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Sex-biased chromatin and regulatory cross-talk
between sex chromosomes, autosomes, and
mitochondria
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Abstract

Several autoimmune and neurological diseases exhibit a sex bias, but discerning the causes and mechanisms of
these biases has been challenging. Sex differences begin to manifest themselves in early embryonic development,
and gonadal differentiation further bifurcates the male and female phenotypes. Even at this early stage, however,
there is evidence that males and females respond to environmental stimuli differently, and the divergent
phenotypic responses may have consequences later in life. The effect of prenatal nutrient restriction illustrates this
point, as adult women exposed to prenatal restrictions exhibited increased risk factors of cardiovascular disease,
while men exposed to the same condition did not. Recent research has examined the roles of sex-specific genes,
hormones, chromosomes, and the interactions among them in mediating sex-biased phenotypes. Such research
has identified testosterone, for example, as a possible protective agent against autoimmune disorders and an XX
chromosome complement as a susceptibility factor in murine models of lupus and multiple sclerosis. Sex-biased
chromatin is an additional and likely important component. Research suggesting a role for X and Y chromosome
heterochromatin in regulating epigenetic states of autosomes has highlighted unorthodox mechanisms of gene
regulation. The crosstalk between the Y chromosomes and autosomes may be further mediated by the mitochondria.
The organelles have solely maternal transmission and exert differential effects on males and females. Altogether,
research supports the notion that the interaction between sex-biased elements might exert novel regulatory functions
in the genome and contribute to sex-specific susceptibilities to autoimmune and neurological diseases.
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Introduction
Sexual dimorphisms in morbidity, mortality, pathology,
disease progression, and phenotypic expression have
been a matter of abundant research as well as neglect.
Studies have documented variable incidence of infection
in male and female children [1], disproportionate female
susceptibility to immune diseases [2,3], greater risk of
mental illness and overall mortality in males [4], variable
cancer rates between the sexes [5,6], sex-specific risk for
stroke and diseases of aging [7], and unique phenotypic
dynamics of sex-biased traits [8,9]. Expectations from
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population genetic theories highlight the likelihood of
such sexual dimorphisms due to transmission biases of
the Y chromosome and mitochondria, as well as repre-
sentation bias of the X chromosome in the sexes
[10-13]. Crudely defined molecular mechanisms, how-
ever, have prevented a better understanding of genetic
variants mediating sexually dimorphic expression and
the extent and functional consequences of sex differ-
ences is often overlooked. Drug treatment regimen and
dosage, for example, typically do not distinguish between
men and women [14] despite evidence of pharmacoki-
netic and pharmacodynamic differences between the
sexes [14,15].
Multiple factors contribute to this differential disease

susceptibility, including sex hormones and the type and
number of sex chromosomes in a genotype. Hormonal
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fluctuations during pregnancy influence the course and
duration of some autoimmune diseases, exacerbating
symptoms of systemic lupus erythematosus (SLE) and
ameliorating those of rheumatoid arthritis (RA) and
multiple sclerosis (MS). In RA and MS, however, while
relapse rates decrease during the third trimester, they in-
crease postpartum when hormone levels return to nor-
mal [14,16]. Meanwhile, sex chromosome complement,
which includes the number and type of sex chromo-
somes and their genes, is a risk factor in obesity [17,18]
and has been implicated in autoimmune susceptibility
[19,20]. Y chromosome genetic variation in British men
has been associated with blood pressure and total chol-
esterol levels. One Y chromosome haplogroup in particu-
lar is associated with a 50% increased risk of coronary
artery disease in men of European ancestry, independent
of all other risk factors. Macrophages from men of this
haplogroup also display down-regulation of adaptive im-
munity and up-regulation of inflammatory response
pathways [21].
Mutations, deletions, and translocations involving the

X chromosome have also been linked to disease pheno-
types with a sex bias, including mutations in the WAS
gene that cause Wiskott-Aldrich syndrome and muta-
tions in IL2RG that cause X-linked recessive severe com-
bined immunodeficiency syndrome [22]. While less
common, there are also examples of Y-linked immuno-
deficiencies in mice. The Y-linked autoimmune acceler-
ation (Yaa) locus in male mice contains a translocation
that includes toll-like receptor 7 from the X chromosome
and contributes to a severe lupus-like phenotype in
some mice strains [23]. A recently characterized mouse
strain exhibiting Y-linked hereditary B and NK cell defi-
ciencies also highlights the potential for a direct Y
chromosome contribution to some autoimmune disor-
ders [24].
Gonadal secretions are essential for triggering and

maintaining sexual dimorphisms. Sex determination and
sex-specific phenotypes, however, do not spring exclu-
sively from the gonads. Sex differences in embryonic de-
velopment before gonadal differentiation, observations
of sex chromosome-dependent neural and behavioral
phenotypes, and the expression of sex chromosome-
dependent long non-coding RNAs like Xist might all
emerge from differences in sex chromosome comple-
ment apart from hormonal differences. Sex chromosome
factors can include specific genes on the X and Y chromo-
somes, the ratio of X and Y chromosomes to autosomes,
and novel mechanisms emerging from genome-wide gene
regulation by sex chromosomes. These factors may play
key roles in sex-specific disease susceptibility.
While research identifying loci contributing to sex-

biased phenotypes has helped discern disease mechanisms
and improve susceptibility assessment in populations and
individuals, there are few sex-biased diseases that fol-
low a simple Mendelian inheritance pattern [25]. Simi-
larly, research focusing solely on sex chromosomes,
sex-specific hormones, or sex-biased tissues supplies
partial answers, but does not fully explain the causes of
sex-biased disease and phenotypic expression. Contin-
ued attention to sex, environment, and genotype within
an integrative framework might contribute a better un-
derstanding of the variable penetrance and expressivity
of naturally occurring genetic variants and the role of
environmental factors in modulating the manifestation
of these variants between the sexes.

Mammalian sex determination
While many autosomal and X-linked genes are dimor-
phically expressed to yield male and female phenotypes,
some sex chromosome-linked genes are expressed solely
in one sex or the other and which have essential roles in
sex determination. The sex-determining region Y (Sry)
gene is required for testis development in therian mam-
mals. In the absence of sufficient levels of Sry, the go-
nadal ridge differentiates into ovaries and produces a
female phenotype [26-29]. Sry appears to operate pri-
marily as a transcription factor in both gonadal and
non-gonadal tissues. In the gonads, Sry binds to the en-
hancer region of the SRY-related HMG box protein 9
(SOX9) gene, which is essential for inducing Sertoli cells,
the primary cell type in the testes, to secrete anti-
Müllerian hormone [28,30]. The cascade eliminates the
Müllerian ducts, which would otherwise develop into
the oviduct and uterus [28,30]. Sry is also notably import-
ant in the brain [31,32]. In male adult mice, Sry is present
in the substantia nigra, and in rats, Sry down-regulation
causes a decrease in tyrosine hydroxylase expression and
impairs motor activity [33]. The X chromosome gene
monoamine oxidase A (MAO A), which deaminates
monoamine neurotransmitters such as serotonin, is a tar-
get of Sry. MAO A plays a critical role in brain develop-
ment and function, and its abnormal activity has been
suggested in sex-biased neurological disorders, such as
autism, depression, and attention deficit hyperactivity
disorder [34]. Sry may also contribute to the sex bias in
Parkinson's disease and schizophrenia, as it might
modulate catecholamine synthesis and metabolism in
the human male midbrain [35].

X chromosome inactivation
Another sex-specific gene that might have implications
for sex-biased phenotypes in mammals is Xist, which
codes for a long non-coding RNA whose expression is
limited to females. Transcription of Xist initiates the in-
activation of one X chromosome and leads to equitable
expression of X-linked genes in the soma of XY males
and XX females. The process begins in the XX zygotes
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soon after fertilization, when the Xist transcript physic-
ally coats the X chromosome in cis and recruits protein
complexes to transcriptionally inactivate the chromo-
some [36-39]. In mice, there are two distinct stages of X
chromosome inactivation (XCI). First, imprinted X in-
activation causes the paternal X chromosome to become
silenced in early embryogenesis. The second stage of
XCI occurs around the time of implantation in the late
blastocyst. Cells in the inner cell mass, which will be-
come the fetus, reactivate the imprinted paternal X and
subsequently undergo random inactivation of either the
maternal or paternal X chromosome. Cells outside the
inner cell mass, such as those destined to become either
the yolk sac or placenta, retain their paternal X imprint-
ing [36-39].
The process of XCI, however, does not completely

eliminate gene expression differences caused by the
presence of two X chromosomes. Murine Xist is
expressed from the two- and four-cell stage onward, but
the first cytological signs of XCI are not present until
about the 50-cell stage [40]. Similarly, following the early
blastocyst re-activation of the paternally imprinted X,
there is a period before random inactivation during
which females have two active X chromosomes [41].
Finally, after random XCI, some imbalances in gene ex-
pression between males and females remain: not all
genes in the inactive X chromosome (Xi) are transcrip-
tionally inactive, and not all females express the same
number of these Xi escapee genes, nor are the Xi es-
capees expressed at the same levels [42]. In vitro, about
15% of human X-linked genes and about 3% of mouse
X-linked genes are expressed on both X chromosomes;
an additional 10% of human X-linked genes show vari-
able patterns of XCI [42,43]. Women, but not men, with
lupus demonstrate increased expression of X-linked
genes, possibly from demethylated regions of the Xi,
which may help explain the differential susceptibility of
women (and XXY Klinefelter men) to the disease [44]. It
should also be noted, however, that other autoimmune
diseases such as primary biliary cirrhosis are character-
ized by haploinsufficiency of X-linked genes [45].
The facultative heterochromatin of the Xi results in fe-

males that are a mosaic of two genotypes, depending on
whether the paternal or maternal X chromosome was
inactivated. This heterochromatin, already exclusive to
females, might vary based on whether the Xi was inher-
ited maternally or paternally. Such parent-of-origin
imprints have been shown to influence development.
Murine XO females with a paternal sex chromosome
have delayed prenatal development and are smaller than
XX embryos, which are smaller than XY embryos. How-
ever, murine XO females with a maternally derived X
are significantly larger than their paternal XO counter-
parts and are equivalent in size to XY embryos [46].
Differences in cognitive function in humans between
XO females with a paternal versus maternal X may also
be explained by imprinted X genes [47]. The variation in
imprinted genes, as well as variable Xi escapee expres-
sion, implicates not only the role of various alleles in
contributing to a female's mosaic phenotype, but also
variable expression depending on parental origin.
The prevalence of each X chromosome's activation

state may also be non-random. An interesting possibility
is that heterozygous females might have the ability to se-
lect neutral alleles over disadvantageous alleles in a
tissue-specific manner [14]. Female carriers of agamma-
globulinemia, an X-linked immune deficiency, exhibit
non-random XCI in B cell lymphocytes [48], and female
carriers of Wiskott-Aldrich syndrome exhibit non-
random inactivation in all blood cell lineages [49].
Skewed XCI has also been suggested to play a role in
disease pathogenesis, such as that of systemic sclerosis
(SSc) [50], and it has been documented in breast and
ovarian cancers [51,52].
The relevance of dosage compensation is illustrated by

the unique strategies that have independently evolved to
compensate for sex chromosome imbalance. For in-
stance, in Caenorhabditis elegans, the XX hermaphrodite
expresses genes from both X chromosomes at half the rate
as XO males to account for dosage compensation. Dros-
ophila males, meanwhile, express X chromosome genes at
twice the rate as females, and mammalian females use X
inactivation as a dosage compensation mechanism [39,53]
(Figure 1).

Sex chromosome dosage
Some disease phenotypes have been linked to sex
chromosome type and number, independent of gonadal
secretions. Research in mice has demonstrated a role for
the number of X chromosomes in mediating variable
susceptibility to adiposity, independent of the presence
of a Y chromosome [18]. Additionally, an XX comple-
ment in mice, independent of gonadal sex, can increase
the risk of lupus and experimental autoimmune enceph-
alomyelitis (EAE; a mouse model of MS) when com-
pared to an XY complement independent of gonadal sex
[20,54]. An association between X chromosome number
and SLE susceptibility in humans has also been ob-
served: while SLE is more prevalent in women compared
to men, the increased prevalence in prepubescent and
postmenopausal women precludes a strictly hormonal
role. Furthermore, XX females and XXY Klinefelter
males display a similar risk, while XO Turner females
display decreased disease prevalence [44]. Abnormal
karyotypes have been associated with other autoimmune
diseases, as well. Men with autoimmune thyroiditis or
primary biliary cirrhosis (diseases characterized by fe-
male preponderance) display an increased incidence of Y



Figure 1 Dosage compensation mechanisms in human (Homo sapiens), fly (Drosophila melanogaster), and worm (C. elegans).
X chromosome dosage needs to be equalized between the sexes and relative to the autosomes. In humans, females with two X chromosomes
undergo X inactivation of one chromosome; the remaining active X up-regulates its genes twofold. In flies, both female X chromosomes are
active; male X-linked genes are up-regulated twofold. In worms, which utilize a hermaphrodite/male sex determination pathway, hermaphrodites
express X-linked genes at half the rate of males, with both genotypes expressing two times the amount of X-linked genes [39,53]. Chromosomes
are not drawn to scale.
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chromosome loss in peripheral blood cells, and women
with primary biliary cirrhosis display increased rates of
X monosomy [45,55].
The number of X and/or Y chromosomes in mammals

might also exert control over the epigenetic cellular ma-
chinery, although specific functional consequences on
disease dimorphisms are yet to be observed. Embryonic
stem (ES) cells with an XX complement, for example,
display reduced DNA methylation compared to either
XY or XO ES cells [56]. DNA methylation of imprinted
alleles in germ cells is influenced by sex chromosome
complement as well as the gonadal sex of the embryo
[57]. Furthermore, the histone demethylase Kdm3a ap-
pears to modulate the level of Sry expression in mice.
Males with a homozygous Kdm3a deletion exhibited fre-
quent partial or full male-to-female sex reversal, some of
which were fertile, while females lacking Kdm3a under-
went normal sex differentiation and were fertile [58].
Sex chromosome complement can influence position-

effect variegation (PEV), an epigenetic phenomenon
documented in organisms as diverse as yeast, fruit flies,
and mammals (Figure 2). PEV occurs when a gene lo-
cated near a euchromatin-heterochromatin border is
randomly silenced or expressed due to the stochastic
spreading or contracting of heterochromatin. It was first
documented in Drosophila in 1930 [59], when a chromo-
somal translocation moved the white gene to a location
near heterochromatin. The gene is required for the syn-
thesis of the red pigment in the fly eye, and expansion of
heterochromatin causes a mottled-eye phenotype com-
prising patches of white and red (wild-type) cells. In a
mouse model of PEV, males had a greater propensity to
silence a human CD2 reporter transgene than did fe-
males. The extent of silencing appeared determined by
sex chromosome complement independent of gonadal
sex [60].
Finally, evidence suggests that prior to differentiation

of the gonads and production of sex hormones, male
pre-implantation embryos are larger than those of fe-
males [61,62], and some genes, located on both auto-
somes and sex chromosomes, are already differentially
expressed between the two sexes at that stage [63,64].
While sex-determining genes like Sry can account for
gonad-dependent differences, triggers for pre-gonadal
differences are less well defined. The dosage of sex chro-
mosomes might be relevant, as it has a documented in-
fluence on sex determination in some species. The ratio
of X chromosomes to autosomes determines gonadal sex



Figure 2 Position-effect variegation in Drosophila. The stochastic expansion of heterochromatin proteins in each cell can cause a variegated
eye color phenotype in Drosophila. At the top of each figure is a representation of DNA within a cell, the middle is a representation of the
location of heterochromatic proteins within a locus, and at the bottom is the observed eye color phenotype. (A) A fly whose cells contain the
white gene located exclusively in heterochromatin, and thus inaccessible for transcription, will have white eyes devoid of red pigment. (B) A
combination of cells with the white gene located in heterochromatin and cells with the white gene located in euchromatin, and thus available
for transcription, will have a mottled phenotype with some cells producing red pigment and some cells producing no pigment. (C) A fly whose
cells contain the white gene located exclusively in euchromatin will have fully pigmented red eyes.
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in fruit flies (Drosophila); although the Y chromosome
contains genes essential for spermatogenesis, it is not in-
volved in sex determination. Accordingly, XXY geno-
types are functionally and phenotypically female, while
XO genotypes are sterile males [65]. The nematode C.
elegans also senses the X/autosome ratio: XX genotypes
develop into self-fertilizing hermaphrodites, while XO
genotypes develop into males. Some conditions, how-
ever, may prompt cross-fertilized XX embryos to lose
the paternal X chromosome and develop as XO males
[66]. In eutherian mammals, the presence of the Y
chromosome gene Sry will result in the development of
the male gonadal phenotype regardless of how many X
chromosomes are present [67]. As a result, an XXY geno-
type is phenotypically male in mice and humans. Never-
theless, syndromes of X and Y chromosome mono- or
polysomies indicate that sex chromosome dosage causes
phenotypic variations in humans (Table 1).
Table 1 Sex chromosome dosage and phenotypes in humans

Genotype Human gonadal sex Human phenotyp

XO Female Turner femalea

XX Female Female

XY Male Male

XXY Male Klinefelter maleb

XYY Male Slightly atypical ma

XXX Female Slightly atypical fem

‘Male’ and ‘female’ designations are based on gonadal sex. aXO (Turner) females ha
menstrual cycle, and are sterile. Prevalence is estimated to be 1 per 2,000 live-born
and hypogonadic. They may display a range of female secondary characteristics, in
estimated to be 1 per 658 live-born males [69]. cPrevalence of XYY males is estimat
phenotype commonly includes tall stature, macroenchephaly, macroorchidism, dec
may be at risk of reduced fertility [70]. dTriple X syndrome in females has a variable
prevalence is about 1 per 1,000 female births [71]. eMetafemale Drosophila are ofte
eye facets, and/or malformed legs. The observed frequency in adults is less that 1%
Hormonal and sex chromosome interactions
Sex chromosomes and their genes contribute to differen-
tial disease susceptibility, but there might also be interac-
tions between sex hormones, sex chromosomes, and the
autosomal background. The contribution of sex-specific
hormones and sex chromosomes to disease states can be
disentangled in a number of ways. The four-core geno-
types (FCG) mouse model, in which gonadal sex is inde-
pendent of sex chromosome complement, is one that has
been successfully used. This model was created by com-
bining a Sry deletion on the Y chromosome [76] with the
insertion of a functional Sry transgene onto an autosome.
An XXSry+ genotype with the autosomal transgene de-
velops testes and is a gonadal male; likewise, an XYSry−

genotype lacks Sry and develops ovaries to become a go-
nadal female. The model produces four genotypes, with
two genotypes per sex: XXSry− and XYSry− mice are go-
nadal females lacking the autosomal Sry transgene, while
and D. melanogaster

e Fly gonadal sex Fly phenotype

Male Sterile male

Female Female

Male Male

Female Healthy female

lec Male Lesser characterized male

aled Female Metafemalee

ve female external genitals but often have non-functioning ovaries, lack a
females [68]. bXXY (Klinefelter) males have male genitals but are often sterile
cluding enlarged breasts and small or undescended testes. Prevalence is
ed to be 1 in 1,000, but approximately 85% are never diagnosed. The
reased muscle tone, and an increase in autistic spectrum disorder. Some
phenotype, and XXX females will often not display any abnormalities. The

n sterile and can display narrowed abdomens, wing abnormalities, irregular
, and viability post-eclosion is limited [72-75].
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XYSry+ and XXSry+ are gonadal males with the autosomal
Sry transgene. Here, we use shorthand notation for these
genotypes: XXF and XYF for gonadal females, and XYM
and XXM for gonadal males. Hence, sex chromosome
complement can be studied independent of gonadal secre-
tions initiated by Sry, and the interaction between gonadal
sex and sex chromosome complement can be observed.
This model has yielded insight into the relevance of sex
chromosomes to sexual dimorphisms in autoimmune dis-
ease, hypertension, neural tube closure defects, and adi-
posity, among others. For example, sex chromosome
complement, independent of hormonal effects, has been
implicated in causing differential expression of genes cod-
ing for proteins such as calbindin, prodynorphin, and ni-
tric oxide synthase in the brain, and differential expression
of two histone demethylases in neurons. It also plays a
role in sex differences in aggression, habit formation, and
parenting behavior (reviewed in [4,26]). The FCG model
also demonstrated a role for Sry in regulating autosomal
gene expression (e.g., [60]). The regulation may be due to
a direct transcriptional role of Sry or it may be mediated
by sex hormones; the latter is supported by research indi-
cating that XY complement-induced differences in im-
mune response might be suppressed in the presence of
testosterone [77]. Finally, cellular models have also con-
tributed to discerning the relative roles of sex hormones
and chromosomes in sexual dimorphisms. In one study,
Penaloza et al. [78] harvested cells from male and female
mice at embryonic stages before and after gonadal differ-
entiation. The data suggested that sex chromosome com-
plement underlies the differential sensitivity of male and
female embryonic cells to some stressors, with the intro-
duction of hormonal secretions functioning as a modifier
of those differences [78].

Sex chromosome interactions with autosomes and
mitochondria
While the FCG model has helped separate the effects of
sex chromosomes versus sex hormones, it has also illu-
minated sex biases that are partially dependent on gen-
etic background. XX mice face increased susceptibility
to adiposity in one strain of mice, while research in an-
other strain suggests that the presence of two sex chro-
mosomes (either X or Y) might be responsible for
changes in body weight, body composition, and other
metabolic variables [17,18]. Similarly, the contribution of
sex chromosomes to EAE and experimental myocarditis
susceptibility might be modified by genetic background
[79]. The sex reversal caused by the homozygous dele-
tion of Kdm3a in mice was also dependent on the gen-
etic origin of the Y chromosome: 14% of C57BL/6 (B6)
mice that lacked Kdm3a displayed male-to-female sex
reversal, whereas the introduction of a CBA Y chromo-
some in the same Kdm3a loss-of-function background
resulted in 88% male-to-female sex reversal. The
phenomenon might be due in part to the lower levels of
Sry in mice with a CBA Y chromosome relative to mice
with a B6 Y chromosome, suggesting that CBA mice
might already have Sry levels closer to the minimum
threshold required for inducing the male development
pathway [58].
Interactions between the X chromosome and auto-

somes might help explain the variable susceptibility of
women to autoimmune diseases. Females have an in-
creased prevalence of autoimmune diseases including
SLE, RA, MS, SSc, primary biliary cirrhosis, Hashimoto's
thyroiditis, and pernicious anemia [2]. Some of the risk
factors are genetic, as concordance studies in twins dem-
onstrate, but incomplete concordance also demonstrates
the relevance of non-genetic factors [80]. Autoimmune
diseases vary greatly in their mechanisms, penetrance,
response to treatments (which can include sex hormone
therapy), and underlying genetic causes. An interesting
possibility is that increased female susceptibility might
emerge from polygenic autosomal factors on a permis-
sive X chromosome background and in a permissive en-
vironment. The increased prevalence of RA in urban
Senegalese populations compared to their rural counter-
parts suggests environmental triggers in otherwise
healthy but genetically susceptible population [81]. Simi-
larly, the TRAF1/C5 polymorphism has been implicated
in susceptibility to RA in a North African population
and with susceptibility to SLE in a European population
[82]. The variation might be attributable, in part, to gen-
etic background interactions and/or environmental trig-
gers. Finally, accumulating evidence suggest that
environmental agents may influence the development of
lupus by inhibiting T cell DNA methylation [44].
One hypothesis that might partially explain the origin

of some male-biased diseases rests in the maternal trans-
mission of the mitochondrial genome. The asymmetrical
transmission precludes the purging of mutations harmful
to males if they are beneficial, neutral, or only slightly
disadvantageous for females. This ‘mother’s curse’ was
implicated in reduced sperm function and fertility in
males with mtDNA mutations, while female fertility was
unaffected [83]. The curse might also have further reper-
cussions on health and aging. Genetic variation in D.
melanogaster mitochondrial genomes appeared to affect
male-specific patterns of aging, while females remained
unaffected [84]. Similar research in D. melanogaster doc-
umented significant differential gene expression in males
with mtDNA introgressions (more than 8% of tested
genes among five introgressions), yet very few differen-
tially expressed genes in females of the same lines (about
0.06%) [11]. Evidence of coevolution of the male mito-
chondrial genome with the nuclear genome is abundant
[10,85,86]. Males carrying one mtDNA haplotype might
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be sterile when introgressed into an isogenic background,
but fertile when expressed in its coevolved genetic back-
ground [11]. Finally, interspecific cellular hybrids with
mismatched nuclear-mitochondria pair display a range of
anomalies [87]. These include cellular inviability, which
can manifest even if the species donating the mitochon-
dria and the nuclear genome are closely related [87].
Sex chromatin structure and epigenetic modifications
Evidence of sex chromosome modulation of autosomal
gene expression and downstream phenotypes is rapidly
accumulating. However, elucidating the genetic elements
that mediate sex chromosome interaction with auto-
somes has lagged and complicated attempts to explain
differential responses to nearly identical circumstances.
For instance, a specific deletion in the Y chromosome
contributes to male infertility in some human popula-
tions, but not others [88], suggesting interactions with
the genetic background. Clues to the mechanisms for
such differential effects might partly lie in the genetic
variation of Y chromosomes and possibly in novel
Figure 3 Relative sizes of the X and Y chromosomes in human (H. sap
to scale. Gene counts are for protein-coding genes and do not reflect the nu
obtained from Ensembl database release 73 [91] and Pertile and Graham [96]
[89,90]. X chromosome gene count obtained from Ensembl database release
regulatory forces exerted by heterochromatic segments
of the chromosome.
In D. melanogaster, the Y chromosome harbors 15

protein-coding genes and accounts for nearly 25% of
male haploid DNA content [89,90]; in contrast, the X
chromosome is about the same size and contains more
than 2,000 genes [91] (Figure 3). This incongruity occurs
because much of the Y chromosome is heterochromatic
and comprises transposable elements and other repeti-
tive sequences. Research using Y chromosome introgres-
sions in isogenic and reciprocal genetic backgrounds
revealed that the Y chromosome can regulate response
to temperature, fertility, spermatogenesis, and fitness, as
well as the expression of hundreds of X-linked and auto-
somal genes [92-95].
Differential gene regulation and expression, however,

are dependent upon the autosomal and X chromosome
background. When comparing D. melanogaster popula-
tions from temperate and tropical climates, Y chromo-
some origin accounted for about 50% of the difference
in susceptibility to heat-induced sterility [93]. Similarly,
consomic strains generated with Y chromosomes in
iens), mouse (Mus musculus), and fly (D. melanogaster). Drawn
mber of copies in multi-copy genes. H. sapiens and M. musculus data
. D. melanogaster X and Y chromosome size obtained from the literature
73 [91]. Y chromosome gene count from the literature [89,90].
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various genetic backgrounds revealed that fitness was
dependent on the interaction between variable Y chromo-
somes and the genetic background [95]. Furthermore, in-
creased amounts of Y chromosome DNA in a male fly
may cause higher expression of PEV markers [97]. Finally,
Y chromosomes of different geographic origins were
found to differentially modulate PEV on an identical
autosomal background such that some Y chromosome
variants suppressed the expansion of heterochromatin,
and others enhanced it [98]. These observations may
indicate regulatory roles for sex chromosomes in medi-
ating disease susceptibility.
One hypothesis for the mechanism by which a gene-

poor chromosome regulates autosomal gene expression
is through the sequestration of heterochromatic factors.
Differential sequestration of these factors by poly-
morphic regions of the Y chromosome might explain the
modulation of both PEV and genome-wide gene expres-
sion. Consistent with this hypothesis is the observation
that XXY D. melanogaster females with polymorphic Y
chromosomes show differential expression of thousands
of genes despite not expressing Y-linked proteins [98]. In
D. melanogaster, the Y chromosome also contains vari-
ation in repeat number of the multi-copy rDNA locus,
which leads to both differential PEV and global gene ex-
pression [99].
In addition to the hypothesis that the Y chromosome

serves as a heterochromatic sink, at least two complemen-
tary and non-mutually exclusive hypotheses are evident
[100]. First, variable Y chromosomes might contribute dis-
tinct pools of small RNAs. Second, Y chromosome variation
might perturb the spatial arrangement of chromosomes in
the nucleus. Genes responsive to the Y chromosome may
show restricted nuclear distribution, although the arrange-
ment is bound to be variable across cell types [100]. Inter-
estingly, Branco et al. [101] recently showed that the
manifestation of variable Y chromosomes on gene expres-
sion requires wild-type function of the heterochromatin
protein 1 (HP1). They also observed contrasting effects be-
tween testis-specific and somatic gene expression that
emerged from the genetic interaction between HP1 and the
Y chromosome. Interestingly, HP1's role in nuclear archi-
tecture and its association with nuclear lamin proteins have
long been known [102,103]. They raise the possibility that
naturally occurring variation in the Y chromosome might
modulate nuclear architecture and alter the accessibility of
the transcription machinery to specific genes.
In mice, the number of X chromosomes appears to in-

fluence PEV and reporter gene expression, whereas a
contribution from the Y chromosome is not apparent.
This might occur because the mouse Y chromosome rep-
resents a much smaller percentage of the haploid male
mouse genome (about 3%) than it does in Drosophila.
Female mice, however, have a heterochromatic inactive X
chromosome which appears to play a role in regulating
PEV. Male mice show markedly increased PEV silencing
of a reporter gene compared to females, but analyses with
the FCG model suggest that the phenomenon might be
due to X chromosome number rather than presence of a
Y chromosome. Accordingly, both XYM and XYF mice
showed greater silencing than XXM or XXF. The use of
an additional mouse model, in which a modified Y
chromosome is attached to an X chromosome to produce
XXY males for comparison with XO females, separated
the individual effects of the X and Y chromosomes. XXY
males created with this model displayed less silencing of
the reporter gene than the XO females [60]. Hence, the
molecular role of the DrosophilaY chromosome as a likely
sink for heterochromatin factors might have its mamma-
lian counterpart in the inactive X chromosome [77].
As the regulatory nature of sex chromosomes is likely

to revolve around epigenetic mechanisms, it is relevant
to note that the differential expression of genes in XX
versus XY mice may also be due to Xi escapees, many of
which code for chromatin proteins [77]. This observation,
combined with variable Xi escapee patterns [42], further
supports the notion that sex chromosomes contribute to
autosomal and X chromosome gene expression through
chromatin remodeling. HP1, a major modifier of PEV in
mice and Drosophila, provides further evidence of sex bias
in chromatin. The protein appears to exert sex-specific
gene regulation in Drosophila, and deletion causes sex-
biased lethality [104]. Interestingly, genes identified as re-
sponsive to sex chromosome complement in mammals
were enriched for candidates sensitive to HP1 [60].

Sex chromatin in genotype-by-environment interactions
Sex-biased chromatin states on autosomes (e.g., differen-
tially methylated DNA between the sexes) might emerge
from trans regulation by sex chromosomes. This genetic
interaction might set the stage for additional second-
order interactions with the environment and manifest as
global gene expression patterns. Maternal nutrient re-
striction (MNR) during fetal growth may illustrate the
potential for environmental modulation with long-term
effects. The research emerged in part due to accurate
record keeping through the Dutch Hunger Winter, a
period during World War II in which the western part
of the Netherlands went through official food rations.
Health and birth records remained intact in three hospi-
tals, and cohort studies traced the lifelong health and
disease trajectories of individuals conceived and born
during this time [105]. The studies have provided insight
into the developmental origins of health and disease and
highlighted possible early origins of sex differences.
Lipid profiles of adults exposed prenatally to famine ex-

hibited sex bias independent of gestational timing: adult
women who experienced prenatal nutrient restriction
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showed elevated total and LDL cholesterol and triglycer-
ide concentrations, risk factors for cardiovascular disease,
compared to unexposed women; men did not show such
an increase [106]. Furthermore, Tobi et al. [107] compared
DNA methylation patterns in 15 genes associated with
metabolic and cardiovascular disease in individuals pre-
natally exposed to famine. The results suggest that the
timing of famine exposure might underlie gene expression
and methylation differences. Specifically, six loci displayed
methylation differences compared to an unexposed same-
sex sibling; the association differed by sex in three loci.
When eight loci were tested for methylation differences in
late-gestational exposure to famine, men displayed methy-
lation differences in two of the three sex-associated loci.
Methylation differences included both increases and de-
creases, and one locus displayed both an increase and de-
crease depending on timing of famine exposure [107].
Similar sex-specific methylation in response to MNR was
observed in sheep. A periconceptual modest reduction of
B vitamins resulted in adult phenotypes that included ele-
vated blood pressure, insulin resistance, and obesity. Ex-
posed adult offspring exhibited altered methylation states
in 57 of 1,400 CpG islands: 88% of the loci were hypo-
methylated or unmethylated compared to controls, and
53% of the altered loci were specific to males, while 12%
were specific to females [108]. These associations and sex-
specific effects are intriguing and might include both
causative and correlated epigenetic modifications.
Maternal stress in mice might also influence offspring

behavior in a sex-dependent manner. Male offspring ex-
posed to early prenatal stress (E-PS) displayed behavioral
changes and depressive-like phenotype as adults [109].
Male mice also showed altered expression levels of
stress-responsive proteins: corticotropin-releasing factor
expression was increased in the central nucleus of the
amygdala, while glucocorticoid receptor expression was
decreased in regions of the hippocampus. In the hypo-
thalamus, the corticotropin-releasing factor promoter
had reduced levels of DNA methylation and the gluco-
corticoid receptor promoter had increased methylation;
additionally, the corticotropin-releasing factor promoter
in DNA isolated from the central nucleus of the amyg-
dala also had reduced methylation. Since the fetal brain
is not yet formed at the E-PS period, the long-term, sex-
specific epigenetic effects on behavior might be mediated
by sex-specific changes in placental gene expression. Pla-
cental gene expression analyses in E-PS mothers of
males revealed up-regulation of peroxisome proliferator-
activated receptor alpha (PPARα), insulin-like growth
factor binding protein 1 (IGFBP-1), glucose transporter 4
(GLUT4), and hypoxia-inducible factor 3a (HIF3a).
However, the placenta from mothers of females showed
down-regulated PPARα. DNA methylation machinery
also varied between male and female embryos and
between control and E-PS embryos. The methylation
maintenance enzyme DNMT1 was lower in male control
compared to female control placentas: E-PS caused no
significant change in expression in males, but caused a
significant increase in enzyme expression in females
[109]. Sex-biased placental response in PPARα methyla-
tion may also provide a mechanism for the sex-biased
disease phenotypes seen in response to MNR. DNA
methylation in the PPARα promoter decreased in the
liver of rats prenatally exposed to a protein-restricted
diet. While the promoter methylation decrease was
small, from 6.1% to 4.5%, the change corresponds to a
26% decrease compared to controls and accounted for
up to 43% of the variance in gene expression of PPARα
[110]. These results might reveal both the disruption
caused by exposure to stress as well as mechanisms of
stress protection.

Sex-biased disease phenotypes responsive to Y
chromosome genetic background
Although specific mechanisms and causal networks are
poorly defined, sex chromosome and background inter-
actions are likely relevant to human disease states. Sex
chromosome-dependent gene expression variation in im-
mune response genes might be one pathway for modulat-
ing disease phenotypes. Y-linked regulatory variation, the
quantitative effects of polymorphic Y chromosomes on
genome-wide gene expression seen in Drosophila, may
provide clues to key cellular mechanisms with phenotypic
consequences. Aside from the disproportionate modula-
tion of genes that code for protein products that localize
to the nucleus and which might modify chromatin dynam-
ics, there is a substantial contribution of Y chromosome
origin to the differential expression of immune response
genes [79,98,111].
Murine disease susceptibility mediated by Y chromo-

some origin has also been documented in response to
challenge with the coxsackievirus B3 (CVB3). Twelve Y
chromosome consomic strains were generated on a B6
background, and CVB3-induced mortality in the conso-
mic strains exhibited a continuous distribution. Although
sex hormones have been shown to mediate CVB3 suscep-
tibility, the pattern of mortality was found to be independ-
ent of prenatal or adult testosterone levels [112]. Thus,
the role of the Y chromosome in infectious disease suscep-
tibility may be in part non-hormonal.
EAE is a widely used animal model for studying the

pathogenesis of MS. In humans, MS is more prevalent
in women, and the ratio of women to men appears to be
increasing [113-115]. One reason for the sex bias might
be the protective effect of testosterone. EAE in three
strains of mice has a similar sex bias as seen in human
MS. Investigation using one strain (SJL) documented
that castration increased disease susceptibility in male
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mice, presumably due to the decrease in testosterone
upon removal of the male gonads [116]. Castrated males
and normal females developed a similar disease course
[116]. Castration of male mice similarly increases disease
prevalence and susceptibility in models of non-obese
diabetes, thyroiditis, and adjuvant arthritis, diseases that
have a similar sex bias as MS [3]. Furthermore, testoster-
one levels are inversely correlated with disease progres-
sion in males, peaking after recovery and at the lowest
levels during the height of the disease [117]. Neverthe-
less, in two strains of mice, the sex bias in EAE is re-
versed (males display increased susceptibility), whereas
another strain shows no sex bias (reviewed in [3]). This
result echoes earlier murine research in which the effect
of androgen removal on EAE was dependent on genetic
background [118], and observations that autosomal gene
associations with MS susceptibility are often sex-specific
in humans [119,120].
Interestingly, genetic variation specifically on the Y

chromosome affects EAE susceptibility in male mice
[116,121]. While prevalence in SJL mice mimics that of
humans, the female-to-male ratio decreases with age,
due to the increasing susceptibility of aging male mice.
While lower testosterone influences male SJL suscepti-
bility [116], Spach et al. [121] demonstrated a role for
the Y chromosome as well. Consomic strains of SJL and
B10.S mice were generated with the reciprocal Y
chromosome, resulting in SJL.YB10.S and B10.S.YSJL

strains. While B10.S and B10.S.YSJL mice displayed similar
resistance to EAE, the phenotype of SJL and SJL.YB10.S

mice diverged, and SJL.YB10.S mice displayed a more se-
vere disease course than the SJL mice [121].
One hypothesis is that copy number variation in the Y

chromosome modulates EAE and experimental myocar-
ditis susceptibility. In mouse models, Y chromosome
substitution lines show that susceptibility to these dis-
eases is correlated with the number of repeats of the Y-
linked genes Sly and Rbmy [79]. These Y chromosome
structural polymorphisms might modulate global gene
expression and alternative splicing in a cell-type specific
manner that depends on genetic background. A com-
parison of the mRNA expression in CD4+ T cells be-
tween a Y chromosome introgression and its unaltered
counterpart revealed 734 differentially expressed tran-
scripts. In the same comparison, 64% of chromatin re-
modeling genes assayed were differentially expressed,
and 3,247 transcripts were alternatively spliced [79].
Evidence of sex chromosome and background interac-

tions in autoimmune disease has also been observed
using the FCG model. A sex chromosome effect on EAE
was observed in castrated SJL mice: XXM and XXF dis-
played a more severe disease course than did XYM or
XYF. However, when the FCG model was used to inves-
tigate sex chromosome effects in a mouse strain that did
not display a sex-biased MS phenotype (the C57BL/6
strain), disease outcomes did not differ when comparing
either of the XX or XY genotypes. The mouse model for
lupus, which is characterized by a 9:1 female-to-male ra-
tio in humans, revealed a sex chromosome effect in the
FCG SJL mice [54]. Gonadectomized XX mice of both
sexes exhibited greater disease severity and mortality
than either of their XY counterparts. In gonadally intact
mice, XXF had significantly higher mortality than XYF,
whereas neither XYM nor XXM showed significant mor-
tality during the duration of the study [54]. These results
suggest the influence of sex chromosomes as well as the
protective effects of testosterone in gonadal intact male
mice.
Finally, recent research points toward a role for the Y

chromosome in regulating cardiac phenotypes, neonatal
programming, and chromatin structure in mice
[122,123]. Llamas et al. [123] generated consomic strains
with a Y chromosome from either a C57BL/6 J (YB6) or
A/J (YA/J) strain on a B6 background and noted that car-
diomyocytes from mice with a YB6 were larger than
those from mice with a YA/J. Increased cardiomyocyte
size is a characteristic of cardiomyocyte hypertrophy, a
stress response that can be beneficial but is also associ-
ated with sudden death and overt heart failure [124].
They noted that the reduced size of B6-YA/J cardiomyo-
cytes was due to the absence of hypertrophic effects of
post-pubertal testosterone on the cells, but that testos-
terone did cause differential gene expression in the two
strains [123]. Additionally, the consomic strains showed
differential genomic occupancy of androgen receptors in
cardiac chromatin from intact adult mice and in neonatal
hearts. B6-YB6 mice displayed signatures of androgen-
receptor binding that were significantly enriched for genes
related to cardiac morphology [122]. Hence, the data raise
the possibility that differences in the manifestation of car-
diovascular disease in men and women might be influ-
enced in part by the Y chromosome.

Conclusions
Sex chromosome dosage, sex chromosome genes,
and sex hormones underlie sex-specific phenotypic
and sex-biased expressions. Interaction of these fac-
tors with the genetic background of autosomes and
mitochondria further contributes to sex-biased phe-
notypes and explains the components of within-sex
and between-sex variation. Heterochromatin load on
the Y chromosome and on the inactive X chromo-
some adds another component and possibly new
mechanisms to sex chromosome mediation of epi-
genetic states on autosomes. Both the X and Y chro-
mosomes have been shown to differentially modulate
global gene expression, including examples in which
the chromosomes play a role in determining
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susceptibility to murine models of obesity, lupus,
MS, and cardiac phenotypes. However, outcomes are
often conditional on the genetic background of auto-
somes and sex chromosomes. Recent models in
Drosophila and mouse suggest molecular mecha-
nisms of polymorphic sex chromosome action and
indicate that phenotypic responses are sensitive to
environmental stress. Finally, the interaction of sex
chromosomes with the mitochondrial background
might be relevant to the emergence of sex-specific
chromatin states.
Altogether, the lack of well-parameterized models

for how the chromatin of distinct chromosomes in-
teracts and produces perturbations that can be de-
tected as trans-regulatory effects needs broader
acknowledgement. Some independent contributions,
such as mitochondrial mother's curse in males, are
well defined, but mechanisms for the expression of
the curse are often less clear. Indeed, a related chal-
lenge has been to systemically address the inter-
action between genetic elements that might have
evolved under disparate pressures (e.g., X chromo-
some, Y chromosome, and mitochondria). We envi-
sion that understanding how these genetic elements
interact will reveal mechanisms of sex-biased dis-
eases in somatic tissues, which might intersect
unique pathways of sex chromosome action.
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