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Emerging data and innovative technologies are re-shaping our understanding of the

scope and specificity of the autoimmune response in Pemphigus vulgaris (PV), a

prototypical humorally mediated autoimmune skin blistering disorder. Seminal studies

identified the desmosomal proteins Desmoglein 3 and 1 (Dsg3 and Dsg1), cadherin family

proteins which function to maintain cell adhesion, as the primary targets of pathogenic

autoAbs. Consequently, pathogenesis in PV has primarily considered to be the result of

anti-Dsg autoAbs alone. However, accumulating data suggesting that anti-Dsg autoAbs

by themselves cannot adequately explain the loss of cell-cell adhesion seen in PV, nor

account for the disease heterogeneity exhibited across PV patients has spurred the

notion that additional autoAb specificities may contribute to disease. To investigate the

role of non-Dsg autoAbs in PV, an increasing number of studies have attempted to

characterize additional targets of PV autoAbs. The recent advent of protein microarray

technology, which allows for the rapid, highly sensitive, and multiplexed assessment

of autoAb specificity has facilitated the comprehensive classification of the scope and

specificity of the autoAb response in PV. Such detailed deconstruction of the autoimmune

response in PV, beyond simply tracking anti-Dsg autoAbs, has provided invaluable new

insights concerning disease mechanisms and enhanced disease classification which

could directly translate into superior tools for prognostics and clinical management, as

well as the development of novel, disease specific treatments.

Keywords: autoantibodies, desmoglein, thyroid peroxidase, acetylcholine receptor, mitochondria, desmocollin,

plakophilin, protein array technology

INTRODUCTION

Pemphigus vulgaris (PV) is an autoimmune skin disease that results from the production
of autoAbs that target keratinocyte proteins. Binding of these autoAbs results in the loss of
keratinocyte cell-cell adhesion (termed acantholysis) just superior to the basal cell layer in the
epidermis resulting in the development of painful, flaccid bullae on the skin and/or mucosal
membranes that easily rupture. The discovery that autoantibodies (Abs) targeting desmoglein (Dsg)
1 and Dsg3 cause blister formation has been potentially the most critical event in understanding
disease pathogenesis in PV to date. Numerous studies have been dedicated to characterizing
the isotype and fine epitope specificity of anti-desmoglein autoAbs and investigations aimed at
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uncovering the mechanisms underlying autoAb-induced blister
formation focused primarily on studying the effects downstream
of anti-desmoglein Ab binding. Accordingly, the majority of
currently proposed disease models are desmoglein-centric. These
models, however, fail to explain a number of disease phenomena
such as patients that present in active disease without detectable
anti-desmoglein autoAbs and the lack of tight correlation
between anti-desmoglein autoAb titers and disease activity.
Additionally, these models cannot adequately account for the
degree of disease heterogeneity exhibited by PV patients. Here,
we focus on: (i) the seminal studies that led investigators to
identify Dsg3 and 1 as targets of pathogenic autoAbs, and
how these studies shaped our understanding of disease, and
(ii) the identification of non-Dsg autoAbs, with a particular
focus on the contribution of comprehensive autoAb profiling
facilitated by protein microarray technology, as well as the
potential role of these autoAbs in disease, and how these findings
may re-shape/direct how we ultimately view the pathogenesis
of PV.

EARLY STUDIES

Several observations have suggested a role for autoAbs in the
pathogenesis of PV (Figure 1). Neonates born to mothers with
PV were observed to experience transient disease at birth (1),
and the addition of the IgG fraction alone from patient sera
(PVIgG), without the presence of complement or other immune
cells, could recapitulate disease in a skin organ culture model
as well as disturb cell-cell adhesion in a keratinocyte monolayer
(2, 3). Patient sera was shown to be capable of inducing disease
when passively transferred to mice (4). Furthermore, PVIgG
stained epidermal tissue in a “fishnet pattern.” Early efforts to
determine the target of these autoAb revealed that PV sera
recognized a number of then unknown proteins, with molecular
weights of 20, 22, 33, 50, 66, 68, 80, 105, 130, 140, 160, 210,
and 220 kDa (5–14). The effect of PV sera on cell adhesion
led researchers to hypothesize, and eventually prove, that PV
sera recognized a desmosomal protein (15, 16). In 1991, using
PV sera to screen a phage display library created from cDNA
cloned from normal human epidermal keratinocytes, Amagai
et al. (6), demonstrated that the antigen recognized by PV
autoAbs was a novel 130 kDa cadherin protein that shared a high
degree of homology with desmoglein 1, a previously discovered
desmosomal cadherin. Eventually this novel cadherin was named
desmoglein 3. However, in order to identify this clone, only
PV autoAbs purified from the 130 kDa band were used to
screen the phage display library, because initial screening of the
library with PV sera identified over 200 clones, and none of
those 200 clones were capable of being recognized by all sera
samples (6).

After the discovery of Dsg3 as a major antigenic target of
PV autoAbs, a number of studies focused on establishing the
pathogenicity of anti-Dsg3 autoAbs. In an early experiment,
PVIgG was exposed to fusion proteins consisting of various Dsg3
extracellular domains (ECs) conjugated to beta galactosidase.
PVIgG from 17 of 23 patients recognized at least one of the fusion

proteins, but 6 patients did not possess autoAbs reactive to any
of the constructs. Two different fusion proteins, expressing EC1-
2 and EC3-5 respectively, were then used to deplete anti-Dsg3
autoAb from PVIgG.When autoAbs affinity purified by the EC1-
2 construct were passively transferred to mice, they were capable
of eliciting blister formation. However, instead of the gross blister
formation seen when using PVIgG, these purified autoAbs only
produced microscopic blisters. Additionally, PVIgG depleted
using the EC1-2 construct was still capable of eliciting blister
formation upon passive transfer. AutoAbs purified using the
EC3-5 construct failed to induce blister formation upon passive
transfer. From these experiments, the authors concluded that
anti-Dsg3 autoAb are in fact disease causing, and the failure of the
Dsg3 constructs to be recognized by all patient sera, as well inhibit
the pathogenicity of PVIgG, was due to improper conformation
of the Dsg3 constructs (17).

A different Dsg3 construct, consisting of the extracellular
domains of Dsg3 combined with the constant region of IgG1
(named PVIg), was generated to create a protein that would more
accurately reflect the conformation of native Dsg3. Preabsorption
of PVIgG with PVIg reduced the indirect immunofluorescent
titers of 6/17 patients to zero, significantly lowered the indirect
immunofluorescent titers of all but one patient’s IgG, which
remain unaffected. Preabsorption of PVIgG with this construct
was also capable of preventing the formation of gross blisters
when transferred to mice, although microscopic suprabasilar
acantholysis was still detected in some areas (18). It should
be noted that the specificity of the autoAbs purified using this
construct were not assessed in this experiment.

A number of mouse models also seemed to support the
notion that anti-Dsg3 could be sufficient to cause disease
in PV. Splenocytes from Dsg3−/− mice immunized with
Dsg3 were adoptively transferred to rag2−/− mice which
subsequently developed blisters and suprabasilar acantholysis
(19–21). Histological examination of the epidermis from
mice with a targeted deletion of Dsg3 displayed suprabasilar
acantholysis as well as the characteristic “tombstoning” of basal
keratinocytes as seen in PV, but still lacked any gross signs of
spontaneous blister formation (22). In another experiment, mice
expressing a truncated Dsg3 displayed swelled paws, flaky skin,
widened intercellular space between keratinocytes and a number
of other epidermal abnormalities. Again, blister formation and
suprabasilar acantholysis were absent in these mice (23).

THE DESMOGLEIN COMPENSATION
HYPOTHESIS

The identification of Dsg3 as a major antigenic target represented
a critical moment in the process of understanding PV and,
after its discovery, the prevailing view of disease immediately
narrowed. For the next decade, the design and interpretation
of almost all experiments were informed by an underlying
assumption that anti-Dsg autoAb were the sole drivers of
disease in pemphigus, ignoring the potential role of other, non-
Dsg autoAbs. Although the importance of anti-Dsg3 autoAb
is clear, this limited view may have slowed the progression of
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FIGURE 1 | Timeline of significant findings regarding autoantibodies in Pemphigus vulgaris. Important developments in the field are depicted in chronological order

(see text for detailed description).

understanding the true complexity of disease. The impact of how
this desmoglein-centric view fundamentally influenced the way
researchers understood PV is epitomized by the development of
the desmoglein compensation hypothesis. This elegant hypothesis
asserts that anti-Dsg3 and anti-Dsg1 autoAb profiles can predict
which epithelial surface(s) will be affected, as well at what level
the loss of cell-cell adhesion will occur in the epidermis (24).
The foundation of this hypothesis are the differential expression
patterns of Dsg3 and Dsg1 between mucosal and cutaneous
epidermis, and the idea that Dsg3 or Dsg1 alone can sustain
cell-cell adhesion. In a series of experiments Mahoney et al.
demonstrated that: (1) murine mucosal tissue expresses Dsg3
throughout the entire epidermis, with strongest expression in
the superficial layers, while Dsg1 expression is highest in the
superficial layers and very low in the deeper layers, and (2)
murine cutaneous epidermal tissue expresses Dsg3most highly in
the basal layer with lower expression seen in the more superficial
layers, whereas Dsg1 expression is high in superficial epidermis
and decreased in the deeper layers. The tissue specific expression
patterns of Dsg3 and 1 in mice are similar to that of human
epidermis, with the exception that Dsg1 expression in human
mucosal epidermis is very low (25–27).

Next, a series of passive transfer experiments using PVIgG
injected into wildtype C57BL/6J mice or Dsg3 null mice
demonstrated that anti-Dsg1 autoAbs induce blister formation
when transferred to Dsg3 null mice and both anti-Dsg3 and
anti-Dsg1 autoAb are required to promote blister formation in
parts of the epidermis that express both Dsg3 and 1. It should
be noted that the Dsg3 null mice used in this experiment were
shown to spontaneously develop inflammatory erosions along
with a loss of cell-cell adhesion in the superficial layers of the
epidermis (22). Still, from these results, the authors proposed
that blister formation in PV occurs initially within the mucosa
at the suprabasilar level where Dsg3, but not Dsg1, is expressed.
Cutaneous lesions in PV patients only occur when patients

develop additional autoAbs, directed against Dsg1, later in
disease. This hypothesis also attempts to explain blister formation
in Pemphigus foliaceus (PF), a related autoimmune blistering
disease where autoAbs directed against Dsg1 cause cutaneous
blister formation in the superficial layers of the epidermis.

Aside from the assertion that the epidermal architecture of
the Dsg3 null mice used in these experiments may not have
been an optimal model, there exists a plethora of clinical and
experimental evidence that does not align with the desmoglein
compensation hypothesis. If true, PV patients exhibiting both
anti-Dsg3 and Dsg1 autoAbs might be expected to demonstrate a
loss of cell-cell adhesion throughout the entire epidermis, instead
of just at the suprabasilar level. Moreover, assessment of Dsg3
and 1 titers in PV patients have demonstrated the existence of
cutaneous only patients (with no history of mucosal lesions) with
no detectable anti-Dsg1, mucosal only patients with no detectable
anti-Dsg3, as well patients that lack detectable titers of anti-Dsg3
or 1 autoAbs (28–43), all of which cannot be explained by the
desmoglein compensation hypothesis (Table 1).

NON-DESMOGLEIN TARGETS OF
AUTOANTIBODIES IN PV

The desmoglein compensation hypothesis cannot adequately
account for disease presentation in PV, and newer models are
needed to more precisely understand disease mechanisms. The
idea that unique profiles of autoAbs may underlie differences
in disease expression represents the beginning of a more
sophisticated understanding of immune dysregulation in PV. The
failure of anti-Dsg autoAbs alone to fully explain disease spurred
the notion that additional autoAb specificities may be relevant in
PV, and subsequent experiments have resulted in a growing pool
of evidence that suggests autoAbs directed at non-Dsg targetsmay
play a role in PV.
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TABLE 1 | Postulates and limitations of the desmoglein compensation hypothesis

(DHC).

Postulates of the DCH Limitation of the DCH

- Patients expressing only anti-Dsg3

autoAbs exhibit suprabasal

acantholysis in mucosal epidermis

only.

- Patients expressing only anti-Dsg3

autoAbs can exhibit cutaneous

acantholysis either alone or in

combination with mucosal acantholysis.

- Patients expressing both anti-Dsg3

and anti-Dsg1 autoAbs will exhibit

only suprabasal acantholysis in both

mucosal and cutaneous epidermis.

- Patients with no detectable levels of

anti-Dsg3 or anti-Dsg1 autoAbs can

exhibit cutaneous acantholysis either

alone or in combination with mucosal

acantholysis.

- Patients expressing only anti-Dsg1

autoAbs will exhibit acantholysis in

the superficial cutaneous epidermis

only (PF).

- Patients expressing both anti-Dsg3

and anti-Dsg1 autoAbs can exhibit

cutaneous lesions only, rather than

cutaneous and mucosal lesions.

- Patients expressing both anti-Dsg3

and anti-Dsg1 autoAbs exhibit only

suprabasal acantholysis in both

cutaneous and mucosal lesions.

Initial evidence that non-Dsg autoAb may be relevant to
disease came from experiments demonstrating the formation of
blisters in Dsg3 null mice upon the passive transfer of PVIgG
that did not contain any anti-Dsg1 autoAbs (44). Although
this observation seemed to contradict previous studies that
demonstrated the ability of a Dsg3 fusion protein to absorb
out pathogenic antibodies in PVIgG, it was soon shown that
autoAbs eluted from this protein bound to a number of distinct
protein bands when exposed to the lysate of keratinocytes
lacking expression of Dsg3 (45). Potentially, the ability of this
construct to absorb out non-specific IgG is attributable to
Fc-Fc interactions (46–48). Additional evidence that non-Dsg
autoAbs may be relevant to disease came from studies that
demonstrated a lack of correlation between anti-Dsg autoAb
titers and disease activity in a subset of patients (29, 41, 42,
49, 50). These studies emphasized the importance of identifying
other targets of autoAbs in PV, and soon more than 50 non-Dsg
antigens were reported to be recognized by PV patient autoAbs
(Table 2).

Some of the first non-Dsg targets of autoAbs to be discovered
were those directed against acetylcholine receptors. Using PVIgG
to immunoprecipitate keratinocytes whose cholinergic receptors
were first radiolabeled using [3H]propylbenzilylcholine mustard,
it was shown that 34/40 PV patients precipitated cholinergic
receptors (44). In an attempt to identify which cholinergic
receptor may be recognized by autoAbs, it was shown that
pre-incubation of monkey esophagus with PVIgG blocked the
binding of antibodies directed at alpha9 acetylcholine receptor.
Using antibodies derived from rabbits this groupwas able to show
that these Abs had similar effects on the cell morphology of oral
keratinocytes as PVIgG, but passive transfer of such antibodies
was unable to induce blister formation (51).

PV autoAbs have also been shown to target mitochondrial
proteins. PVIgG can penetrate keratinocytes and bind targets
on the mitochondrial membrane. In one study 6/6 PV sera
contained autoAbs that recognized mitochondrial preparations

purified from keratinocytes, although the molecular weights of
reactive proteins varied from sample to sample. Removal of these
mitochondrial autoAbs by pre-incubation with mitochondrial
preparations abolished the ability of PVIgG to cause acantholysis
in a keratinocyte monolayer and lessened the severity of
suprabasilar blister formation in a passive transfer model (75).
In a separate experiment, PVIgG was also shown to precipitate
various mitochondrial nicotinic cholinergic receptor subtypes.
The mitochondrial nicotinic subtype α3 was precipitated by 3/5
patients, α5 by 2/5, α10 by 2/5, β2 by 1/5, and β4 by 1/5 (67).

Other studies have shown that some PV sera bind
desmocollins (Dsc) 1−3. An immunoblot of bovine desmosomal
preparation identified 4/16 PV sera recognizing Dsc 1/2 (68),
while another study also performing immunoblot analysis
identified Dsc 1/2 autoAbs in 8/39 PV patients. Constructs
consisting of the extracellular domains of each Dsc isoform,
however, were not recognized by these sera (69). Yet another
study demonstrated that 8/39 PV samples immunoprecipitated
Dsc3, and that preabsorption of sera with recombinant Dsc3
prevented the ability of this PVIgG to cause acantholysis in a
cell monolayer (53). Recently, another study using ELISAs made
with Dsc proteins expressed in mammalian cells found that in
a group of 22 PV patients, 2/22, 3/22, and 1/22 patients were
positive for autoAbs against Dsc1, 2, and 3 respectively (54).

Another keratinocyte antigen found to be detected by PVIgG
was an annexin-like protein, now known as pemphaxin. To
identify this protein, PVIgG was purified using the PVIg
construct and eluted autoAbs that recognized a 75 kDa band were
used to screen a library of keratinocyte proteins. Preabsorption
of PVIgG using a recombinant version of pemphaxin eliminated
the ability of PVIgG to cause blister formation when passively
transferred to mice. However, autoAb eluted from this column,
while able to restore acantholytic ability to previously pre-
absorbed PVIgG, was not sufficient to induce blister formation
in mice (52).

A number of other experiments, where identification
of PV autoantigens was not the primary goal, have still
provided information concerning the reactivity of autoAbs
in PV. Immunoblotting PVIgG identified 3/44 pemphigus
sera containing autoAbs that recognized full length collagen
XVII (71). Sera from two PV patients was shown to react
with a recombinant Dsg4 protein (76). In a case review, a
patient with PV was shown by immunoblot to have antibodies
against desmoplakin (72). Another experiment which coupled
immunoprecipitation with immunoblotting identified anti-E-
cadherin autoAbs in 33/40 PV patients. However, indirect
immunofluorescence of A431DE cells, which express E-cadherin
but not Dsg1, was negative. These results indicate that E-cadherin
positivity in PV patients may be a result of cross reactivity of Dsg1
autoAbs with E-cadherin (73). Plakophilin 3 (Pkp3) reactivity
was observed in 1/4 PV patients when immunoblotting against
the lysate of HEK293 cells transfected with a gene encoding for
Pkp3 (70). Using an ELISA specific for FcER1, it was determined
that 12/28 PV patients had autoAbs directed against FcER1 (74).
Several additional studies have assessed anti-thyroid peroxidase
(TPO) autoAb levels and found that between 14 and 40% of PV
patients have autoAbs directed against TPO (58–62).
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TABLE 2 | Ranking evidence for non-desmoglein antigens.

Level of

evidence

Symbol Name IB/IP/ELISA Protein

microarray

In vitro In vivo References

3 CHRNA9 Cholinergic Receptor Nicotinic Alpha 9 x x (51)

3 ANXA9 Annexin A9, Pemphaxin x x x (52)

3 DSC3 Desmocollin 3 x x x (53–57)

3 TPO Thyroid Peroxidase x x x (58–63)

2 CD2 T-cell surface antigen T11/Leu-5, LFA-2, LFA-3

receptor

x x (64)

2 CD33 Sialic acid binding Ig-like lectin 3 x x (55, 64)

2 CD36 Thrombospondin receptor x x (64)

2 CD37 Cluster of Differentiation 37 Molecule,

Leukocyte antigen 37

x x (64)

2 CD40 Cluster of Differentiation 40 Molecule x x (64)

2 CD84 Cluster of Differentiation 84 Molecule x x (64)

2 CEACAM6 Carcinoembryonic Antigen Related Cell

Adhesion Molecule 6

x x (64)

2 CHRM1 Cholinergic Receptor Muscarinic 1 x x (64)

2 CHRM3 Cholinergic Receptor Muscarinic 3 x x (63, 65, 66)

2 CHRNA5 Cholinergic Receptor Muscarinic 5 x x (67)

2 CHRNA10 Cholinergic Receptor Nicotinic Alpha 10

Subunit

x x (67)

2 CHRNB4 Cholinergic Receptor Nicotinic Beta 4 Subunit x x (67)

2 DSC1 Desmocollin 1 x x (54, 68, 69)

2 DSC2 Desmocollin 2 x x (54, 68, 69)

2 HBE1 Hemoglobin Subunit Epsilon 1 x x (64)

2 ICAM1 Intercellular Adhesion Molecule 1 x x (64)

2 IGHG2 Immunoglobulin Heavy Constant Gamma 2 x x (64)

2 IL1RAPL2 Interleukin 1 Receptor Accessory Protein Like 2 x x (64)

2 IRF8 Interferon Regulatory Factor 8 x x (64)

2 NMNAT2 Nicotinamide Nucleotide Adenylyltransferase 2 x x (64)

2 PECAM1 Platelet And Endothelial Cell Adhesion

Molecule 1

x x (64)

2 PKP3 Plakophillin 3 x x (70)

2 PMP22 Peripheral Myelin Protein 22 x x (55, 64)

1 ATP2C1 ATPase Secretory Pathway Ca2+ Transporting

1

x (55)

1 ANXA8L1 Annexin A8 Like 1 x (55)

1 CD1B Cluster of Differentiation 1B molecule; Integrin

beta 2

x (55)

1 CD32 Cluster of Differentiation 32 molecule,

Fc-fragment of IgG

x (55)

1 CD88 CD88 molecule, complement component 5a

receptor 1

x (55)

1 CDH8 Cadherin 8 x (55)

1 CDH9 Cadherin 9 x (55)

1 CHRM4 Cholinergic Receptor Muscarinic 4 x (63)

1 CHRNA3, –A5, A7,

–A9, A10, –B2,

and –B4

Cholinergic Receptor Nicotinic Subunits Alpha

3, –Alpha 5, Alpha 7, Alpha 9, Alpha 10, Beta 2

and Beta 6

x (55)

1 CHRND Cholinergic Receptor Nicotinic Delta Subunit x (55)

1 CHRNE Cholinergic Receptor Nicotinic Epsilon Subunit x (55)

1 COL21A1 Collagen Type XXI Alpha 1 Chain x (55)

1 COLXVII Collagen Type XVII Alpha 1 Chain x (71)

1 CYB5B Cytochrome B5 Type B x (55)

(Continued)
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TABLE 2 | Continued

Level of

evidence

Symbol Name IB/IP/ELISA Protein

microarray

In vitro In vivo References

1 DSP Desmoplakin x (72)

1 ECAD E-Cadherin x (73)

1 FCER1 Fc Fragment of IgE receptor 1 x (74)

1 FH Fumarate Hydratase x (55)

1 GBP1A Glycoprotein Ibα (55)

1 HLA-DRA Major Histocompatibility Complex, Class II, DR

Alpha

x (55)

1 HLA-E Major Histocompatibility Complex, Class I, E x (55)

1 NDUFS1 NADH:Ubiquinone Oxidoreductase Core

Subunit S1

x (55)

1 PDHA1 Pyruvate Dehydrogenase E1 Alpha 1 Subunit x (55)

1 SCL36A4 Solute Carrier Family 36 Member 4 x (55)

1 SOD2 Superoxide Dismutase 2 x (55)

Black (level of evidence: 1) indicates that PV-relevant antigens were found by one study and/or one methodology. Green (level of evidence: 2) indicates that PV-relevant antigens were

found by one or more studies and two independent methods. Red (level of evidence: 3) indicates that PV-relevant antigens were found by one or more studies and three independent

methods and/or confirmed in vivo.

PROTEIN ARRAY TECHNOLOGY

Protein microarrays are powerful tools that allow for the
assessment of protein interactions in a high-throughput
manner. Compared to previous techniques such as ELISA,
protein microarrays are more sensitive, require less sample
volume, and can probe for multiple protein-protein interactions
simultaneously, making them an especially powerful tool for
assessing the autoAb response in autoimmune diseases. The
use of protein arrays has facilitated the identification of novel
antigenic targets in multiple autoimmune diseases, including
the identification of biomarkers in RA which predate disease by
months to years and specific autoAb profiles that predict disease
phenotype and prognosis in polyomyositis (77).

Recently, protein array technology has been used to
characterize the scope of antigens targeted by autoAbs in
PV (Figure 2). Kalantari-Dehaghi et al. (64) probed autoAb
reactivity of seven PV patients and five healthy controls using
a protein microarray consisting of 785 keratinocyte antigens
(expressed using a cell-free expression system). These authors
detected 16 antigens with significantly higher reactivity in
PV sera compared to healthy sera: thrombospondin receptor
(CD36), immunoglobulin heavy chain constant region gamma 2
(IGHG2), TNF receptor superfamily member 5 (CD40), CD37,
nicotinamide/nicotinic acid mononucleotide adenylyltransferase
2(NMNAT2), CD84, peripheral myelin protein 22 (PMP22),
hemoglobin epsilon 1 (HBE1), interferon regulatory factor 8
(IRF8), CD2, carcinoembryonic antigen-related cell adhesion
molecule 6 (CEACAM6), platelet/endothelial cell adhesion
molecule (PECAM1), cholinergic receptor, muscarinic 1
(CHRM1), CD33, interleukin 1 receptor accessory protein-like
2 (IL1RAPL2), intercellular adhesion molecule 1 (ICAM1).
These findings were then confirmed by immunoblot (64).
This experiment indicated the autoAb response in PV is more
complicated than initially thought, but the power of analysis was
limited due to the small number of patients.

The same group later ran a similar experiment comparing
the IgG autoAb reactivity of 264 PV patients with158 healthy
controls. This analysis identified a large number of proteins
that were targeted at least 10 fold greater by autoAbs in PV
sera vs. that of controls: sialic acid-binding immunoglobulin-
like lectin 3 (CD33; ratio = 27.7) and glycoprotein Iba (GP1BA;
27.7), d subunit of nicotinic AChR (CHRND; 17.6), proton-
coupled amino acid transporter 4 (SLC36A4; 17.3), the antigen-
presenting protein CD1B (13.1), Fc-fragment of IgG (CD32;
12.5), cadherin 8 (CDH8; 11.3) and 9 (CDH9; 11.5), peripheral
myelin protein 22 (PMP22; 11.0), the MHC class I molecule
E (HLA-E; 10.8) and the mitochondrial proteins NADH-
ubiquinone oxidoreductase (NDUFS1; 16.2), cytochrome b5
outer mitochondrial membrane isoform precursor (CYB5B;
13.1), superoxide dismutase (SOD2) a subunit of pyruvate
dehydrogenase E1 component (PDHA1; 10.3) and fumarate
hydratase (FH; 10.1). The antigens that were recognized by
the majority of PV patients were DR α chain of the class II
major histocompatibility complex (MHC) encoded by the human
leukocyte antigen (HLA)-DRA gene (45% PV patients), Dsc1 and
Dsc3, respectively; 44% each), ATPase, Ca++ transporting, type
2C, member 1 (ATP2C1; 43%), plakophilin 3 (PKP3; 43%), M3
subtype of muscarinic acetylcholine receptor (AChR) (CHRM3;
42%), collagen a1, type XXI, (COL21A1; 42%), annexin A8-like 1
molecule (ANXA8L1; 42%), complement component 5a receptor
1 (CD88; 42%) and e subunit of nicotinic AChR (CHRNE; 41%)
(55).

Concurrently, our group also sought to characterize autoAb
reactivity (both Dsg as well as non-Dsg) in PV patients
using protein microarray technology (Figure 2). In contrast to
previous studies, we designed a focused, disease-specific custom
protein array that included (in addition to relevant biological
and technical controls): Dsg1-4, Dsc 2 and 3, CHRM1 and
3-5, Pkg, E-cad, TPO, FCER1, and ANXA9, all identified as
potential targets of disease relevant autoAbs by a thorough
review of the literature at the time of experimentation. Since
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FIGURE 2 | Use of protein array technology in Pemphigus vulgaris. To date, protein array technology has been used by 2 groups with differing sets of antigens

printed, patient and control populations used, and varying approaches to analysis. Both groups found some overlap in the autoantibody response in PV for both

anti-Dsg and non-Dsg targets.

post-translational modifications are known to affect the reactivity
of autoAbs in PV (17, 78, 79), printed antigens were produced
in cell-based expression systems to more closely mimic typical
posttranslational modifications. Analysis of autoAb using sera
from 40 active PV patients and 20 healthy controls revealed
significantly increased IgG reactivity toward Dsg3, CHRM 3,4,5,
and TPO in PV patients (63). Interestingly, PV patients also
exhibited a significant decrease in IgM reactivity to the same 5
antigens compared to healthy controls, while healthy controls
with no history of autoimmune disease, who were first or
second degree relatives of PV patients, had increased IgG autoAb
reactivity to these same antigens. Further investigation suggested
that this IgG reactivity in healthy related controls was partially
linked to the expression of specific HLA alleles (DQB01∗0503
and DRB01∗0402), which are known to be strongly associated
with PV (80, 81). This highlights the unique ability of protein
microarrays to examine how genetic elements can impact the
immune response.

In a subsequent study, we utilized an expanded protein
microarray encompassing a wider range of putative PV
autoantigens to better characterize the autoAb response in
PV and identify patterns of autoAb reactivity that might
underlie disease heterogeneity (82). Using this next generation
array, we performed the largest known analysis assessing
IgG autoAb reactivity in PV (466 patient and 216 control
samples) and identified significantly increased reactivity toward
35 Ags, including all four non-Dsg autoAgs identified in our
previous array. Again, the PV associated HLA risk alleles
described above were shown to impact the atoAb profiles
in patients and HLA-matched healthy controls. In addition,
we also identified significantly increased reactivity toward 19
Ags in patient samples obtained from patients in the active
phase of disease when compared to samples obtained from

patients who were in disease remission as defined by consensus
definitions (83). Furthermore, by comparing autoAb reactivities
from samples obtained from patients who exhibited distinct
disease morphologies at the time of sample collection [either
mucosal (M), cutaneous (C), or mucocutaneous, (MC)], we
were able to identify distinct profiles of autoAb reactivity that
correlated to disease morphology.

Additional longitudinal analyses of samples obtained from
patients across various time points and in different phases of
disease activity demonstrated that changes in autoAb profiles
were associated with variance in disease activity in all cases.
However, the precise sets of antigens recognized was unique
to individual patients. Finally, using specific patterns of autoAb
reactivity identified in the previous analysis, and accounting
for the known history of disease morphology, we were able
to accurately predict the disease activity and expression in de-
identified patient samples, indicating the potential for identifying
serum biomarkers with clinical utility.

Together, these data strongly support the idea that non-Dsg
autoAbs underlie disease complexity in PV and, furthermore,
demonstrates the utility of comprehensive autoAb profiling to
accurately classify, monitor and predict disease activity.

FUNCTIONAL ROLE OF
NON-DESMOGLEIN AUTOANTIBODIES IN
PV

Currently, a direct and definitive functional role in PV has yet
to be established for any non-Dsg autoAb. However, there is
evidence suggesting a potential role in the disease process for
a number of these autoAbs. Here, we assess both the methods
utilized in the detection of the non-Dsg autoAbs, as well as
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data with implications to disease function in order to better
understand how non-Dsg autoAb may be relevant to disease
pathology.

Cholinergic Receptors
Epidermal keratinocytes express both nicotinic and muscarinic
acetylcholine receptors, and both receptor subtypes function
together in order to maintain cell-cell adhesion (84). The
importance of cholinergic signaling in cell adhesion, as well as
its relevance to PV, is emphasized by the ability of both: (1)
muscarinic and nicotinic agonists to abolish PVIgG induced
acantholysis in vitro and in vivo, and (2) muscarinic and nicotinic
antagonists to induce cell separation in cultured keratinocytes
(85–87). It should also be noted that these cholinergic receptors
exhibit differential expression throughout the layers of the
epidermis as well as between cutaneous and mucosal tissue (88),
targeting of which could potentially contribute to the various
disease phenotypes and characteristic level of acantholysis seen
in PV.

Alteration of cholinergic signaling is also relevant in the
clinical treatment of pemphigus. One study showing that PV
patients who smoked cigarettes had better response to therapy
and that smokers are less likely to develop PV (89–91) may
implicate imbalances in nicotinic cholinergic signaling in disease
pathogenesis. However, the therapeutic effects of cigarette
smoking may very well be a function of the ability of nicotine to
increase endogenous glucocorticoid production (92) or suppress
B cell proliferation (92), rather than action on keratinocyte
receptors. In another study, Mestinon, a compound which
interferes with the breakdown of acetylcholine, was used to treat
6 PV patients as well as 1 patient with paraneoplastic pemphigus
(PNP) and another with PF. Three of the 6 PV patients treated
with this compound exhibited significant improvement (93).
However, the therapeutic effects of these compounds may arise
simply due to their pro-adhesive effects, and even though they
may represent a therapeutic target, the observed effects alone do
not indicate a clear role for anti-cholinergic receptor autoAbs in
disease.

Although a direct pathologic role has yet to be established,
the presence of anti-cholinergic receptor autoAbs in PV and
the known functional association of cholinergic receptors to
cell-cell adhesion establish their candidacy as disease relevant
autoAbs. Of the cholinergic receptors identified as targets
of autoAbs, investigation of the functional effects of anti-
CHRM3 and anti-annexin (ANXA)9 autoAbs appear to be of
highest relevance, as autoAbs targeting each were identified
by two distinct approaches (55, 64, 85–87). Furthermore, the
relatively large study groups used in the protein array studies
(55, 64) indicate that these autoAbs are prevalent in the PV
population.

Mitochondrial Proteins
Anti-mitochondrial autoAbs are found in several other
autoimmune disorders in addition to PV, such as primary biliary
sclerosis and systemic scleroderma (67, 75, 94–96). Despite a
lack of specificity to PV, a preponderance of evidence exists
that links anti-mitochondrial autoAbs to pathogenesis in PV.

Characteristically, PV patients have been shown to exhibit
increased levels of oxidative stress and reactive oxygen species
along with abnormalities in lipid peroxidation andmitochondrial
enzyme activity, all changes associated with mitochondrial
dysfunction (97–102). Additionally, anti-mitochondrial autoAbs
in PV have been shown to disrupt mitochondrial oxygen
respiration, membrane potential across the mitochondrial
membrane, and increase cellular reactive oxygen species (103).
These changes are sufficient to induce apoptotic mechanisms
[reviewed in (104)], which, despite some controversy, have been
shown by some groups to play a role in cell-cell detachment
in PV (105). A role for anti-mitochondrial autoAb induced
mitochondrial dysfunction is further supported by the reduction
of blister formation inmice treated withmitochondrial protective
drugs: Cyclosporin A, minocycline, and nicotinamide (103).
However, it is also possible that the protective effects of these
compounds, particularly minocycline and cyclosporine, may be
due to their well-documented immunosuppressive effects.

Studies demonstrating that anti-mitochondrial autoAbs can
penetrate keratinocytes may help to explain how autoAbs
targeting intracellular proteins could contribute to disease
processes (75). Recently, it was discovered that the internalization
of anti-mitochondrial autoAbs (and others) in keratinocytes is
dependent upon the neonatal Fc receptor (FcRn). FcRn binds
IgG in a) endosomes after pinocytosis of IgG, or B) in it’s
membrane bound form, followed by internalization of the IgG–
FcRn complex. The mechanisms by which receptor bound
IgG avoid degradation is not currently understood, although
one explanation may be that these endosomes are trafficked
directly to the mitochondria, the site of their antigenic targets
(106, 107). Blocking of the FcRn was shown to ameliorate
PVIgG induced acantholysis in vitro (108), demonstrating the
potential functional significance of this pathway. Interestingly,
these experiments also found non-anti-mitochondrial autoAbs
internalized through the same pathway. Given that FcRn is
predominantly expressed by basal keratinocytes in the epidermis
(109), this unique expression pattern may shed light on the
characteristic suprabasilar site of acantholysis seen in PV.

Identifying the predominant target (or targets) of anti-
mitochondrial autoAbs in PV is critical. Although functional
studies have demonstrated how mitochondrial disruption could
contribute to blister formation, the exact antigenic targets have
not been elucidated. The increased reactivity toward a number of
mitochondrial proteins as determined from protein microarray
data (55) is promising, but further validation is required.
Similarly, although the immunoprecipitation of mitochondrial
nicotinic AChRs confirmed the presence of autoAb reactivity
against 4 proteins identified by protein microarray (67), the
relatively small sample size tempers the conclusions that can be
drawn concerning the prevalence of such autoAbs across PV
patients as a group.

Non-Dsg Adhesion Proteins
AutoAb in PV are also known to target a number of non-
desmoglein adhesion proteins. Of those recognized, the Dsc
proteins are the most similar to the Dsg proteins. Dsc1-3
represent desmosomal cadherins (in addition to the desmogleins)
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that are involved in cell-cell adhesion (110–114). Similar to
the desmogleins, there exists a differential expression of Dsc
isoforms through the layers of the epidermis, with Dsc1 having
highest expression in the most superficial layers and Dsc3
expressed primarily in the suprabasilar/deep epidermis (115–
119). In addition to the adhesive functions of their extracellular
domains, the cytoplasmic tails of these proteins are also
known to play a role in formation of the desmosomal plaque
and attachment of desmosomes to the intermediate filament
network (120–124). The high degree of structural and functional
similarity between these two groups of proteins reflects the
potential functional relevance of autoAbs directed at these
targets.

Dsc3 in particular represents a good target candidate for
potentially disease relevant autoAbs. Dsc3 knockout mice
develop a PV-like phenotype with spontaneous suprabasilar
blister formation (56). Additionally, anti-Dsc Abs can cause
acantholysis in both keratinocyte monolayers as well as in a
model of human epidermis (57). PVIgG pre-absorbed to remove
anti-Dsc3 autoAbs is no longer pathogenic (53). The observation
that greater than 40% of patients harbor anti-Dsc3 autoAbs (55)
further supports the notion that Dsc3 may represent a target of
disease relevant autoAbs in PV.

Plakophillins, in conjunction with plakoglobin, facilitate the
attachment of the desmosomal cadherins to desmoplakin and the
keratin intermediate filament network (125–128). Plakophillins
have also been shown to play a key role in the assembly
of desmosomes (129, 130), and mutations of plakophilins are
known to cause ectodermal dysplasia-skin fragility syndrome, a
disease similar to PV that is characterized by mechanical stress-
induced blister formation (131). Given their role in cell adhesion,
it is possible that the binding of autoAb to these targets may lead
to dysfunction, resulting in impaired cell-cell adhesion. However,
it has not yet been shown that PVIgG interacts with intracellular
plakophillins in vivo.

Although autoAbs targeting other non-desmoglein adhesion
associated proteins have been identified in PV patients, little
functional data exists to suggest a role for these autoAbs in
disease. However, evidence describing the relationship between
E-cadherin and desmosomes may suggest a role for autoAbs
targeting this protein in PV. E-cadherin, like the desmogleins, is
a member of the cadherin family of proteins. However, unlike
desmogleins, E-cadherin is known to associate with adherens
junctions as opposed to desmosomes (132). While not directly
involved in desmosomal adhesion, E-cadherin has been shown
to play a role in the recruitment of both Dsg3 and Pkp3,
suggesting a role for E-cadherin in the early stages of desmosomal
development (133, 134). Given this relationship, anti-E-cadherin
autoAbs identified in PV patients (73) may interfere with
the normal functioning of E-cadherin, resulting in impaired
desmosomal formation.

Additional Targets
Autoantibodies to a number of additional targets have been
found in PV, as detailed above. Their potential functional
significance in PV is explored below.

Thyroid Peroxidase (TPO)
TPO, an enzyme that functions in the organification of iodine,
is a major target of autoAbs in autoimmune thyroid disease
(135). The increased risk of autoimmune thyroid disease in both
PV patients and first degree relatives highlight the association
of autoimmune thyroid disease and PV (58–60, 136, 137).
Recently, our lab has found an increased prevalence of anti-
TPO autoAbs in PV patients vs. controls that is linked to
the absence of both PV-typical HLA alleles and of anti-Dsg
Abs (62). In a separate study, we also show that anti-TPO
Abs can induce cell fragmentation in keratinocyte dissociation
assays, and affect intracellular Ca levels along with p38MAPK
activation in a manner similar to anti-Dsg3 autoAbs (82).
Establishing a direct pathogenic role for these autoAbs is a
continuing effort. Although, TPO mRNA has been shown to be
expressed by qPCR analysis of human skin biopsies (138), protein
expression in keratinocytes has yet to be demonstrated. If TPO is
expressed by keratinocytes, it is possible that anti-TPO autoAbs
may function in a similar manner as they do in Hashimoto’s
thyroiditis, inflicting cell damage via compliment fixation and/or
antibody dependent cell-mediated cytotoxicity (ADCC) (139–
145), though the paucity of immune cell infiltrate characteristic
of PV may exclude ADCC as a major contribution to disease
pathogenesis.

Another possibility is that anti-TPO Abs cross-react with
other, yet to be identified non-TPO keratinocyte protein. For
example, anti-TPO autoAbsmay exert their pathogenic effect due
to cross reactivity of these autoAbs with heat shock protein 60
(Hsp60), a mitochondria chaperone (146). Anti-Hsp60 autoAbs
have been associated with a multitude of autoimmune diseases
(147–151). Furthermore, these autoAbs have also been shown
to reduce mitochondrial activity and activate caspase 3 (152).
Additional cross reactivity observed between anti-Hsp60 Abs and
acetylcholine receptors (153, 154) may also suggest that anti-
TPO autoAbs could interfere with cholinergic signaling in the
skin. Additionally, the selectivity of HLA-DR expressing APCs
to activate T cells through Hsp60 presentation may offer an
intriguing insight into the mechanisms underlying the genetic
susceptibility seen in PV patients expressing the HLA DRB∗0402
allele (155). Although it is clear that the precise mechanisms need
to be worked out, the efficacy of Hsp60 tolerization in treating
autoimmune conditions in both mice and humans (156–158)
may represent a novel therapeutic approach to PV treatment.

Peripheral Myelin Protein 22 (PMP22)
Autoreactivity to both peripheral myelin protein (PMP)22 and
CD33 was noted by Kalantari-Dehaghi et al. to be expressed at
levels 10x or greater in active patients vs. controls (55). CD33
represents a transmembrane sialic acid receptor expressed on
both myeloid and lymphoid cell, with no clear relationship to
PV. PMP22, on the other hand, is an integral membrane protein
structurally related to Perp (also seen by protein microarray to be
recognized by 31% autoAbs of PV patients and only 5% of healthy
controls) (55). Perp is associated with desmosomes and is integral
to cell-cell adhesion (159). Deletion of Perp in mice leads to the
disruption of desmosomes and spontaneous blister formation
(160), and is also known to activate the extrinsic apoptotic
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pathway via caspase 8 activation (161). Although both Perp and
PMP22 are in the same protein family, little is known about
PMP22. Mutations in PMP22 are associated with Charcot Marie
Tooth disease (162). PMP22 mRNA is expressed highly in all
ectodermal tissues, including the skin, and staining of theMDCK
cell line reveals that PMP22 localizes to areas of cell-cell contact
in epithelial monolayers (163, 164). While there is no mention of
epidermal alterations in any of the mouse models lacking PMP22
(165), recent studies have shown that PMP22 may play a role
in anchoring the actin cytoskeleton to the plasma membrane
(166). More studies ascertaining the function of PMP22 in the
epidermis are needed before we can speculate on a potential role
in PV.

Human Leukocyte Antigen (HLA) Proteins
Expression of certain HLA-DR and HLA-E alleles is associated
with susceptibility to PV (80, 167). Interestingly, antibodies to
both HLA-DR and anti-HLA-E antibodies may play a role in
PV pathogenesis as well. HLA-DR is expressed in low levels
on basal keratinocytes, and studies have shown that expression
of HLA-DR is elevated in both lesional and non-lesional skin
in PV (168, 169). HLA-E expression has not been previously
associated with PV skin, but keratinocytes near blisters in Stevens
Johnson’s Syndrome have been shown to increase expression
of HLA-E, which enhances the chances of cell death by NK
T cells, who require the atypical class I HLA-E molecule to
be primed (170). Our group has additionally shown increased
HLA-E expression in Dsg specific T-cells in the peripheral blood
of patients (unpublished data). Finally, anti-HLA autoAbs have
been shown to be pathogenic in pemphigoid gestations, another
autoimmune skin blistering disease (171).

Calcium Transporting ATPase Type 2C (ATP2C1)
Calcium transporting ATPase type 2C (ATP2C1) encodes for
a calcium pump typically located in the Golgi apparatus. This
calcium ATPase represents a particularly interesting putative
target for PV autoAbs because genetic mutations in this
pump are known to cause Hailey-Hailey disease (172), which
manifests as a loss of epidermal adhesion at the same level of
the epidermis as PV. Additionally, alterations in intracellular
calcium, which underlie pathogenesis in Hailey- Hailey disease,
are also implicated in the pathogenesis of PV (173).

EVOLVING CONCEPTS IN PV:
DEVELOPMENT OF THE
“SUPER-COMPENSATION” HYPOTHESIS

Just as the discovery of anti-Dsg autoAbs guided the formation
of the monopathic view of PV pathogenesis, the elucidation of
additional autoantigenic targets has spurred the metamorphosis
of understanding toward a more comprehensive and complex
model that is better equipped to explain the more subtle
nuances seen in PV. This shift in how PV pathogenesis is
viewed is epitomized by the development of the “Multiple Hit
Hypothesis” (174). According to this theory, blister formation
in PV occurs from a synergistic effect of autoAbs targeting
multiple keratinocyte antigens. In the past, the relative lack of

data pertaining to the scope and specificity of autoAbs in the
population of PV patients and tools which could quickly and
efficiently determine autoAb targets limited the ability to test
this hypothesis. However, the advent of protein array technology
and a greater understanding of relevant antigenic targets in PV
has facilitated the dissection of the complex relationship between
autoAb expression and disease phenotype.

Expanding the current view of disease pathology in PV
also has considerable implications concerning the framework
for assessing the underlying disease mechanisms. Alterations
in numerous signaling pathways have been associated with the
binding of PVIgG to keratinocyte antigens, including: PLC, PKC,
Cdk2, p38MAPK, EGFR, Src, JNK, MMP-9, c-myc, GSKbeta,
Fas/FasL, p53, BAX, and caspases 1,3, and 8 (75, 173, 175–
186). Compared to the monopathic view, incorporation of
multiple disease relevant autoAbs could allow for a more precise
integration of these pathways, where specific autoAbs may alter
specific pathways.

In consideration of the data reviewed in this manuscript,
we propose a “super-compensation hypothesis” that purports
that the binding of specific autoAbs in combination with
the unique epidermal expression of the various autoantigens
results in the characteristic alteration of signaling pathways
and the development of acantholysis only if the sum of these
effects exceeds a set threshold (Figure 3). Weakly pathogenic
autoAbs alone, or in combination do not trigger these effects.
However, highly pathogenic autoantibodies alone, or multiple
combinations of pathogenic or subpathogenic autoAbs could
potentially exceed this threshold (Figure 3). Furthermore,
specific autoAb expression profiles may underlie variations in
disease expression to better explain clinical heterogeneity across
phenotypic subgroups. The role of multiple autoAbs in PV has
been previously postulated (174). Here, we extend this line of
thought based on the accumulating evidence from the literature
and our lab presented above to formulate a novel hypothesis
underlying autoAb-mediated acantholysis. This model of PV
has the potential to integrate autoAb profiles, disease variability
and the mechanistic effect of autoAbs in a way that was
impossible to achieve when viewing PV as the result of strictly
anti-Dsg autoAbs. Consequently, each of the autoantibodies
potentially involved in PV pathogenesis would lead to activation
of specific downstream signaling pathways that either result in
pathway amplification and/or in additive/combinatorial effects
relevant to acantholysis [see (186) for a comprehensive review of
autoantibody signaling in PV].

Recent work by our group assessing the functional capacity of
anti-TPO autoAbs present in patient IgG provides support for the
idea that multiple autoAb specificities may function together to
contribute to disease. By depleting PVIgG of anti-TPO autoAbs,
we were able to demonstrate that anti-TPO autoAbs contributed
to PVIgG induced loss of cell adhesion, as well as PVIgG induced
activation of p38MAPK and increases in intracellular calcium
in vitro (187). These results demonstrate that additional, non-Dsg
autoAbs contribute to PVIgG induced pathogenesis. However,
these experiments also provide key insights concerning how
multiple autoAb specificities may be working together in unique
ways to drive blister formation in PV. Specifically, the effects
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FIGURE 3 | The super-compensation hypothesis. We hypothesize the binding of specific autoAbs in combination with the unique epidermal expression of the various

autoantigens results in the characteristic alteration of signaling pathways and the development of acantholysis only if the sum of these effects exceeds a set threshold.

In this theory, highly pathogenic antibodies to either anti-Dsg3 alone, or anti-Dsg3 and−1 together can exceed the blistering threshold. Similarly, multiple combinations

of subpathogenic anti-Dsg3/1 autoAbs together with non-Dsg autoAbs could potentially exceed this threshold. However, weakly pathogenic anti-Dsg or non-Dsg

autoAbs alone, or sometimes even in combination, do not breach the threshold for triggering acantholysis.

of anti-TPO depletion were most significant when anti-Dsg3
autoAbs were not present. This could potentially help to explain
why some patients who are negative for both anti-Dsg3 and anti-
Dsg1 still exhibit disease activity. Interestingly, in support of
this notion, we find the highest prevalence of anti-TPO Abs in
the subgroup of patients that lack anti-Dsg Abs (62). Additional
experiments investigating the precise effects of multiple autoAb
specificities are required to more fully characterize how different
autoAbs function together to elicit blister formation in PV.

Additionally, researchers should consider that the role of
autoAbs is not always restricted to driving pathogenesis. Natural
autoAbs of the IgM subgroup have been shown to play a number
of beneficial roles, with subsets of these autoAbs modulating
disease severity, and even protecting against the development
of in autoimmune disease (188–190). It is entirely possible that
some of the autoantibodies found in PV are protective against
disease, similar to the role of certain g-protein coupled receptors,
such as CXCR4, in experimental autoimmune encephalomyelitis
(191).

FUTURE DIRECTIONS

Ultimately, the primary objective of investigation into PV is to
identify avenues of intervention to improve patient quality of

life. With our current understanding of disease, the best available
treatments remain the administration of glucocorticoids or other
broadly immunosuppressive agents, which by themselves pose
a significant risk to patient health. The lack of actionable
biomarkers to monitor disease progression, response to therapy,
or help predict prognosis makes it almost impossible for
physicians to maximize treatment efficacy while minimizing
harmful side effects.

Recent characterization of autoAb specificity represents a
significant step toward achieving a broader understanding of PV.
However, these results must first be validated and the autoAb
repertoire of even larger patient cohorts must be assessed in
order to have an accurate estimation of auto antigenic targets
across all PV patients. Given the well documented importance
of conformation and post-translational modifications on the
immunogenicity of proteins, subsequent experiments should also
be conducted using antigens produced in cell systems that will
parallel those of human keratinocytes. Once the full repertoire
of autoAb specificity is clear, the effects of these autoAbs on
keratinocyte adhesion and any effects on cellular signaling must
be ascertained.

The foundation for the significance of this proposed work
lies on the identification of autoAb signatures capable of
distinguishing the phenotypic variations seen in PV. To this
end, our group has taken the approach to define highly specific
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disease subgroups stratified by both variable characteristics
(disease activity, morphology, treatment, and disease duration)
and static characteristics (age of onset, sex, HLA type).
Establishing specific immunoprofiles for these groups will
significantly impact the clinical treatment of PV. We expect
that a more in depth understanding of disease relevant
autoAbs will: (1) facilitate the identification of actionable
biomarkers, allowing for a more precise classification of disease
while simultaneously enabling physicians to predict disease
progression and response to therapy, (2) provide new insights
into the mechanistic pathways responsible for acantholysis,
facilitating the identification of novel therapeutic targets, and (3)
allow for a higher degree of personalized medicine where autoAb

profiles dictate treatments individualized toward a specific
patient.
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