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ABSTRACT Background: In the past few years, U-Net based U-shaped architecture and skip-connections
havemade incredible progress in the field ofmedical image segmentation. U2-Net achieves good performance
in computer vision. However, in the medical image segmentation task, U2-Net with over nesting is easy to
overfit. Purpose: A 2D network structure TransU2-Net combining transformer and a lighter weight U2-Net
is proposed for automatic segmentation of brain tumor magnetic resonance image (MRI). Methods: The
light-weight U2-Net architecture not only obtains multi-scale information but also reduces redundant feature
extraction. Meanwhile, the transformer block embedded in the stacked convolutional layer obtains more
global information; the transformer with skip-connection enhances spatial domain information represen-
tation. A new multi-scale feature map fusion strategy as a postprocessing method was proposed for better
fusing high and low-dimensional spatial information. Results: Our proposed model TransU2-Net achieves
better segmentation results, on the BraTS2021 dataset, our method achieves an average dice coefficient
of 88.17%; Evaluation on the publicly available MSD dataset, we perform tumor evaluation, we achieve
a dice coefficient of 74.69%; in addition to comparing the TransU2-Net results are compared with previously
proposed 2D segmentation methods. Conclusions: We propose an automatic medical image segmentation
method combining transformers and U2-Net, which has good performance and is of clinical importance.
The experimental results show that the proposed method outperforms other 2D medical image segmentation
methods.
Clinical Translation Statement: We use the BarTS2021 dataset and the MSD dataset which are publicly
available databases. All experiments in this paper are in accordance with medical ethics.

INDEX TERMS Deep learning, medical image segmentation, transformer, U-Net.

I. INTRODUCTION
The majority of primary brain tumors, comprising between
30% and 40% of all brain tumors and over 80% of all
malignant brain tumors in adulthood, are gliomas, and sur-
gical resection is currently the most effective treatment,
so automatic and accurate segmentation of brain tumors is
very important in clinical evaluation and diagnosis [1], [2].
A typical neuroimaging method used in clinical practice for

quantitative evaluation of common brain tumors is magnetic
resonance imaging (MRI), which not only has the advan-
tages of non-invasive, non-electrical radiation and high soft
tissue contrast, but also provides a variety of different imag-
ing models, such as T1-weighted (T1), contrast-enhanced
T1-weighted (T1c), T2- weighted (T2), and Fluid attenuation
inversion recovery (Flair), the different imaging modal-
ities all provide the physician with different critical
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information to obtain the most accurate diagnosis [3].
Therefore, for clinical applications, automated and precise
segmentation of malignant tumors on multimodal MRI is
crucial.

Preserving local features while conducting efficient seg-
mentation is a crucial issue for medical image segmentation
tasks [4]. In recent years, medical image segmentationmodels
have been essential in advancing deep learning research.
Particularly convolutional neural networks have been used in
medically assisted diagnosis, and therapy as deep convolu-
tional neural networks can obtain more features at different
levels from the data [5]. Fully Convolutional Networks
(FCN) [6] achieve end-to-end semantic segmentation; dense
pixel-level prediction of medical pictures is made possible by
U-Net [7], which uses a symmetric encoder-decoder structure
with skip-connections to gradually restore the downsample
feature maps to their initial dimensions [8]. U-Net is used
as the basis for subsequent studies; encoder decoder-based
U-Net achieves the acquisition of many U-Net-based 2/3D
variant networks such as D-SEAU-Net [9], U-Net++ [10],
ERU-Net [11], 3DV-Net [12], 3DU-Net [13], etc. The seg-
mentation of brain tumors [14], liver [15], brain tissue [16],
retinal blood vessel extraction [17], etc., has achieved high-
quality performance.

However, the perceptual field of convolution is con-
strained, limiting its ability to capture long-distance rela-
tionships between different visual regions. Recently, the
Vision Transformer (ViT) [18] has emerged as a solution,
excelling at capturing global information by dynamically
calculating weights between global pixels [19], [22], [26].
Compared to existing convolutional architectures, Vision
Transformer achieves superior performance by partition-
ing images into predetermined-sized blocks and employing
self-attention methods to establish relationships among these
patches, surpassing the capabilities of conventional con-
volutional architectures [23], [24], [25]. This advancement
has spurred the development of numerous transformer-based
networks, including TransFuse [20], TransBTS [21], and
Cotr [27], which combine transformers and CNNs to extract
features.

Nonetheless, actual clinical medical images typically pos-
sess few scanning layers, low resolution, and disjointed
contexts. In 3D convolutional-based networks, the improve-
ment in accuracy is relatively marginal compared to the
numerous models, and the convergence performance of
transformer-based combinations on small datasets is poor,
impeding the clinical application of transformers. Our
research focuses on effectively integrating transformers with
deep convolutional layers to achieve precise segmentation in
clinical medical images.

An excellent segmentation model must be able to incor-
porate multi-scale features with fine-grained local details at
the same time. Previously, feature fusion was accomplished
by simply concatenating features, but FPN [28] creates a
new feature pyramid approach for multi-feature fusion by

extracting features of varying scales from different layers of
the network architecture for prediction. Furthermore, Fast-
FCN [29] is more semantic by combining features of different
sizes after convolution.

In actuality, high-level and low-level feature information
are complemented, which is crucial to effectively integrate
both for semantic segmentation. Since low-level features
resolution is higher, it contains more location and detailed
information. But due to less convolution, it has lower seman-
tics and more noise. High-level characteristics provide more
semantic information but have limited resolution and poor
detail perception [8], [30].

To address the above issues, we propose a new image
segmentation method that demonstrates the feasibility of
transformer embedded in deep convolution. This paper main
contributions are as follows:

• We propose a novel and efficient segmentation net-
work named TransU2-Net. The new method can accu-
rately capture the spatial domain information which is
enhanced by introducing transformers across the skip
connections;

• We construct a new multi scale feature map fusion
strategy for enhancing fusing high and low dimensional
spatial information, so that the output results have stronger
low level feature semantic information and high-level details
information;

• TransU2-Net is the first transformer application
in deeply nested U-shaped structures. The methods
proposed in this paper have higher accuracy than
most 3D models in many clinical medical segmentation
applications.

II. MATERIALS AND METHOD
A. DATASET
1) BraTS2021 DATASET
We used the publicly available BraTS2021dataset [31], [32],
[33], which offers a substantial amount of labelled brain
tumor MRI datasets, primarily from cancer imaging archives.
Since the BraTS2021 challenge’s validation and test sets are
unavailable to the general public, we subdivided all of the
challenge’s training sets (1251 3D MRI images), split into
7:3 ratios (876 cases for the training data and 375 cases for
the test data). The fourMRImodalities used for each patient’s
scans were T2 fluid-attenuated inversion recovery (T2-Flair),
T1-weighted (T1), post-contrast T1-weighted (T1-Gd) and
T2-weighted (T2), with T1 serving as the alignment standard.
All data were resampled to 1 mm3 resolution after cranial
debulking, with a final image size of 240 × 240 × 155;
the ground-truths included four regions: enhancing tumor
(ET-label 4), the necrotic tumor core (NCR-label 1), the
healthy tissue, the peritumoral edematous and invading tissue
(ED-label 2), and the background (Background-label 0). We
segment and evaluate the whole tumor (label 2+4+1), tumor
core (label 4+1), and enhancing tumor (label 1) segmentation
results.
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FIGURE 1. Thumbnails of medical images in various datasets.

2) MEDICAL SEGMENTATION DECATHLON DATASET
We used Task01_BrainTumour data and Task03_Liver data
in MSD dataset [34]. Task01_BrainTumour provides a large
number of patients diagnosed with either glioblastoma or
lower grade glioblastoma, Task03_Liver provides patients
with liver and liver tumors. Due to the Medical Segmen-
tation Decathlon Dataset the verification and test sets are
not publicly available, we segmented all the training sets
(Task01_BrainTumour: 485 4D MRI images, Task03_Liver:
131 3D CT images) provided in the challenge and divided
them according to 7:3 (Task01_BrainTumour: 340 training
data and 144 testing data, Task03_Liver: 100 training data and
31 testing data). Task01_BrainTumour, all experimental cases
were 4D MRI images, and using the SRI24 brain structure
template, MRI scans were co-registered to a reference atlas
space, resampled to isotropic voxel resolution of 1 mm3, and
skull-stripped using identical technique before being man-
ually refined. Ground-truths included three regions: glioma
(label 2), necrotic/activate (label 3) and edema (label 1).
Segmentation accuracy was measured of whole tumor (label
1+2+3), and tumor core (label 2+3). Task03_Liver, the
in-plane resolution of all 3D images is 0.5 to 1.0 mm, and the
slice thickness is 0.45 to 6.0 mm. Liver and tumor annotations
were performed by radiologists. Ground-truths included two
regions: liver (label 1) and tumor (label 2). Segmentation
accuracy was measured of whole liver (label 1+2) and tumor
(label 2).

Some thumbnails of medical images and their ground
truths from BraTS2021 Dataset and Medical Segmentation
Decathlon Dataset are shown in Figure 1, respectively.

B. PREPROCESSING STEPS
To preprocess the 3D medical image data, we implemented
2D slicing. As the MSD Task01_BrainTumour data was in
4D, we split the data into 3D data for processing. For all 2D
slices, we applied Z-Score normalization to each modality
image. To reduce the proportion of background information

in medical images, which occupies a relatively large por-
tion of the overall image, we centrally cropped our images.
Finally, we sliced the data from each modality and combined
them into multiple channels.

C. SEGMENTATION NETWORK ARCHITECTURE
In this paper, we use a deeply nested U-shaped structure
Un-Net. In theory, n can take any positive integer, but
too much-nested structure will consume many resources in
the training process. According to the above, we set n=2,
as shown in Figure 2, TransU2-Net network is a two-level
nested U-shaped structure. The input dimension of TransU2-
Net is 4 × 160 × 160. The backbone network consists of
seventeen blocks, which contain seventeen Conv Blocks and
five Transformer Blocks. To obtain more global informa-
tion, we use transformer in the U-Net cascade to get global
information. In addition, we accept feature map information
at different levels by the jump fusion strategy makes the
low-level features fused with the high-level features so that
the final segmentation result has stronger linguistic informa-
tion and more detailed information at the same time. In the
following subsections, we describe the specific implementa-
tion of each part in detail.

1) CONV MODULE
To handle complexmedical image segmentation tasks, we use
the Conv block as each layer of the encoder and decoder. The
module is similar to a small U-Net structure; this allows us
to extract more details, enabling us to extract finer details.
To prevent overfitting, we incorporate dilated convolution in
the middle layer of each conv block, which enhances the
perceptual field. Each Conv Block comprises the structure
illustrated in Figure 3, using a step size of 1 and padding
of 1, each convolutional kernel is 3 × 3 in size. As the
stage increases, we decrease the number of convolution layers
per Conv Block, and at stages 5 and 6, we replace pooling
and upsampling procedures with dilated convolutions. This
indicates that all intermediate feature maps at stages 5 and
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FIGURE 2. The illustration of the proposed TransU2-Net for automatic medical image segmentation, we use
U2-Net to capture local information and leverage the Transformer encoder to model long-distance
dependencies from the global view. Jump feature fusion module are stacked to gradually produce
high-resolution segmentation results.

FIGURE 3. Conv module.

6 have the same resolution as their input feature maps. Spe-
cific parameters of each conv block are presented in Table 1.

2) TRANSFORMER MODULE
The original transformermodel is only suitable for processing
longer sequences of information. We incorporate positional
encoding for each image patch, enabling the model to learn
the relative positional relationships among image blocks,
perception enhancement is then performed by the multi-layer
perception mechanism. We have integrated a transformer
module into the skip connection to capture global information
in addition to shallow features. Figure 4 shows the specific
implementation process of transformer block module, and

TABLE 1. Specific parameter configuration of conv block.

FIGURE 4. Transformer module.

the specific parameter configuration is shown in Table 2.
Suppose the size of the token entering the Transformer Block
is χϵRH×w×S , the size of patches (H ′,W ′), and the size of
each token is (H

′

H , W
′

W ), after which the token is reshapes,
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TABLE 2. Specific parameter configuration of transformer block.

and by Positional encoding we record the positional of each
token, and in the subsequent Transformer Box the calculation
process is as follows:

Ôl = MSA[Liner_nor(Ol)] + Ol−1 (1)

Ôl = MLP(Ôl) + Ol (2)

whereMSA represents the multi-headed self-attention mech-
anism module Ol and Ol−1 represent the output of the trans-
former module, Liner_nor and MLP denote normalization
and Multi-Layer Perceptron, we determine the self-attention
using:

A = Softmax(Q× K/d
1
2 ) (3)

Attention = A× V (4)

where Q,K ,V denote queries, keys and values respectively,
d is the size of the query and key.

3) JUMP FEATURE FUSION MODULE
As illustrated in Figure 2, the top layer comprises
high-resolution features Fhigh, while the remaining layers
consist of low-resolution features xi. The resolution decreases
with smaller values of i. Since high-level features are derived
from lower levels, adjacent features exhibit similarity. To
perform feature fusion, we employ features with diverse
resolutions. To ensure feature size consistency, we initially
measure all hierarchical features for upsample. Subsequently,
for expanding the receptive field, we utilize a 1× 1 expansion
convolution to generate a new feature map, as depicted by the
specific formula below:

Xi = Conv1×1,dilation=i(xi) (5)

where i is the number of layers of the feature, After
that, concatenate the output results of layer i + 3 and
pass 1 × 1 convolutional block for channel count reduction.

Yi = Conv1×1[Concat (Xi,Xi+3)] (6)

where Concat is concatenate, the new high-resolution feature
map Z is then obtained by Concatenation after Squeeze pro-
cessing of all processed features:

Z = Concat[Squeeze (Xi) , . . . , Squeeze (Xn)] (7)

where Squeeze represents using 1 × 1 convolution to restore
the channel. Finally, the feature map Z is fused with the

high-resolution feature map Fhigh,and the output shape is
restored through a 1 × 1 convolutional block.:

F = Conv1×1[Concat
(
Z ,Fhigh

)
] (8)

D. LOSS FUNCTION
Weuse a combined loss function for pixel-level segmentation,
region-block segmentation to constrain the model optimiza-
tion direction and further improve the segmentation results.
The loss is given by:

LossDice = 1 −
2 |P ∩ T |

|p| + |T |
(9)

LossBCE = −
[
T log (P) + (1 − T ) log (1 − P)

]
(10)

Loss = LossDice + wLossbce (11)

where T represents the ground truth,P represents the segmen-
tation result, w represents the weight of Lbce, and w is taken
as 0.5 in this work.

E. IMPLEMENTATION DETAILS
The proposed TransU2-Net ran on the sever with the sug-
gested framework to function: one 12-core Intel 12700K
CPU, one NVIDIA 3080Ti (12GB) GPU, 64GB RAM,
CUDA 11.7 + Torch v1.10.2. All experimental and compari-
sonmodels do not use any pre-trainedmodels already trained.
The models are trained using the Adam optimizer with an
initial learning rate of 3 × 10−4, the batch size to 4, The
weight decay rate is 10−5, and the momentum is set 0.9. and
the training epoch is set to 200.

III. EXPERIMENTS AND RESULT
A. EVALUATION METRICS
We used five standard metrics for measuring the effectiveness
of medical segmentation to assess the model’s performance
in the two datasets. The most used metric in medical image
contests is Dice coefficient metric. It is applied to deter-
mine how similar two samples are, and crucial to obtain
fine-grained information from the border for medical picture
segmentation. Hausdorff distance (HD) is sensitive to the
segmented border; Dice coefficient metric is sensitive to the
interior filling of the mask. In order to evaluate the model
segmentation performance, we also use the positive predictive
value (PPV) and Sensitivity, for the auxiliary evaluation. The
following is the calculating formula:

Dice =
2|p ∩ t|
|p| + |t|

(12)

HD (p, t) = max {h (p, t) , h (t, p)} (13)

h (p, t)max
a∈p

=

{
min
b∈t

∥ a− b ∥

}
(14)

h (p, t)max
a∈t

=

{
min
b∈p

∥ b− a ∥

}
(15)

Sensitivity =
TP

TP+ FN
(16)

PPV =
TP

TP+ FP
(17)
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TABLE 3. Comparison results of the proposed method on the BraTS2021 dataset.

FIGURE 5. Segmentation results on the BraTS2021 dataset.

Jaccard =
|p ∩ t|
|p ∪ t|

(18)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(19)

where p represents the ground truth, t represents the segmen-
tation result. The ∥ · ∥ is the distance normal form between
point sets ground truth and segmentation result; TP, TN ,FP
and FN indicate true-positive, true negative, false-positive,
and false-negative predictions.

B. MAIN RESULTS
1) BraTS2021 DATASET
To demonstrate the overall segmentation performance of
TransU2-Net, we compare it with other excellent segmen-
tation directions. We have evaluated TransU2-Net with
four types of methods, covering one 2D convolutional
segmentation-based method: FCN [6], five U-Net based
methods: U-Net [7], DenseU-Net [35], U-Net++ [10],
U-Net3+ [36], U2-Net [37]; two 3D convolution-based seg-
mentation methods: 3DU-Net [13], 3DV-Net [12]; and one
kind of transformer-based segmentation methods CA-Net
[38]. Although the PPV and Sensitivity of TransU2-Net were

not superior to all other methods, the qualitative results still
showed their competitiveness. The Dice coefficient of our
TransU2-Net for WT, ET, and TC are 92.30%, 86.32%, and
85.88%. Table 3 shows the quantitative findings, which are
equivalent to or better than the 2D/3D approaches indicated
in the table. In terms of Hausdorff distance, the disparity
between TransU2-Net and U-Net3+ [36] is marginal, but
TransU2-Net outperforms U-Net3+ in terms of PPV and
Sensitivity.

As shown in Figure 5, we visualize the segmentation results
of several representative segmentation networks. In Figure 5,
it can be seen that, FCN [6], DenseU-Net [35], U-Net++ [10]
and U-Net3+ [36] appear to be unclear for boundary segmen-
tation. Compared to the rest of 3DU-Net [13] and 3DV-Net
[12], TransU2-Net has the sharpest borders and less noise.
The attention-based method effectively suppresses the irrel-
evant background region while reducing noise interference
to the segmented region. Furthermore, the proposed jump
feature fusion module assists in the learning of more com-
plex semantic features for distinguishing objects in complex
situations. In Figure 6, we show the 3D segmentation result
displayed in BraTS2021 data and can see that the boundary
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TABLE 4. Comparison results of the proposed method on the Msd Task01 dataset.

TABLE 5. Comparison results of the proposed method on the Msd Task03 dataset.

FIGURE 6. Display of 3D segmentation results. WT (green), TC (yellow), ET
(red).

of the model segmented by our method is more precise and
less noisy. As a result, our model can describe more details,
resulting in the best visual segmentation performance.

2) MEDICAL SEGMENTATION DECATHLON DATASET
We evaluated most of the mainstream 2D segmentation mod-
els in MSD Task01 data, including FCN [6], U-Net [7],
AttU-Net [39], DenseU-Net [35], U-Net++ [10], U-Net3+
[36], six segmentation models. TransU2-Net achieved a bet-
ter segmentation, and tumor core are 74.69% and 69.72%,
respectively in the non-large medical image dataset of MSD;
in the PPV metric, the WT and TC metrics improved

by 0.36% and 0.13%, respectively, relative to the best-
performing U-Net3+ [36], and the WT also reached the
best in the sensitivity metric. Which also has a significant
improvement for Hausdorff distance. The numerical out-
comes are displayed in Table 4.

As shown in Figure 7, we show the visualization of several
models in the MSD dataset, and we can see that our seg-
mentation results are closer to ground truth than U-Net [7]
and AttU-Net [39], and TransU2-Net combines the advan-
tages of transformer and convolution, which can segment
brain tumors more accurately and get closer to the factual
results.

To validate the effectiveness of TransU2-Net in other med-
ical image segmentation tasks, we applied the model to the
MSD Task03_liver segmentation task. A detailed compari-
son of different models is presented in Table 5. As shown
in Table 5, TransU2-Net proposed in this study achieved
superior performance compared to other compared networks,
with the highest Dice coefficient attained in the liver tumors
segmentation. Compared to TransU-Net [40], which also
utilizes a transformer, TransU2-Net, featuring a deep U-Net
structure as an encoder, is capable of extracting deeper-level
features more effectively. The use of the transformer facil-
itates the retention of location information while capturing
global contextual information, surpassing other attention
mechanism-based networks.

In Figure 8, we present the segmentation results for the
MSD task03 liver using TransU2-Net. Our results indi-
cate that TransU2-Net performs exceptionally well with
small datasets and outperforms other networks by producing
fewer false segmentations. This superior performance can
be attributed to the unique combination of the deep U-Net’s
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FIGURE 7. Segmentation results on the MSD Task01 dataset.

FIGURE 8. Segmentation results on the MSD Task03 dataset.

TABLE 6. Impact of the transformer module on different segmentation networks in the Msd Task03 dataset.

feature extraction capability and the transformer’s ability to
capture global features.

C. ABLATION STUDY
1) IMPACT OF THE TRANSFORMER MODULE
To validate the effectiveness of our proposed approach that
combines deep convolution with transformer, we incorporate
the transformer module into various segmentation networks
and evaluate their performance. The experimental results in

Table 6 demonstrate that adding the transformer module to
all segmentation networks leads to significant improvements,
with the U2-Net achieving the highest boost in AVG Dice
coefficient (1.96). These experiments confirm that the combi-
nation of a deepU-shaped networkwith a transformermodule
is a powerful approach for medical image segmentation.

To further illustrate the advantages of TransU2-Net,
we conducted an evaluation of the significance of the con-
verter module in the segmentation task. Our experimental
results, as presented in Table 7, indicate that the transformer
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TABLE 7. Impact of the transformer module on the BraTS2021 dataset.

TABLE 8. Impact of the jump feature fusion module on the BraTS2021 dataset.

module plays a crucial role in feature extraction. Specifically,
the transformermodule contributed to a considerable increase
in PPV (0.42%), and a decrease in Hausdorff distance (0.07).
In addition, by incorporating the transformer module into the
jump connection and increasing network depth, we observed
improved fusion of global and local features and better han-
dling of information loss, as reflected by a significant increase
in Dice coefficient (0.80%) and a reduction in Hausdorff
distance (0.10). These findings suggest that a reasonable
combination of deeply nested U-shaped structures and trans-
formers can be highly effective in segmenting target lesions.

2) ABLATION ON JUMP FEATURE FUSION MODULE
Finally, we assess the jump feature fusion module overall
segmentation performance on the model. The test results in
Table 7 demonstrate that our jump feature fusion module is
crucial in feature fusion. jump feature fusion module explic-
itly gives the model an improvement of 1.18 Dice coefficient.
We combine features from various levels using the jump
feature fusion module, resulting in segmented visuals with
the spatial information of high-level features and the semantic
information of low-level features. The outcomes demonstrate
that segmenting targets using the jump feature fusion module
is advantageous.

IV. CONCLUSION
In this paper, we propose a novel automatic segmentation
method for multi-modality brain tumor segmentation in MRI
based on a deeply nested U-shaped structure by combining
transformer with jump feature map fusion. The final archi-
tecture not only inherits the advantages of transformer in
learning global semantic associations but also uses different
levels of features to make the model retain more semantics
and more details. TransU2-Net has advantages in learning
global semantic associations and employing different levels
of features, allowing the model to retain more semantics and
details. The results of this paper proposedmodel TransU2-Net
on three datasets validate its effectiveness.

In the future, we will improve and expand the TransU2-
Net architecture to extend the model to 3D segmentation.
Will also consider introducing the domain adaptationmethod,

so that the model can be adapted to different modalities and
achieve optimal segmentation in terms of device parameters.

DATA AVAILABILITY STATEMENT
The BraTS2021 data that support this study are openly avail-
able at https://www.med.upenn.edu/cbica/brats2021; MSD
data that support this study are openly available at
http://medicaldecathlon.com.
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