, 2D, and 3D conditions. These components
account for ;30% and 11% of the trial-to-trial
reliability, respectively. There are two features that
differentiate the 3D responses of RC2 from that of
RC1. First, their topographies are consistently differ-
ent, with RC1 being distributed along posterior
electrodes and RC2 being distributed dorsomedially.
Second, the response to 3D images in RC1 is essentially
a step function—there is an approximately constant
relative negativity in the 3D response relative to the 2D
response starting around 95 ms and lasting several
hundred milliseconds more. By contrast, the RC2
response to 3D images is a ramp that steadily rises also
from 95 ms (see the purples line in Figure 8). This
response waveform bears little resemblance to the bi- or
triphasic waveforms typical of sensory evoked poten-
tials (Luck & Kappenman, 2011). This ramplike
behavior is reminiscent of decision-related activity in
other perceptual decision tasks (Dmochowski &
Norcia, 2015; Donner, Siegel, Fries, & Engel, 2009;
O’Connell, Dockree, & Kelly, 2012).

Ramping activity in these tasks is frequently
modeled as an evidence accumulation process (Gold &
Shadlen, 2007; Hanes & Schall, 1996; Smith & Ratcliff,
2004; Smith & Vickers, 1988). It is possible that the
ramplike behavior in RC2 reflects a process in which a
steplike 3D evidence signal is being integrated by the
RC2 generator. It is unlikely that this activity is simply
related to response choice generation or motor
planning, given that the motor responses themselves
were made much later in the trial. This activity would
then need to be stored in memory for possible use in the
comparison with the image in the second interval and
the subsequent motor response. Simple tests of this
model could involve using a different set of task
instructions in which the decision is on a variable that is
orthogonal to disparity. This would show whether the
ramp is task related or simply a passive process related
to disparity processing.

RC1 and RC2 also differ in their pattern of
sensitivity to the three levels of images structure:
scrambled, intact 2D, and intact 3D. For convenience,
the three response waveforms (scrambled image onset,
2D natural image onset, and 3D natural image) are
plotted together in Figure 9 for each RC component.

Journal of Vision (2018) 18(3):21, 1–19 Duan, Yakovleva, & Norcia 15



For RC1, the structure inherent to intact natural scenes
and that of 3D versus 2D scenes becomes resolved no
later than 95 ms. Prior to 95 ms, there is a period of
common activity, starting at 50 ms, that does not
measurably differentiate scene content. After this time
point, the intact scene responses are each more
sustained than the scrambled image response. For RC2,
3D intact image responses diverge from the 2D and
scrambled image response around 50 ms. Under the
accumulator model of RC2 discussed above, the
differential 3D activity needs to start around or before
50 ms. This may be possible, but our measurements of
RC1 may not be sufficiently precise to resolve this
activity from the 2D activity on the rising slope of RC1
between 50 and 95 ms.

In conclusion, the current study examined the
topography, strength, and temporal dynamics of brain
responses evoked by 2D and 3D natural scenes. The
disparity-evoked response to natural scene stimuli is to
first order similar to that from RDS, comprising

sustained relative negativity of the dominant response
component, RC1. At a finer grain of analysis, we found
that depth structure contributes to scene-level varia-
tions and that stereoacuity contributes to individual
differences in the disparity-specific response. Impor-
tantly, variation in the response to high-order scene
statistics contributes to both scene-level and individual-
level differences in the disparity-specific response.
Through the use of RCA, we found multiple underlying
sources’ sensitivity to 2D and 3D structure in natural
scenes, with RC1 having properties consistent with
sensory encoding and RC2 having properties more
consistent with decoding this information for task
performance.

Keywords: disparity, natural scenes, individual
differences
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