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Abstract
This prospective study was conducted to investigate the role of quantitative ultra-
sound (QUS) radiomics in predicting recurrence for patients with node-positive head-
neck squamous cell carcinoma (HNSCC) treated with radical radiotherapy (RT). The 
most prominent cervical lymph node (LN) was scanned with a clinical ultrasound 
device having central frequency of 6.5 MHz. Ultrasound radiofrequency data were 
processed to obtain 7 QUS parameters. Color-coded parametric maps were generated 
based on individual QUS spectral features corresponding to each of the smaller units. 
A total of 31 (7 primary QUS and 24 texture) features were obtained before treatment. 
All patients were treated with radical RT and followed according to standard institu-
tional practice. Recurrence (local, regional, or distant) served as an endpoint. Three 
different machine learning classifiers with a set of maximally three features were used 
for model development and tested with leave-one-out cross-validation for nonrecur-
rence and recurrence groups. Fifty-one patients were included, with a median follow 
up of 38 months (range 7–64 months). Recurrence was observed in 17 patients. The 
best results were obtained using a k-nearest neighbor (KNN) classifier with a sensi-
tivity, specificity, accuracy, and an area under curve of 76%, 71%, 75%, and 0.74, 
respectively. All the three features selected for the KNN model were texture features. 
The KNN-model-predicted 3-year recurrence-free survival was 81% and 40% in the 
predicted no-recurrence and predicted-recurrence groups, respectively. (p = 0.001). 
The pilot study demonstrates pretreatment QUS-radiomics can predict the recurrence 
group with an accuracy of 75% in patients with node-positive HNSCC.

Clinical trial registration: clinicaltrials.gov.in identifier NCT03908684.
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1  |   INTRODUCTION

Head and neck malignancies were the seventh most common 
cancer type globally in 2018, with 890,000 new cases diag-
nosed and responsible for 450,000 deaths.1,2 In general, head 
and neck cancers account for diverse primary sites, includ-
ing cancers of the thyroid, nasopharynx, larynx, oral cavity, 
oropharynx, salivary glands, and others. The majority of the 
malignancies arise from the epithelial lining of the anatomic 
subsites in the head-neck region, with squamous cell carci-
noma accounting for approximately 90%.3,4 Head and neck 
squamous cell carcinomas (HNSCC) arising from the oro-
pharynx, hypopharynx, larynx are often treated with organ 
preservation techniques with radical radiotherapy (RT) with 
or without concurrent chemotherapy (depending upon dis-
ease stage, age, medically fit patients).2 Given the anatomic 
and physiologic complexity of the head-neck region, treat-
ment-related toxicities can have significant implications on 
the quality of life.5 Technological advances in the past decade 
in the form of intensity-modulated radiotherapy (IMRT) and 
image guidance (IGRT) have helped in reducing the toxici-
ties like xerostomia and dysphagia.6,7 During presentation, 
approximately 40–60% of patients have locally advanced 
cancer, which constitutes advanced primary tumors with in-
volvement of surrounding structures, and/or regional LN me-
tastases, and are usually associated with a poor prognosis.2,4

The clinical outcomes of HNSCC are driven by several 
factors like the site of primary disease, stage during diag-
nosis, as well as other factors (including molecular features 
like human papilloma virus, patient performance status, risk 
factors like tobacco use, etc.).2,4 Imaging forms an integral 
part in the management of head-neck malignancies, serving a 
crucial role in disease staging, treatment (e.g., radiation plan-
ning), the assessment of treatment response, and surveillance. 
Different imaging modalities are used in HNSCC, including 
ultrasonography (US), computed tomography (CT), magnetic 
resonance imaging (MRI), and positron emission tomogra-
phy (PET). In recent years, the application of imaging has 
extended beyond the traditional role of diagnostics with the 
introduction of computational techniques. The field of “ra-
diomics” involves advanced quantitative analysis of images 
facilitated by artificial intelligence to correlate imaging fea-
tures with biological endpoints like molecular characteristics, 
perform risk-stratification, and to predict treatment response 
and clinical outcomes.8,9 The ability of noninvasive charac-
terization with imaging has generated tremendous interest in 
the application of radiomics and to serve as useful biomark-
ers, a step forward toward precision oncology. A significant 
body of emerging research is available related to radiomics in 
HNSCC using different treatment modalities primarily using 
CT, MRI, or PET with encouraging results.10-12

There is limited data investigating the utility of US-based 
radiomics in HNSCC. Ultrasound is a simple, inexpensive, 

easily accessible portable imaging modality with rapid scan 
acquisition and excellent patient compliance. B-mode US has 
a well-established role in HNSCC, particularly in the deter-
mination of LN metastasis and is often undertaken to guide 
and obtain tissue diagnosis in suspicious sub-clinical neck 
nodes.13,14 Quantitative ultrasound (QUS) is similar to the 
B-mode US in terms of scan acquisition, with the advantage 
of processing raw radiofrequency (RF) data, which retains 
more detailed information characterizing what has been in-
sonified.15 The elastic properties of the tissue at the micro-
cellular level, as probed by ultrasound, serve as a surrogate 
of biological characteristics and can be further processed to 
generate useful information. The various spectral param-
eters reflect intrinsic tissue properties like cellular density, 
scatterer size, and tissue organization, which correlates with 
biological outcomes.16-21 Texture analysis of the spectral 
features of the tissue can further help in characterizing the 
heterogeneity of the tumor, which often is linked to the re-
sponsiveness to treatment and clinical outcomes. An earlier 
report involving 32 patients, detailed that pretreatment QUS 
features could predict the response to RT in patients with 
head-neck malignancies.22 The present study investigates the 
role of QUS-radiomics obtained before starting RT in clas-
sifying recurrence groups for 51 patients with HNSCC. The 
study here represents the first clinical investigation on the use 
of QUS-radiomics in recurrence-risk estimation in patients 
with HNSCC treated with radical RT.

2  |   MATERIAL AND METHODS

2.1  |  Patient selection

The prospective observational study was undertaken at 
the Sunnybrook Health Sciences Centre, Toronto, ap-
proved by the institutional Research Ethics Committee. 
The trial was registered with clinicaltrials.gov.in (identi-
fier NCT03908684). The study was conducted according to 
the declaration of Helsinki following good clinical practice 
and monitored by the institutional ethics committee. All 
patients were needed to have a diagnosis of biopsy-proven 
HNSCC with primary site of oropharynx, hypopharynx, 
and larynx (inclusive of carcinoma of unknown primary 
with neck nodes) with clinically apparent neck nodes 
amenable to ultrasound imaging. Patients decided to be 
treated with radical intent RT (with or without concurrent 
chemotherapy), with no prior cancer-directed therapies, 
were considered eligible for the study. Patients with evi-
dence of distant metastasis were excluded from the study. 
A written consent form was obtained from all the patients. 
In patients with carcinoma unknown primary (CUP), the 
histology from LN showing features suggestive of naso-
pharyngeal carcinoma or expression of Epstein–Barr virus 
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were excluded from the study. A minimum follow up of 
12  months was considered for patients without any evi-
dence of disease recurrence. Patients developing second 
primary in the head-neck region or other areas (e.g., lung, 
esophagus) were excluded from the current study. The 
study accrual was done between January 2015 and June 
2018. The survival data were locked for the final analysis 
in May 2020.

2.2  |  Treatment protocols

All the patients in the study were treated according to stand-
ard institutional protocols without any influence of the study. 
All the patients were treated with IMRT and IGRT techniques 
with a dose prescription of 70 Gy/33 fractions in 6–7 weeks 
to the high-risk volume. The decision regarding concurrent 
systemic therapy was at the discretion of medical oncolo-
gists depending upon age, performance status, comorbidities 
following standard guidelines. Following treatment comple-
tion, the response was assessed at approximately 3 months 
with standard imaging (CT/ MRI) and clinical examination 
with endoscopy and functional imaging (PET) as decided 
by the treating oncologists. Patients with residual disease 
were closely followed up with additional investigations as 
indicated. Follow up was undertaken every 3–6  months in 
the initial 2 years and thereafter every 6–12 months. Disease 
recurrence was confirmed by the responsible clinicians with 
clinical examinations, imaging, and tissue diagnosis as ap-
propriate. All the patients with suspected recurrent disease 
were discussed in a multidisciplinary tumor board constitut-
ing radiation oncologists, surgeons, medical oncologists, ra-
diologists, and pathologists with expertise in head and neck 
malignancies. In general, for patients with local and nodal re-
currence, endoscopic examination, cross-sectional imaging, 
and biopsy were undertaken. Any patients with disease recur-
rence had undergone repeat staging investigations with CT 
neck, thorax, abdomen, pelvis with a bone scan or PET-CT, 
and other symptom directed investigations (like MRI brain or 
spine). In general, for patients with disseminated metastatic 
disease, no additional histology was acquired, unless other 
differentials were considered (e.g., single lung lesion to rule 
out the second primary).

2.3  |  Quantitative ultrasound and 
image analysis

The most prominent LN amenable to imaging was decided 
by the research sonographer in conjunction with the radiation 
oncologist. As a part of the study protocol, the index LN was 
required to have a size of more than 1 cm. The LN selected 
was ideally needed to be over an area accessible to ultrasound 

imaging (e.g., retropharyngeal were excluded). In general, 
the largest LN (or conglomerate nodal mass) was selected 
for imaging. Although the target LNs were not subjected to 
histological confirmation (unless CUP), the scanned LNs 
were included only if they had a strong radiological suspicion 
(ultrasound, CT/MRI/PET) of metastatic involvement as de-
termined by radiation oncologists and radiologists and under-
went treatment for disease involvement. Lymph nodes were 
included irrespective of the presence of radiological extran-
odal extension. The QUS scan was obtained before the start 
of RT (preferably within 24 hours, an interval of 1 week was 
allowed). The ultrasound data were acquired using a clinical 
ultrasound system with standardized settings for ultrasound 
parameters (Elekta Ltd, Montreal, Canada) with a linear 
4-D transducer (4DL14-5/39 Linear 4D, BK Ultrasound) or 
a Sonix RP clinical ultrasound system (Analogic Medical 
Corp.) with a linear array transducer (L14-5/60). The center 
frequency was 6.5  MHz (bandwidth 3–8  MHz). The sam-
pling frequency for both the device was 40  MHz, and the 
focal depth was 2.5 and 1.75 cm, respectively.

The target LN was manually contoured designated as the 
region of interest (ROI). For each ROI, 3–5 slices were ob-
tained at regular intervals encompassing the entire LN. The 
RF data collected from the ROI were divided into smaller 
blocks using a sliding window technique with a 92% over-
lap along the axial and lateral directions, corresponding to 
linear dimensions of approximately 2  mm  ×  2  mm. A fast 
Fourier transformation was applied to the raw RF data from 
each unit to generate the power spectrum, which was normal-
ized using a tissue-mimicking phantom serving as a refer-
ence. Seven QUS spectral parameters were obtained from the 
RF data-spectral slope (SS), spectral intercept (SI) at 0 MHz, 
mid-band fit (MBF), average acoustic concentration (AAC), 
average scatterer diameter (ASD), attenuation coefficient 
estimate (ACE), and spacing among scatterers (SAS). The 
spectral parameters obtained from each of the smaller units 
from all the slices were averaged and served as first-order 
features. The details of image processing, standardization of 
parameters, texture feature extraction had been described in 
previous publications.18,23,24

For texture analysis, the color-coded QUS-parametric 
maps were generated using the quantitative estimates from 
each of the smaller units for individual spectral parameters 
(except ACE). A grey level co-occurrence matrix (GLCM) 
method was used to generate texture features to compute the 
relation with neighboring pixels (1,2,3,4) for angular rela-
tions of 0°, 45°, 90° and 135°. Four texture features were ex-
tracted-energy (ENE), contrast (CON), homogeneity (HOM), 
and correlation (COR). Therefore, a total of 24 QUS-texture 
features were obtained from six spectral features leading to a 
total of 31 features. We used the weighted average (depend-
ing upon the area of individual slices) for all the individual 
spectral and texture parameters to generate a single value for 
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concerned parameters. The individual features extracted from 
all the patients were normalized using a “Z-score normaliza-
tion” technique.

2.4  |  Statistical analysis and machine 
learning classifiers

The endpoint (ground truth) for the study was recurrence 
and no-recurrence as obtained from the clinical outcomes. A 
Shapiro–Wilk test was performed to study the distribution of 
the data between the two groups. Unpaired t-tests were per-
formed for normally distributed data, while Mann–Whitney 
tests were undertaken for nonparametric data. Three ma-
chine learning classifiers were used to develop the radiomics 
model-Fisher's linear discriminant (FLD), k-nearest neighbor 
(KNN), and support vector machine (SVM). The KNN clas-
sifier was used with different k values of 1, 2, 3, 4, and 5. 
For the SVM classifier, parameters C and γ were optimized 
using a grid search method (C and γ ranging from 20 to 210). 
A sequential forward feature selection method was used for 
data classification, using a maximum of three features to 
avoid overfitting of the model, given the smaller number of 
samples. The number of features was limited to 3, given the 
number of patients in the “no-recurrence” group was 34, fol-
lowing the rule of thumb of using n/10 features for optimal 
classification. The feature selection method first analyses the 
best feature for classification and subsequently keeps adding 
the next set of features to the one already selected, to achieve 
the best classifier performance. As the number of subjects 
was unevenly distributed between the two groups, seven sub-
sets were generated, selecting an equal proportion of patients 
from each of the groups in a random manner. The final classi-
fier results were the values obtained from the combination of 
the individual subsets. The subset sampling involved down-
sampling the majority group (no-recurrence) and training the 
algorithm. This process was run for seven iterations, with the 
final label (predicted recurrence vs. predicted no-recurrence) 
decided through majority voting. Leave-one-out cross-vali-
dation was performed to test the efficacy of the models and 
obtaining the confusion matrix. The method involves train-
ing the classifier algorithm with all subjects except one, 
which is used to test the algorithm. The process is repeated 
across the entire cohort until all the subjects are left out once. 
Receiver operating characteristics (ROC) was used to gen-
erate the area under curve (AUC) values. Kaplan–Meier 
product-limit method was used for survival analysis. The 
date of the histopathological diagnosis of HNSCC was con-
sidered as the baseline date for survival analysis. The final 
influence of predicted groups from each of the classifiers 
(predicted recurrence vs. predicted no-recurrence groups) on 
the recurrence-free survival was tested using a log-rank test. 
The segmentation, feature extraction, and machine learning 

classification were done using MATLAB (MathWorks Inc., 
USA). For statistical significance, a p-value of <0.05 was 
considered significant.

3  |   RESULTS

3.1  |  Clinical characteristics

The analysis here included 51 patients with HNSCC. 
For the entire group, the median age was 60  years (range 
39–80 years), with 10 (20%) patients aged 70 years or above. 
The different patient, disease, and treatment characteristics 
are summarized in Table 1. The most common site of pri-
mary disease was the oropharynx in 39 patients, followed by 
the larynx in 5, CUP in 5, and hypopharynx in 2. Of the 38 
patients with known molecular disease status, 36 (95%) had 
positive p16 -immunostaining suggestive of human papil-
loma virus (HPV)-related disease. Concurrent chemotherapy 
was administered in 41 patients, with the majority receiving 
cisplatinum (three started with cisplatinum and later switched 
to carboplatinum, and three received carboplatinum alone). 
Cetuximab was used concurrently with RT in one patient (no 
chemotherapy).

3.2  |  Clinical outcomes

The median follow up for all patients in the study was 
38 months (range 7 to 64 months). For patients without re-
currence, the median follow up was 42 months (range 14 to 
59 months). In the study here, 15 of 51 patients had a com-
plete response in primary and lymph nodes at 3 months. Of 
the remaining 36 patients on further follow-up, the disease 
had resolved in 28 patients, with a median time of 6 months 
(range 4–9 months). In all eight patients with residual dis-
ease, disease progression was seen at different times. The 
recurrence-free survival (RFS) at 2 and 5-year was 72% and 
62%, respectively. A total of 17 patients had disease recur-
rences during the study period. The predominant site of re-
lapse involved distant sites in 13 patients, regional nodes in 
8, and local sites of primary disease in 4 (alone or in com-
bination), as shown in Figure S1. The median time to dis-
ease recurrence (from diagnosis) was 9 months (range 1 to 
48 months), with more than 80% recurrences encountered in 
the initial 2 years. The 2 and 5-year overall survival (OS) for 
all patients was 90% and 64%, respectively.

3.3  |  Feature analysis and classifier results

Representative B-mode and the QUS parametric maps are pre-
sented in Figure 1 for patients, one each from the two groups 
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(recurrence and no-recurrence). There was obvious intra-
tumoral heterogeneity in quantitative ultrasound parameters 
evident in the parametric images. Two texture features, SAS-
CON and ASD-ENE, had significantly different distributions 
between the two outcome groups (Table S1) as single discrimi-
natory parameters. The mean values for SAS-CON and ASD-
ENE were higher in patients with disease recurrence compared 
to patients without recurrence with p-values of 0.049 and 0.026, 
respectively. The scatter plots showing the distribution of all 
features between the two groups are presented in Figure 2. On 
their own, the majority of parameters were not statistically dis-
criminant between the two groups.

Figure 3 represents the ROC curves using the three classi-
fiers. The best classifier results were obtained using a KNN-
based model and demonstrated a sensitivity, specificity, 
accuracy, and AUC of 76%, 71%, 75%, and 0.74, respectively, 
for a priori to treatment predicting recurrence (Table 2). The 
three selected parameters in the KNN classifier were QUS-
texture features SS-ENE, SI-ENE, and MBF-COR. The 
SVM-model was slightly inferior to the KNN-model in terms 
of accuracy and AUC, although the specificity of 75% was 
higher than the KNN-model (71%). The SVM-model se-
lected two QUS spectral features (ACE and SI) and the third 
one being a texture feature (SI-CON). The results from the 

Clinical features
Recurrence 
(n = 17)

No Recurrence 
(n = 34)

Patient characteristics

Age Median (Range) 59 (40–70) years
61 (39–80) 
years

Gender Female 0 3

Male 17 31

Smoking Status Smoker 12 23

Non-Smoker 5 11

Disease Characteristics

T-stage T0a 4 1

T1 0 14

T2 4 14

T3 3 2

T4 6 3

N-stage N1 1 21

N2 8 12

N3 8 1

Site Oropharynx 10 29

Hypopharynx 1 1

Larynx 2 3

CUP 4 1

HPV p16 stain Positive 8 28

Negative 2 0

Indeterminate/
Unknown

7 6

Treatment characteristics

Concurrent 
chemotherapy

Cisplatin 10 25

Cisplatin 
>Carboplatin

1 2

Carboplatin 1 2

Concurrent biological 
therapy

Cetuximab 1 0

Radiation Alone Radiation Only 4 5

Abbreviations: CUP, Carcinoma of unknown primary origin; HPV, Human Papilloma Virus.
aCarcinoma Unknown Primary 

T A B L E  1   Clinical characteristics for 
patients with recurrence and without disease 
recurrence.
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FLD model was unsatisfactory for each of the indices com-
pared to the other two models.

The RFS, using the three model-based predic-
tions, has been shown in Figure  4. Using the KNN-
model, the 3-year RFS for the predicted recurrence and 

nonrecurrence groups were 40% and 81%, respectively 
(p = 0.001). Similarly, for the SVM-model, the predicted 
3-year RFS was 44% and 83% for the predicted recur-
rence and predicted nonrecurrence groups, respectively  
(p < 0.001).

F I G U R E  1   Representative ultrasound B-mode images (upper row) with six spectral parametric maps from two patients—no recurrence (left 
panel) and recurrence (right panel). Parametric images from top to bottom represent overlays of the MBF, SI AAC, ASD, SS, and SAS parameters. 
The white scale bar (right lower corner) represents a length of 5 mm. The color bars present the range for MBF parameter of −10 dB to 25 dB, SI 
parameter of −10 dB to 60 dB, AAC parameter of 20 dB/cm-MHz to 170 dB/cm-MHz, ASD parameter of 1 µm to 200 µm, SS parameter of −8 dB/
MHz to 22 dB/MHz, and SAS parameter of 0.2 mm to 2.5 mm
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F I G U R E  2   Scatter plot presenting the distribution of values for QUS features. Blue symbols represent patients with recurrence (R), while 
the red denotes the patients with nonrecurrence (NR). The two highlighted features (stars) are SAS-CON and ASD-ENE, which had a distribution 
between the two groups reaching statistical significance
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4  |   DISCUSSION

Head and neck malignancies encompass a diverse group of 
cancers involving the head-neck anatomical region, with 
the majority arising from the epithelial lining of the upper 
aerodigestive system or the various glandular structures 
(thyroid, salivary glands). For HNSCC, the outcomes vary 
widely, with excellent cure rates seen in very early-stage 
cancers, while advanced and metastatic tumors are associ-
ated with guarded prognosis.2 For locally advanced HNSCC 

or node-positive disease, 5-year survival rates had been re-
ported to be less than 50%.2 With the advent of the era of 
radiomics, there are promises in the development of effective 
risk-stratification strategies using noninvasive imaging bio-
markers, which can be potentially adopted in personalized 
medicine.25 The study here investigated the efficacy of pre-
treatment QUS-radiomics in the prediction of recurrence for 
patients with node-positive HNSCC treated with radical RT.

Several distinct risk factors (HPV, tobacco, alcohol, 
etc.) and molecular pathways (epidermal growth factor 
receptor, aberrant p53, etc.) have been identified in the 

F I G U R E  3   The receiver operating characteristics (ROC) curves for the three models using Fisher's linear discriminant (A), k-nearest neighbor 
(B), and support vector machine (C) classifiers

T A B L E  2   The classification performance of the three machine learning models with the best features selected

Model Sensitivity % Specificity % Accuracy % AUC Best feature(s)

FLD 59 55 57 0.58 MBFa 

KNN 76 71 75 0.74 SS-ENE SI-ENE MBF-COR

SVM 72 75 73 0.71 ACE SI SI-CON

Abbreviations: ACE, Attenuation coefficient estimate; AUC, Area under curve; CON, Contrast; COR, Correlation; EE, Energy; FLD, Fisher's linear discriminant; 
KNN, k-nearest neighbor; MBF, Mid-band fit; SI, Spectral intercept; SS, Spectral slope; SVM, Support vector machine.
aOne feature was selected as further feature addition did not lead to improvement of the classifier performances. 

F I G U R E  4   Kaplan–Meier survival plots showing the predicted recurrence-free survival obtained using Fisher's linear discriminant (A), 
k-nearest neighbor (B), and support vector machine (C) classifiers
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etiopathogenesis of HNSCC.2,26-28 Genetic markers and liq-
uid biopsy using circulating tumor DNA had been investi-
gated in prognostication and predicting recurrence in patients 
with HNSCC with variable degrees of success.29-32 In recent 
years there has been an increasing interest in the use of imag-
ing markers utilizing various imaging modalities that are part 
of standard treatment protocols. Also, radiomic analysis can 
be undertaken noninvasively during the treatment leading to 
an early characterization of treatment responses compared to 
traditional imaging assessment, which accounts for structural 
changes manifested after several months. As morphological 
(CT, MRI) or functional imaging (PET) is widely used in 
diagnostics, staging workup and RT planning for HNSCC, 
several groups have undertaken radiomics-based approaches 
using different clinical endpoints.10-12 Pretreatment CT im-
age-based radiomics have been used in the identification 
of HNSCC associated with HPV and other molecular fea-
tures.33,34 In a recent multi-institutional study, features of pre-
operative contrast-enhanced CT images have been shown to 
correlate with the extranodal extension on histopathological 
examination using deep learning models.35 In a study involv-
ing 465 patients with oropharyngeal cancer (OPC), pretreat-
ment contrast-enhanced CT texture analysis could stratify 
patients into risk groups with different local control rates.36 
Similarly, in a cohort of 300 patients with HPV-related OPC, 
Kwan et al had demonstrated CT planning scans used for RT 
planning could be used to identify patients at a higher risk of 
distant metastasis.37 The most common application of MRI-
based radiomics in risk-stratification had been undertaken in 
nasopharyngeal carcinoma.38 Yuan et al had indicated T2-
weighted MRI in patients with HNSCC (mostly oral cavity 
and OPC) can serve as an independent prognostic marker.39 
Vallières et al had performed a radiomic analysis of pretreat-
ment PET and CT images in 300 patients with head-neck 
cancer, which was able to predict locoregional relapse and 
distant metastasis in independent cohorts with AUCs of 0.69 
and 0.86, respectively.40

In the study here, best results were obtained using a KNN-
based QUS model with an accuracy of 75% and AUC of 0.74, 
which is comparable to several previously reported studies. 
QUS imaging has been widely studied in breast cancer and 
established its efficacy in demarcating between different 
tumor grades, response prediction and the monitoring of 
response during treatment.23,24,41 The use of QUS in head-
neck malignancies is a new application and has demonstrated 
an accuracy of 88% in predicting response to RT in 32 pa-
tients.22 QUS Imaging relies on microcellular tissue architec-
ture, which is represented by the various spectral parameters 
determined by QUS.18 The KNN model selected texture fea-
tures related to SS, SI, and MBF in classification between the 
two groups of patients (SS-ENE, SI-ENE, and MBF-COR). 
The SS is determined by the scatterer size and shape, while 
the SI depends upon scatterer concentration, and the MBF is 

influenced by various elastic properties of the tissue. These 
findings suggest a differential tissue architecture for tumors 
with different biological behavior.

Texture features determined information related to tumor 
heterogeneity, which is known to influence the clinical out-
comes. Intra-tumoral heterogeneity was evident within dif-
ferent areas of the tumoral masses, which can lead to the 
development of treatment resistance and impact survival.42,43 
In general, tumor heterogeneity is associated with more ag-
gressive tumor behavior, as also indicated here.

This is the first study demonstrating the potential of QUS-
based radiomics obtained a priori to treatment as an imaging 
modality in predicting recurrence (local, regional or distant) 
in patients with HNSCC. This can be adopted in clinical 
practice and utilized to take a step toward personalizing treat-
ments with intensification strategies for higher risk patients 
predicted to have a recurrence. One of the limitations of the 
current report is a relatively small number of patients; how-
ever, the results point to being able to predict tumor behav-
ior and its impact on survival using quantitative ultrasound 
methods. In the future, with the expansion of study cohorts, 
it should be possible to use advanced classifiers like deep 
learning and test the effectiveness of the model in indepen-
dent groups to increase reliability and clinical utility.

5  |   CONCLUSION

The study presented here demonstrates the effectiveness of 
a pretreatment QUS-radiomics model in predicting recur-
rence for patients with HNSCC treated with radical RT with 
reasonable accuracy. A KNN-based model provided the best 
classifier results with an accuracy of 75% and an AUC of 
0.74.
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