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Entanglement of orbital angular momentum
in non-sequential double ionization

Andrew S. Maxwell 1,2 , Lars Bojer Madsen 2 & Maciej Lewenstein 1,3

Entanglement has a capacity to enhance imaging procedures, but this remains
unexplored for attosecond imaging. Here, we elucidate that possibility,
addressing orbital angular momentum (OAM) entanglement in ultrafast pro-
cesses. In the correlated process non-sequential double ionization (NSDI) we
demonstrate robust photoelectron entanglement. In contrast to commonly
considered continuous variables, the discrete OAM allows for a simpler inter-
pretation, computation, and measurement of entanglement. The logarithmic
negativity reveals that the entanglement is robust to incoherence and an
entanglement witness minimizes the number of measurements to detect the
entanglement, both quantities are related to OAM coherence terms. We quan-
tify the entanglement for a range of targets and field parameters to find the
most entangled photoelectron pairs. This methodology provides a general way
to use OAM to quantify and measure entanglement, well-suited to attosecond
processes, and can be exploited to enhance imaging capabilities through cor-
related measurements, or for generation of OAM-entangled electrons.

Oneof themost notorious departures fromclassical physics is quantum
entanglement, a subtle combination of classical correlation and quan-
tumsuperposition,whichboth causeda seismic shift in how theworld is
viewed, and also provides a resource for quantum computation and
metrology1–3, including the possibility of entanglement enhanced
imaging4,5, with much interest in atomic and molecular physics, e.g.,
properties of entangled photons from such systems6–8. However, the
potential for entanglement to optimize attosecond (10−18s) imaging
processes is unexplored, and therefore the role and physical insight
afforded by entanglement for such processes remains unclear.

Attosecond and strong-field physics deal with processes inmatter
on the scale of attoseconds9,10. The promise of resolving atomic and
molecular electron dynamics on its natural timescale has led to the
development of a host of imaging procedures boasting attosecond
time resolution; including strong-field initiated methods like high-
order high harmonic spectroscopy11, laser-induced electron
diffraction12,13, photoelectron holography14,15 and attosecond pump-
probe techniques like attosecond streaking16,17 and reconstruction of
attosecond harmonic beating by interference of two-photon
transitions18,19. Although most of these imaging protocols depend on

quantum processes, none explicitly exploit entanglement. Recently,
the quantum nature of attosecond processes was exhibited through
the generation of non-classical states of light in the laser driving
field20,21.

From as early as 199422, there has been a growing interest in the
role of entanglement in attosecond processes. Many studies have
focused on entanglement between photoelectrons and ions23–31, an
essential part of understanding decoherence32, while other studies
have focused on electron–electron entanglement33–35. However, the
majority of studies involve the calculation of a continuous variable
density matrix (exceptions include studies focused on entanglement
involving discrete vibrational states, see, e.g., Refs. 28,30,31) and
entanglement measures such as the purity26,29,30,34,35 or von Neumann
entropy26,27,29,35. These quantities, when derived from continuous vari-
ables, have some drawbacks: (i) They are challenging to compute, and
often approximations must be imposed, or in limited cases analytical
approximations can be found36. Furthermore, these methods are
restricted to pure states, while in strong-field experiments we must
always consider mixed states from incoherence averaging. (ii) The
physical interpretation of these quantities is difficult, and may not
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improve understanding of the process. (iii) Direct experimental evi-
dence of the entanglement is often practically impossible, requiring
the measurement of incompatible observables, such as momentum
and position.

One solution to these difficulties is to use quantized observables.
All free particles have such a quantumobservable in the formof orbital
angular momentum (OAM)37,38. Photons carrying OAM have received
significant attention in producing extreme ultraviolet (XUV) high-
order harmonics with OAM, see e.g., Refs. 39–42. Strong-field studies
on OAM in photoelectrons include exploiting OAM in rescattering
electrons to probe bound state structures43, and recent work44–47,
providing insight into the role of OAM for circularly polarized fields
and conservation laws for OAM in strong-field ionization48. Measure-
ment of OAM is a rapidly expanding field, with a host of techniques
becoming available for electron beams49–56. Conservation between the
initial quantum magnetic number and final OAM, which occurs for
systems with rotational symmetry around the quantization axis, may
be exploited in strongly-correlated two-electron processes, where
entanglement could allow for enhanced photoelectron imaging.

Non-sequential double ionization (NSDI) is a highly correlated
two-electron ionization process, the details of which are depicted in
Fig. 1. Despite strong electron–electron correlation and rescattering
being confirmed inNSDI as early as 200057,58, therehasbeen little focus
on the quantum entanglement between the two electrons. This is
primarily for the following reasons, (i) classical models have been very
successful inmodelling NSDI59, (ii) early work suggested entanglement
would not play a decisive role. These studies focused on the momen-
tum coordinate parallel to the laser field and found a small degree of
quantum correlation33, later it was shown classical correlation was
sufficient for field intensities greater than 1014 W/cm260. (iii) Further-
more, computation of NSDI is a very arduous task and computation of
continuous variable entanglement measures is even more difficult.

In this work we address (ii) and (iii), by exploiting the quantized
nature of OAM to clearly demonstrate entanglement inNSDI, whichwe
show may occur most easily through the RESI pathway. The use of a
quantized degree of freedom enables a simple analysis through the
logarithmic negativity61 and entanglement witnesses62–64, which
enables the inclusion of incoherent effects, as well as a search over a
wide range of parameters. The interplay of channels of excitation
allows photoelectrons to approach maximally entangled states for
some final momenta, which could be investigated as a source of OAM
entangled electrons. We show that the entanglement exhibited is
robust to incoherent averaging of laser intensities over the focal
volume. By decomposing an entanglement witness, we strongly
reduce the difficulty of detecting entanglement, by avoiding full

tomographic measurements. Furthermore, the OAM entanglement
could be used to perform correlated OAM and momentum measure-
ment on the two electrons. Thus, paving the way for a unique kind of
entanglement enhanced attosecond imaging technique.

Results
Orbital angular momentum in non-sequential double ionization
Apictorial depiction of non-sequential double ionization (NSDI) is given
is Fig. 1. The process follows the three-step mechanism [panel (b)]65: (i)
The first electron is removed from the two-electron ground state ∣0i by
the laser via tunnel ionization into the state ∣~p, 0

�
(one electron in the

continuum and the other in its ground state). (ii) The continuum elec-
tron subsequently undergoes a laser driven recollision with its parent
ion. (iii) The energy imparted by the collision allows for two pathways, a
second electron is directly ionized in the electron-impact ionization (EI)
mechanism, or the second electron is excited, resulting in the state
∣~p,η

�
—here η is used to label the excited state—and the second electron

subsequently ionizes due to the laser field in the recollision with sub-
sequent ionization (RESI)mechanism. Inboth cases, thefinal stateof the
photoelectrons is ∣~p, ~p0�, the two electron continuum state. For more
information on this notation, see ref. 66, while for reviews of NSDI and
these mechanisms, see refs. 67,68. The laser field is polarized in the z
direction, in the same direction as the total OAM operator L̂∣∣, so the
laserfield cannot change the totalOAMsince ½L̂∣∣, ĤðtÞ�=0,where ĤðtÞ is
the total Hamiltonian of the system44,48.

We expand the NSDI two-electron continuum wave function in a
basis of electron vortex states, theone-electron vortex state is denoted
∣p, le

�
and a plane wave by ∣~p

�
. Note, for the two-dimensional vectors

weusep = (p∣∣, p⊥) and for three-dimensional vectorswe include a tilde,
~p= ðp∣∣,p?,ϕÞ, written in cylindrical coordinates. Here, p? =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x +p2

y

q
is

the radial coordinate, p∣∣ = pz is the momentum coordinate along the
cylindrical axis (parallel to the laser field polarization) and ϕ the azi-
muthal angle ϕ= arctanðpy=pxÞ, while le is the topological charge or
azimuthal OAM. We will employ atomic units throughout, unless
otherwise stated. The spatial representation of the vortex state is given
by52

~r∣p, le
� �

=
1

ð2πÞ3=2
Jle ðp?r?Þeiϕleeip∣∣r∣∣ , ð1Þ

while the momentum representation is

h~k∣p, lei=
i�leeiϕ

0le

2πp?
δðkk � pkÞδðk? � p?Þ: ð2Þ

Fig. 1 | Diagram of NSDI and the resulting entanglement of OAM. a Orientation
of the linearly polarized laser, with polarization e∣∣ along the z axis taken for the
OAM denoted by L̂k and the target atom. b NSDI process depicted for the EI and
RESI mechanisms. Interaction via the field (e.g. tunnel ionization) is depicted by a
dashed line, excitation in the singly charged ion is denoted by dotted lines, while
the recollision and OAM sharing is denoted by the yellow spark. The two electron

states are defined in the text, following the convention of ref. 66. c The excitation
pathways in RESI, which lead to different final OAM states and an entangled
superposition. The final states are given by OAM states, ∣le,� le

�
as used in (8). The

dashed-dotted lines are to denote, which two-electron state the first electron ends
up in. The numbers −1, 0, 1 refer to the values of the quantummagnetic numbermη

of the intermediate excited state, ∣~p,η
�
.
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We assume in the asymptotic limit of large distances from the
atomic nucleus that the final state of the two electrons in the con-
tinuum can be written as a product of vortex states

∣p, le,p
0, l0e
�
= ∣p, le

�� ∣p0, l0e
�
: ð3Þ

Typically for NSDI we consider momentummeasurement and the
associated transition amplitude

Mð~p,~p0Þ= lim
t!1

~p,~p0∣ψðtÞ� �
, ð4Þ

where ∣ψðtÞ�denotes the continuum two-electronwavepacket after the
interaction with the external field, and ∣~p, ~p0� denotes the scattering
state with asymptotic momenta ~p and ~p0. Here, however, we consider
the transition amplitude corresponding to OAM measurement,
including only the doubly ionized portion of the system, which may
be expressed as

Mle,l
0
e
ðp, p0Þ= lim

t!1
p, le,p

0, l0e∣ψðtÞ
� �

=
ile + l

0
e

ð2πÞ2
Z Z

dϕdϕ0e�iϕle�iϕ0 l0eMð~p, ~p0Þ,
ð5Þ

where Mle, l
0
e
ðp,p0Þ is also the two-dimensional Fourier series coeffi-

cient of Mð~p, ~p0Þ. Note, we will always construct Mle, l
0
e
ðp,p0Þ such that

electron indistinguishability is accounted for.
The total azimuthal OAMof the two electrons will be conserved at

all times

le + l
0
e =m+m0, ð6Þ

where le and l0e are the azimuthal OAM of the final vortex state and m
and m0 are the initial quantum magnetic numbers of the two-electron
ground state ∣0i. For the recolliding electron in NSDIm ≠0 is strongly
suppressed, so we consider m =0. Similarly, for the second electron
contributions from m0 with opposite signs will destructively interfere,
thuswe takem0 =0. TheOAMconservation is now trivially l0e = � le, see
Fig. 1(b) and (c). For the RESI mechanism, the second electron leaves
froman excited state ∣η

�
, and thuswehave the additional conservation

l0e =mη, thus le = −mη, which again can be seen in Fig. 1(b) and (c). It is
also important to consider the role of the ion, if different ionic states
were associated with different final OAM states, this would lead to
decoherence that could reduce entanglement. However, given the
selection rules lead to m=m0 =0, the residual ion will only feasibly
have one final OAM state. Thus, the ion may be traced out without
affecting the electron–electron entanglement.

Due to the recollision there is OAM sharing in NSDI, while, in the
RESI mechanism, the OAM is tunable via the excited state. Further-
more, the excited electron may occupy a superposition of states69–72,
which means entanglement can emerge in the OAM degree of free-
dom. From this point onwards, we only consider the excited state
populates mη =0, ± 1. This reduction on the OAM space captures all
necessary physics, while limiting the complexity of measurement/
implementation. OAMmeasurement across considerably larger ranges
has been achieved in electron beams, see, e.g., refs. 49,53,55,56. The
final two-electron continuum state corresponding to this scenario can
be described by,

∣ψ
�
=
Z Z

d2pd2p0 M1�1ðp,p0Þ∣p, 1,p0,�1
��

+M00ðp,p0Þ∣p, 0,p0, 0
�
+M�11ðp,p0Þ∣p,�1,p0, 1

��
,

ð7Þ

where we consider a time after the end of the pulse and have sup-
pressed t in our notation for convenience, and we will follow this
convention throughout the remainder of this work. Here, ∣ψ

�
is a

maximally entangled qutrit if M1�1ðp,p0Þ=M00ðp,p0Þ=M�11ðp,p0Þ. In
fact, even for arbitrary M’s, it is possible to show, see Methods, that
after the momentum coordinates are traced out the resulting mixed
state is always entangled via the positive partial transpose
(PPT) criterion73,74. With the condition

RR
d2pd2p0Mk�kðp,p0ÞM*

k0�k0

ðp,p0Þ≠0∀ k, k 0 2 ½�1, 1�. This means OAM entanglement can survive
integration over all the momentum coordinates, as long as the prob-
ability of excitation to stateswith two ormore values ofmη is non-zero.
Entanglement in the EImechanism is also possible, however, in general
the final OAM le = l

0
e =0 dominates, keeping the entanglement

associated with EI relatively low, see Supplementary Information for
details.

Entanglement measure and witness
In order to quantify and measure entanglement, we consider the
density matrix, ρ= ∣ψ

�
ψ
�

∣. To greatly simplify matters we will assume
that the experimentalists are only interested in measuring the OAM,
thus we will compute the reduced density matrix, tracing over all the
continuous momentum components, see (36), leaving an entangled
mixed state,

ρOAM = ∑
le, l

0
e

αlel
0
e
∣le, � le

�
l0e, � l0e
�

∣, ð8Þ

with

αlel
0
e
=
Z

d2p
Z

d2p0Mle�le
ðp,p0ÞM*

l0e�l0e
ðp,p0Þ: ð9Þ

Note, for all computations the density matrix will be normalized by
its trace.

The logarithmic negativity (EN )61 is a measure of entanglement,
that is valid for mixed state systems and exploits the PPT separability
criterion73,74 and is easy to compute, which makes it a good choice for
our purposes. EN is given by

EN = log2 ∣∣ρTA
OAM∣∣1

h i
, ð10Þ

where the trace norm reads

∣∣ρ∣∣1 = Tr
ffiffiffiffiffiffiffiffi
ρyρ

ph i
ð11Þ

and ρTA is the partial transpose, i.e., the transpose with respect to one
subsystem. EN may vary between 0 and log2ð3Þ ≈ 1:58 for the qutrit
system in (7).

This measure exploits the partial transpose (ρTA ), which can be
related to time-reversal of one of the subsystems. As such, ρTA may not
always correspond to a physical system, which manifests by negative
eigenvalues. The partial transpose preserves positive eigenvalues for a
separable system, but not for entangled systems. There exist entan-
gled systems, where the partial transpose does not yield negative
eigenvalues. These will yield a logarithmic negativity of zero. Corre-
spondingly, EN = log2ð2N � 1Þ, whereN (the negativity) is given by the
absolute value of the sum of the negative eigenvalues of ρTA . EN gives
an upper bound to the distillable entanglement, i.e., quantifying the
number of copies of ρ required to transform it into a maximally
entangled state. Other commonly used entanglement measures, such
as entropy of entanglement and the purity, exploit that the reduced
density matrix (tracing over one of the subsystems) cannot easily be
used if the input state is mixed, for more information, see the Sup-
plementary Information.

To measure if there is entanglement, one approach is to use an
entanglement witness, which can distinguish a subset of entangled
states as non-separable. They can commonly be associated with an
observable for which the expectation value is negative for some
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entangled states, i.e., for a witness W and state ρ, the condition
Tr Wρ½ �<0 implies ρ is entangled. It can be shown that

WðθÞ= 1
d
1� ∣νðθÞihνðθÞ∣ ð12Þ

with

∣νðθÞi = 1ffiffiffi
d

p ∑
1

le =�1
eiθle ∣le, � lei, ð13Þ

is a valid entanglementwitness. Here, the dimensiond = 3. Thiswitness
is useful as the state ∣νðθÞ� mirrors the anti-correlated (l0e = � le)
entangled superposition of the OAM and also contains a system-
dependent tuning parameter θ, which can be set depending on the
target and field parameters to enhance the detectability. The
parameter θ can be tuned depending on the phase information in
the state, in particular depending on θα := argðα01Þ, where α01
represents the coherence between ∣0,0i and ∣± 1,∓1i in the density
matrix ρOAM given by (8). We will set θ to two extremes θ =0 or π and
discuss the correspondence with θα.

Optimizing entanglement
In Fig. 2 we show the logarithmic negativity and the expectation value
of the entanglement witness for many targets and laser parameters.
We do this using the strong-field approximation (SFA), the details of
which are described in the Methods section and refs. 70,71. The SFA is
an approximatemethod, but it captures the basicOAMcorrelation and
is rapid to compute, so is well-suited to a broad parameter search. The
parameters are chosen such that the return energy of thefirst electron,
≈3.17Up, is not above the ionization potential of the second, to ensure
that the RESI mechanism is dominant. Here, Up is the ponderomotive
or quiver energy of the electron in the laser field. Also, we stay
approximately in the tunneling regime, with the Kelydsh75 parameter
γ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ip=ð2UpÞ

q
spanning 0.87–1.20. Note that the entanglement is not

dependent on tunnel ionization, i.e., there will still be entanglement if
the second electron is ionized through multiphoton absorption.

Immediately fromFig. 2a, it is clear thatmagnesium and beryllium
have the highest logarithmic negativity, while the nobel gases argon
and neon have the lowest. We may write the logarithmic negativity in
terms of the coefficients αle, l

0
e
, EN = log2ðα00 + 4∣α10∣+4α11Þ, due to

indistinguishability of the electrons, which means αij = α−ij = αi−j = α−i−j.
The coefficients α00 and α11 are determined by the population of
intermediate states with mη = 0 and mη = ± 1, respectively, while the
term α10 is a measure of the coherence between these states. In the
bottom row, panels (d)–(f), the contribution of channels via different
excited states is estimated for the two highest and lowest cases. In the
case of the nobel gases, states withmη =0 dominate, thus reducing the
entanglement as a single OAM prevails, see panel (f). This selectivity
provides information on recollision dynamics: For nobel gases, the
second electron initial p-state (with m0 =0) is aligned along the OAM
axis and transitions to excited states which keep this alignment are
more probable. For magnesium and beryllium in panels (d) and (e),
there is amore balanced superposition acrossmη = − 1, 0, 1, the initial s-
state of these targets is spherically symmetric, so there will be no
directional preference for the excited state, leading to higher loga-
rithmic negativity and a higher degree of entanglement. Thus, the
logarithmic negativity is a direct probe of excited state population and
geometry.

In the panels (b) and (c), the expectation values ofWð0Þ andWðπÞ
are shown. Values below and above zero correspond to entangled
states that may and may not be distinguished from separable states,
respectively. The witness WðπÞ outperforms Wð0Þ, which can be
traced back to the phase θα, which varies with the target and field
parameters. The expectation value of the witnesses can be expressed
in terms of the coefficients αij, hWð0=πÞi= � 2

3 ðα11 ± 2∣α10∣ cosðθαÞÞ.
Thus, the witness probes the coherence term, α10 and its phase θα. The
witness WðπÞ improves the detectability of entanglement for
λ = 800nm, while less difference is seen for λ = 400 nm. E.g. beryllium
in panel (e) θα ≈π so the witness WðπÞ is much lower than Wð0Þ.

Fig. 2 | Extensive search over targets and parameters. a Quantifies the entan-
glement using the logarithmic negativity (EN of (10)). b and c Expectation value of
the entanglement witnesses (hWð0Þi and hWðπÞi, see (12)), respectively. Here,
hWi :=Tr½WρOAM�. Blue text indicates λ = 400 nm and red λ = 800nm.
d, e, f Estimated contribution of intermediate excited states for three extremal
cases Mg, Be and Ne, respectively. The field values are given on the panels. The

contribution is computed by taking the peak value of the momentum dependent
probability of each channel individually. The values are normalized by the largest
channel and in arbitrary units. We show EN , hWð0Þi, hWðπÞi and the phase
θα = argðα10Þ, see (8). The excited state labels, at the top and bottom of the panels,
are in the format ∣ηi= ∣n‘mη

i, where n is the principle quantum number, ℓ is the
angular quantum number and mη is the magnetic quantum number.

Article https://doi.org/10.1038/s41467-022-32128-z

Nature Communications |         (2022) 13:4706 4



Furthermore, for magnesium in panel (d) at λ = 400nm θα ≈0.5π,
which is why Wð0Þ and WðπÞ give nearly identical results. Thus, the
witness also provides key information on coherence between ∣0, 0i
and ∣±1,∓1i in ρOAM via α10, which is not usually accessible given that
α10 is not an observable. Thus, tuning the witness via the parameter θ,
enables efficient entanglement detection for specific targets andfields,
as well allows the phases between channels of excitation to be
determined.

In Fig. 3, we plot the correlated momentum distribution Ωðp∣∣,p
0
∣∣Þ

over p∣∣ and p0
∣∣, where we have integrated over the components per-

pendicular to the laser field polarization.

Ωðp∣∣,p
0
∣∣Þ /

Z Z
dp?dp

0
?p?p

0
?∣Mð~p, ~p0Þ∣2: ð14Þ

Interferences canbe seen,which is a hallmark of the superposition
of excited states69–72,76. In the second column, we plot momentum-
dependent logarithmic negativity EN ðp∣∣,p

0
∣∣Þ. Here, the logarithmic

negativity is computed at specific momentum values, see caption,
quantifying the entanglement between the photoelectrons given a
specific final momentum.

We may write, EN ðp∣∣,p
0
∣∣Þ= log2ð∣M�11 +M00 +M1�1∣

2Þ, where we
have usedMij � Mijðp,p0Þ∣p? =p0

? = δp, see (5). This coherent mix of OAM
channels reveals the importance of their relative phases. Such phases
are determined by an interplay between recollision dynamics and
ionization from the excited state. As such, EN ðp∣∣,p

0
∣∣Þ varies con-

siderably, forming entanglement fringes, which reveal the phase
between the OAM channels that follow the fringes in the momentum
distribution. For EN ðp∣∣,p

0
∣∣Þ of magnesium, panel (b), there are entan-

glementmaxima either side of the p∣∣ and p0
∣∣ axes,with diagonal fringes

and a central ring of high logarithmic negativity. This behavior can be
explained through the excitation channels 4s0, 4f0 and 4f±1, which
contribute the most, see Fig. 2. In Fig. 3 there are peaks in the

entanglement when there is a balanced superposition of channels with
mη = −1, 0 and 1. This occurs where 4f0 and 4s0 aremaximum, which is
adjacent to the axis and in the center, respectively. For EN ðp∣∣,p

0
∣∣Þ of

beryllium, panel (e), has the same entanglementmaxima either side of
the p∣∣ and p0

∣∣ axes as magnesium. This arises from the states 4d0, 4d±1,
4f0 and 4f±1, which leads to the same effect due to on-axis nodes of 4d0
and 4f0. In this case, the mixing of dominant channels with different l
leads to the large peaks on the diagonal (around p∣∣,p

0
∣∣≈±0:8 a.u.),

where the photoelectrons have large correlated momentum.
Through the interplay of excitation channels, we have identified

three cases where the two photoelectrons approach the maximum
logarithmic negativity. (i) Combination of three channels with equal ℓ
and mη = ±1, 0, which results in off-axis maxima, i.e., fast and slow
entangled photoelectrons. (ii) The combination of an s state with
higher ℓ channel with mη = ±1, leads to central maxima or two slow
entangled photoelectrons. (iii) The combination of two sets of differ-
ing ℓ channels each with mη = ±1, 0, this leads to two fast pairs of
entangled photoelectrons, with a correlated direction. The different
types of pairs of highly entangled photoelectrons could be useful as
imaging probes accessing different momentum regions, or alter-
natively as a source of OAM entangled electrons, which can be opti-
mizedby tuning the interplay betweendifferent channels of excitation,
for instance with tailored fields.

In Fig. 3, we display ρOAM for beryllium and magnesium targets.
The phases of the complex entries of ρOAM are written on each ele-
ment, it is clearly only θα, the phase between ∣±1,∓1i and ∣0, 0i, that
plays a role. The closer the tuning parameter θ is to θα the more
effective the entanglement witnesses. The measure EN , on the other
hand, is independent of this phase and is determined by the relative
magnitude of the non-zero elements of ρOAM. We can see in the figure,
it is the elements related to ∣±1,∓1i and ∣0, 0i that are most reduced.
The coherence between these states is reduced after tracing over the
momentum coordinates. The coherence between ∣±1,∓1i and ∣∓1, ±1i

Fig. 3 | Momentumdependent probability, logarithmic negativity, and density
matrices. a and d The correlatedmomentum distributionΩðp∣∣,p

0
∣∣Þ formagnesium

and beryllium, respectively, with respect to the parallel momentum coordinates p∣∣
and p0

∣∣. We have integrated over the components perpendicular to the laser field
polarization, given by (14). A logarithmic scale is given, normalized to the peak
value in arbitrary units. The target is given in the title, while the field parameters are
listed in the top left. b and e Momentum-dependent logarithmic negativity

EN ðp∣∣,p
0
∣∣Þ for the same respective targets. The perpendicular components are

taken to be (nearly) zero. c and f Display the density matrices, ρOAM (8), for the
indicated targets. The non-zero complex element of ρOAM, are colored blue and
represented by the phase θ= argðαle l

0
e
Þ (recall that θα = argðα01Þ) and the modulus

r = ∣αle l
0
e
∣. The bra and ket labels, c and f, correspond to the states ∣le, l

0
e

�
, where the

le and l0e is the OAM of the two photoelectrons.
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is robust, however, as the channels that leads to these states such as
4d±1 are degenerate, so will have the same behavior over momentum.
Thus, the final mixed state keeps a reasonably high logarithmic
negativity.

Measurement considerations
There are additional incoherent averaging effects leading to mixed
states,whichwill primarily be in the formof fluctuations and averaging
over the carrier envelope phase and the laser intensity. For simplicity,
we are assuming long enough pulses for the former to not be an issue.
The latter takes place through intensity variation over focal volume
(focal averaging) as well as intensity variation from shot-to-shot. In
the Supplementary Information, we compute the focal averaged
momentum distributions and density matrices, following the proce-
dure set out in refs. 71,77. We find that this does not have a significant
effect on the overall entanglement, as the coherence between the
states relating to mη = ±1 is robust to intensity variation.

Aside from incoherent averaging, ion–photoelectron entangle-
ment would lead to decoherence. However, the strict selection rules,
prevent decoherence by ensuring there is only one final state of the
ion. One could speculate whether a multielectron treatment is
required, beyond the 2e + ion model employed here? The remaining
core electron in the cases of beryllium and magnesium are tightly
bound and unlikely to play a role. In argon these effectsmay have to be
considered. It is possible this would provide additional decoherence
channels to final OAM states, which would reduce the entanglement.
Full inclusion of the Coulomb potential is also an important con-
sideration. Recent work demonstrated the inclusion of the Coulomb
potential introduced recolliding trajectories for the second electron78.
However, this treatment uses the same S-matrix treatment for the
recollision-excitation step, allowing for entanglement via the same
mechanism. The ion could couple to the photoelectrons via its angular
momenta. Given the largemass of the ion, this coupling is expected to
have a vanishing effect.

In its current form, (12), the expectation value of the witness
cannot be easily measured as it would require a combined measure-
ment on both particles. However, any witness of this type may be
decomposed79 into a series of local measurements performed on each
particle separately62,63. Practically, this will mean doing multiple
experiments to compute expectation values and then combining these
results with suitable weights determined by the decomposition. For
the specific values of θ = 0 and θ =π, the witness decomposition is

Wð0=πÞ=
�
8
3
1�2 � λ�2

3 � 2ðλ�2
4 + λ�2

5 Þ + λ�2
8 +

ffiffiffi
3

p
ðλ3 � λ8 + λ8 � λ3Þ

±2ðλ1 � λ6 + λ6 � λ1 + λ2 � λ7 + λ7 � λ2Þ
�
=12,

ð15Þ

where − is taken for θ =0 and + is taken for θ =π. Here, 1 corresponds
to the identity, i.e., performing no measurement, while λi are matrices
that label 8 different single-particle measurements. In the case of a
two-level system (qubit/ SU(2)) the local measurement may corre-
spond to the Pauli matrices plus the identity, which have a simple
geometrical interpretation. For our three-level system (qutrit/ SU(3))
we have used the eight Gell-Mann matrices. As an example, λ3 = L

ð1Þ
∣∣

corresponds to a direct OAM measurement, while λ4 corresponds to
measuring in the basis (∣�1i± ∣1i) and ∣0i. For a full definition of the
Gell–Mann matrices, see the Methods section or ref. 80.

We can use the decomposition (15) to determine how it could
reduce the total number of measurements required. There are 11
combinations of λx⊗ λy. However, we can discount 1�2 as this corre-
sponds to doing nothing. Furthermore, [λ3, λ8] = 0 (i.e., they share
eigenstates) so all parts containing only λ3 and λ8 can be determined
with the same measurement. Additionally, measurements of the form
λx⊗ λy and λy⊗ λx may be collected simultaneously, as we do not
distinguish the two electrons. This leaves five measurement settings, a

large reduction to the 81 combinations of measurement for a general
qutrit system.

Entanglement-enhanced attosecond imaging
In the non-perturbative regime, we have shown entanglement can be
generated from a recollision process, which protects the electrons
from decoherence with the ion. Nowwewill examine the possibility of
exploiting this entanglement for enhanced attosecond imaging, to
access information beyond that available in a classically correlated
system.Quantumenhancement in attoscience is relatively unexplored,
but coherence has been shown to improve measurement precision81.
To exploit the entanglement, we may measure each electron in a dif-
ferent basis, e.g., OAM (vortex state) and momentum (plane wave)
measurements. The probability of this mixed measurement is
Probðp, l, ~p0Þ= ∣Ml�lðp,p0Þ∣2, where due to the OAM correlation, we
maydisentangle channels of excitation. This is in contrast to the purely
momentum-based measurement, which leads to Probð~p, ~p0Þ=
∣∑1

l =�1 Ml�lðp,p0Þ∣2; note for a classically correlated system, this would
be an incoherent sum. We may combine such measurements, e.g.,

χð~p, ~p0Þ � Probð~p, ~p0Þ �∑
l
Probðp, l, ~p0Þ: ð16Þ

In a separable classically correlated system χð~p, ~p0Þ=0, while in
our entangled system we have χð~p, ~p0Þ=∑l≠l0Ml�lðp,p0ÞM*

l0�l0 ðp,p0Þ,
giving access to the correlation terms. Mixedmeasurements in other
bases, such as those defined by the Gell–Mann matrices, would
provide yet further correlated measurements. Switching between a
coherent and incoherent sum bears similarity to entangled double
slit interference observed in doubly ionized H2

82. By measuring the
OAM, we are able to (i) disentangle the channels of excitation with
differing quantum magnetic numbers, not possible in an uncorre-
lated system, and (ii) access coherence terms, yielding phase infor-
mation not accessible in a classically correlated system. Results,
which include the Coulomb potential in the electron propagation for
RESI78, show that recollision of the second electron plays an impor-
tant role. Thus, trajectories will interfere with differing amounts of
interaction with the Coulomb potential, providing holographic
interferences15. The combination of correlated mixed measurement,
exploiting OAM entanglement and photoelectron holography pro-
vides two ways to extract phase information, making a powerful
attosecond imaging tool.

Discussion
In this work we use the correlated process of non-sequential double
ionization (NSDI), as a backbone, to generate entanglement in the
orbital angular momentum (OAM) of two photoelectrons. The pho-
toelectron OAM in NSDI has some general rules, which show that
entanglement occurs in the recollision with subsequent ionization
(RESI)mechanismofNSDI, prevalent at lower intensities60. TheOAM in
NSDI has not been explored before, and previous entanglement stu-
dies have focused on the momentum coordinates parallel to the laser
field33. We find that OAM entanglement can be maximal in specific
momentum regions, and that this is controlled by the interplay of
channels of excitation, whichmay be investigated as a source of OAM-
entangled electrons. Furthermore, the entanglement is robust as it
survives incoherent averaging over the focal volume and it is not
generated by the symmetrization resulting from the indistinguish-
ability of the photoelectrons83.

The use of theOAMhasmany benefits,firstly, the entanglement is
simply understood as a consequence of angular momentum sharing
during recollision, coupled with a superposition over OAM states due
to contribution from excitation-channels with a differing quantum
magnetic number [Fig. 1c]. Secondly, the quantization enables a clear
and simple analysis using the logarithmic negativity, which enables an
extensive search over targets and parameters to maximize the
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entanglement, where it is clear ideal targets are those with two s-state
valence electrons, given that this will promote a balanced super-
position across OAM states [Fig. 2]. Thirdly, the reduction in compu-
tational difficulty allows the density matrix and momentum-
dependent logarithmic negativity to be computed [Fig. 3] and
enables incoherent averaging. Finally, we can construct an entangle-
ment witness, which may be decomposed into local measurements,
avoiding full state tomography or the measurements of incompatible
continuous observables, like position and momentum, reducing the
difficulty of experimental implementation for the detection of
entanglement.

A key question is how to perform such an experiment? The
measurement of OAM for electron vortex beams, has received a great
deal of attention and a variety of methods have been
demonstrated49–56. This includes diffractive methods such as a fork
hologram49,50 or Dammann vortex grating55 or conformal mapping
techniques using phase plates53 or electrostatic fields56. This arsenal of
techniques is capable of detecting an OAM range far in excess of what
is required here. The latter electrostatic OAM sorter56 boasts high
efficiency and was retrofitted as an OAM analyzing element to a
transmission electron microscope. Thus, such an element could be
conceivably added to a typical reaction microscope (ReMi)84,85

employed for NSDI—a ReMi measures correlation of the ion and the
two electrons, thus, it is already well-suited for studying
entanglement86. Beyond the measurement of OAM, there will be some
difficulty in using alkaline earth metals in experiment over the typical
nobel gas targets. Works87,88 have employed a range of alkaline earth
metals in studies on ion rates, even at a longer wavelength of 2000
nm88, however, a ReMi-style measurement of the electrons’ momen-
tumwould be challenging. An alternative route could be to investigate
larger parameter ranges and tailored fields in order to boost the
entanglement in the noble gases or other simpler targets. This search
would be aided if the theoretical model included the electron impact
mechanism to accurately address the effect on overall entanglement.

The entangled OAM of the photoelectrons in NSDI may be
exploited in various ways, e.g., through interferometric schemes
exploiting tailored fields, as a source of OAM-entangled electron pairs,
or correlated measurements of OAM and momenta. An interesting
consideration is the spin of the electrons. Previous work observed spin
polarization from the ground states of heavier targets, see e.g.,89,90.
However, for the targets we have employed this effect will be small.
The spin–orbit coupling during strong-field dynamics, e.g., during
recollision, may play some role but has been generally neglected in
strong-field studies. OAM in attosecond processes provides a rich
burgeoning research area, to help achieve the aim of imaging and
controlling matter on ultrafast times scales and photoelectron OAM-
entanglement plays an important role in achieving this goal. Beyond
this, like ref. 20, it further demonstrates the fundamental non-
classicality of such processes.

Methods
Strong-field approximation
The wave function for NSDI, which describes both electron-impact
ionization (EI) and recollisionwith subsequent ionization (RESI) can be
written using an SFA flavor ansatz66 in the following way

∣ψðtÞ�=aðtÞ∣0i+ Z d3~pbð~p, tÞ∣~p, 0�+ ∑
η

Z
d3~p cð~p,η, tÞ∣~p,η�

+
Z Z

d3~pd3~p0 dð~p, ~p0, tÞ∣~p, ~p0�, ð17Þ

where ∣0i is the two electron ground state, ∣~p, 0
�
corresponds to one

electron in the continuumand the other in its ground state, ∣~p,η
�
is the

same as the latter with the second electron excited and ∣~p, ~p0� is the
two electron continuum state.

The final symmetrized transition amplitude is related to (17) via

MRESIð~p, ~p0Þ= lim
t!1

dð~p, ~p0, tÞ

=
1ffiffiffi
2

p MRESI
unsymð~p, ~p0Þ+MRESI

unsymð~p0, ~pÞ
	 


,
ð18Þ

whereMunsymð~p, ~p0Þ is the unsymmetrized transition amplitude. This is
valid for an initial singlet state, as considered here. In the SFA, in
atomic units, for the RESImechanism and using the assumptions listed
in refs. 70,71, the unsymmetrized transition amplitude can be written
as

MRESI
unsymð~p, ~p0Þ= ∑

η

Z
d3t

Z
d3~kV ~p~p0 ,~pηV ~pη,~k0V ~k0,0 exp½iSðp,p0,k, t, t0, t00Þ�,

ð19Þ

where

Z
d3t �

Z 1

�1
dt
Z t

�1
dt0
Z t0

1
dt00 ð20Þ

and

Sðp,p0,k, t, t0, t00Þ

= I10p t00 + I20p t0 + Iηpðt � t0Þ �
Z t0

t00

½k+AðτÞ�2
2

dτ

�
Z 1

t0

½p+AðτÞ�2
2

dτ �
Z 1

t

½p0 +AðτÞ�2
2

dτ

ð21Þ

denotes the semiclassical action and I10p , I20p and Iηp are the one-electron
ionization potentials corresponding to removing a bound electron
from ∣0i, ∣~p, 0

�
and ∣~p,η

�
, respectively. Note that for three-

dimensional vectors we include a tilde ~p= ðp∣∣,p?,ϕÞ, while for two-
dimensional vectorswedonotp = (p∣∣, p⊥), wherep∣∣ = pz, p? =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x +p2

y

q
and ϕ is the azimuthal angle. The prefactors are given by

V ~k0,0 = h~kðt00Þ, 0∣V ∣0i

=
1

ð2πÞ3=2
Z

d3~rV ð~rÞe�i~kðt00 Þ�~rψ10ð~rÞ,
ð22Þ

V ~pη, ~k0 = h~pðt0Þ,η∣V 12∣~kðt0Þ, 0i

=
1

ð2πÞ3
Z Z

d3~r0d3~r exp½�ið~p� ~kÞ � ~r�

×V 12ð~r,~r0Þ½ψηð~r0Þ�
*
ψ20ð~r0Þ

ð23Þ

and

V ~p~p0 , ~pη = ~pðtÞ, ~p0ðtÞ∣V ion∣~pðtÞ,η
� �

=
1

ð2πÞ3=2
Z

d3~r0V ionð~r0Þe�i~p0 ðtÞ�~r0ψηð~r0Þ,
ð24Þ

where ~pðtÞ, ~p0ðtÞ and ~kðtÞ are defined according to ~kðtÞ= ~k+ ~AðtÞ or
~kðtÞ= ~k in the length or velocity gauge, respectively. In this work, for
simplicity, we employ the velocity gauge. This formalism describes the
RESI process, in which an electron is ionized by the laser field from the
ground state ∣0i at time t″ into ∣~k, 0iwith intermediatemomentum ~k, it
recollides at t0 and excites a second electron into the state ∣~p,η

�
with a

final momentum p for the initial electron. The second electron is
ionized via the laser field at time t into the state ∣~p, ~p0� with a final
momentum ~p0. The prefactors give the information about all the bound
states91 and interactions, for which we employ V the singly charged
binding potential for the first electron, Vion the doubly charged binding

Article https://doi.org/10.1038/s41467-022-32128-z

Nature Communications |         (2022) 13:4706 7



potential for the second electron and V12 the electron–electron inter-
action. In this approximation, electron–electron correlation is descri-
bed by the prefactor V ~pη, ~k0. The transition amplitude (19) is computed
using the steepest descent method. In which, we look for values of the
variables t, t0t″ and ~k such that the action is stationary. This leads to the
following saddle-point equations

~k+ ~Aðt00Þ
h i2

= � 2I10p , ð25Þ

~k= � 1
t0 � t00

Z t0

t00
dτ ~AðτÞ, ð26Þ

~p+ ~Aðt0Þ
h i2

= ~k+ ~Aðt0Þ
h i2

� 2ðI20p � IηpÞ, ð27Þ

and

~p0 + ~AðtÞ
h i2

=�2Iηp: ð28Þ

Eqs. (25) and (28) give the energy conservation of the first and
second electron at the instant of tunnel ionization, (26) enforced the
first electron will return and (27) describe energy sharing between the
electrons.

Conservation laws
The conservation laws exploited in the main text are general and can
be arrived at with few assumptions. The Hamiltonian of the two-
electron system may be written as

ĤðtÞ= p̂2 + p̂02

2
+ ðr∣∣ + r0∣∣ÞE ∣∣ðtÞ+V ionð~rÞ+V ionð~r0Þ+ V̂ 12:

ð29Þ

All terms are independent of the coordinates ϕ and ϕ0 except for V̂ 12,
which depends on the relative distance between the electrons

∣~r� ~r0∣=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr∣∣ � r0∣∣Þ2 + r2?r02? cosðϕ� ϕ0Þ

q
, thus this is still invariant to a

rotation to both particles. Hence, ½L̂∣∣, Ĥ�=0, where L̂∣∣ = � i∂ϕ � i∂ϕ0 ,

and total OAM is conserved,m+m0 = le + l
0
e. If, during ionization by the

laser field, the single-active-electron approximation is employed (as is
widespread) orbital angular momentum will be conserved during

ionization, given that ½L̂ð1Þ∣∣ , Ĥ
ð1Þ�= ½L̂ð2Þ∣∣ , Ĥ

ð2Þ�=0, where L̂
ð1Þ
, L̂

ð2Þ
, Ĥ

ð1Þ
and

Ĥ
ð2Þ

are the OAM operators and Hamiltonians for each individual
electron, including only one-particle terms. Thus, this lead to l0e =mη.

The same conservation laws plus additional constraints are
encoded in the SFA via theprefactors, whichmaybewritten in termsof
their dependence on the azimuthal angles,

V ~k0,0 = e
imϕk ~Vk0,0 ð30Þ

V ~pη, ~k0 = e
iðm0�mηÞϕp ~Vpη,p000 ð31Þ

V ~p~p0 , ~pη = e
imηϕp0 ~Vpp0 , ~pη, ð32Þ

where the tilde indicates quantities independent of the azimuthal
angle of all coordinates. Nowusing (5) and the above equationswemay
write the SFA OAM transition amplitude

MRESI
le, l

0
e
ðp,p0Þ= i�ðle + l0eÞδm, 0δm0�mη , le

δmη , l
0
e

~Mðp,p0Þ ð33Þ

with

~Mðp,p0Þ =
Z

d3t
Z

d2k~Vpp0 ,pη
~Vpη,k0

~Vk0,0e
iSðp,p0 ,k, t, t0 , t00 Þ: ð34Þ

Thus, we recover the above stated conservation equations along
with the conditionm = 0. The second electron in its ground states has
quantummagnetic numberm0, and from the behavior of the spherical
harmonic Y�m0

‘η
ðΩÞ= ð�1Þm0

Ym0
‘η
ðΩÞwe candeduce that, for odd values of

m0 we will get opposite signs in the final transition amplitude and thus
odd pairs will cancel, as the initial states will be degenerate. Thus, for
the s and p initial states employed here, we can assume m0 =0.

Density matrix
The full density matrix ρ= ∣ψ

�
ψ
�

∣, where ∣ψ
�
is given by (7), is

ρ= ∑
le, l

0
e

Z Z
d2pd2p0d2p00d2p000Mle,�le

ðp, p0ÞM*
l0e�l0e

ðp00,p000Þ∣p, le,p0, � leihp00, l0e, p
000, � l0e∣:

ð35Þ

We do not compute this explicitly due to the continuous
momentumcoordinates, insteadmost commonly, wewill traceout the
momentum coordinates

ρOAM =
Z Z

d2kd2k0 k,k0�
∣ρ∣k,k0�, ð36Þ

wherewe assume k∣p, le
� �

= δðk� pÞ∣le
�
. Here ∣le

�
is anOAMstatewith

the property r∣le
� � / eileϕ. Applying this rule results in (8). In order to

compute the momentum dependent logarithmic negativity EN ðp∣∣,p
0
∣∣Þ

we need to compute the density matrix conditioned on some specific
final momentum

ρðp,p0Þ= ∑
le, l

0
e

Mle,�le
ðp,p0ÞM*

l0e,�l0e
ðp,p0Þ∣p, le,p0, � le

�
p, l0e,p

0, � l0e
�

∣:

ð37Þ

Positive partial transpose
The positive partial transpose (PPT) or Peres-Horodecki criterion73,74 is a
necessary condition on density matrices to determine if a system is
separable. It is valid for both pure andmixed states. The approach is to
take the partial transpose—i.e., transpose one subsystem—and compute
the eigenvalues, if any are negative the state is non-separable and thus,
entangled. For 2⊗ 2 and 2⊗ 3 the condition is also sufficient, so no
negative eigenvalues imply separability, for higher dimensional systems
(such as our 3⊗ 3 system), this is not the case, however, it is still a very
powerful method and witnesses can be constructed to detect any PPT
entangled state92, which we can exploit to our advantage.

For our NSDI qutrit mixed state

ρOAM = ∑
1

le, l
0
e =�1

αlel
0
e
∣le, � le

�
l0e, � l0e
�

∣, ð38Þ

where α is defined as in (8). In taking the partial transpose we swap the
indices for one of the subsystems (in this case the second electron),

ρOAM = ∑
1

le, l
0
e =�1

αlel
0
e
∣le, � l0eihl0e, � le∣: ð39Þ

The eigenvalues can be computed analytically as

αlele
=
Z

d2p
Z

d2p0∣Mle�le
ðp,p0Þ∣2 for le 2 ½�1, 1�, ð40Þ
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which are positive and ± ∣αle l
0
e
∣ for le ≠ l

0
e, which provides three

negative eigenvalues as long as ∣αlel
0
e
∣≠0 for le ≠ l

0
e. Thus, the elec-

trons from the RESI mechanism of NSDI are always PPT entangled as
long as there is non-zero population across different excited state
with differing mη. This also means there will always be an
entanglement witness, which may be used to experimentally verify
this entanglement.

Logarithmic negativity
The logarithmic negativity is well-suited for quantifying entanglement
in PPT entangled states, as it is equal to the entanglement cost to
create this entanglement via PPT operations. In the main article we
construct the logarithmic negativity from the reduced density matrix,
tracedovermomentumcoordinates, however,wemay insteaddefine a
momentum dependent logarithmic negativity

EN ðp∣∣,p
0Þ= log2 ∣∣ρTA ðp∣∣, δp,p

0,δpÞ∣∣
1

h i
, ð41Þ

where the perpendicular momentum coordinates are set to nearly to
zero, δp = 0.05 a.u., in order allow for 2D visualization. The value is
chosen to be where the distribution will have high probability but no
nodes due to the geometry of the excited states.

The logarithmic negativity can be related to the sum of the
negative eigenvalues (λi) of the density matrix

EN = log2 ∣∣ρTA
OAM∣∣1

h i

= log2 1 + 2∣ ∑
λi<0

λi∣

 ! ð42Þ

which can be written as minus the sum of the negativive eigenvalues

= log2 1 + 2 ∣α�10∣+ ∣α�11∣+ ∣α01∣
� �� � ð43Þ

Using the Cauchy–Schwartz inequality we can show αlel
0
e
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αlele

αl0e l
0
e

p
,

leading to

∣α�10∣+ ∣α�11∣+ ∣α01∣
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α�1�1α00

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α�1�1α11

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α00α11

p

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α�1�1 +α11 +α00

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α00 +α�1�1 +α11

p
= 1,

ð44Þ

whereother formsof the Cauchy–Schwartz inequality were used in the
additional inequalities. With this we can place a bound upon the
logarithmic negativity

EN ≤ log2ð1 + 2Þ≈ 1:58 : ð45Þ

Entanglement witnesses
Here, wewill show that thewitness used in thiswork (see (12)) is a valid
entanglement witness. We do this by showing that (i) it is positive for
all separable states and (ii) the trace is negative for at least one
entangled state. For a general separable pure state

∣ψ
�
= ∑

i
ai∣ii �∑

j
bi ∣j

�
ð46Þ

the density matrix may be written as

ρs = ∑
i, j,m,n

aia
*
mbjb

*
n∣i, j

�
m,nh ∣ ð47Þ

and we can compute the trace with the witness of (12)

Tr½ρsWðθÞ�= 1
d
∑
i, j
∣ai∣

2∣bj ∣
2 � νðθÞ�

∣ρs∣νðθÞ
�

ð48Þ

=
1
d
� ∣∑

ij
aibj i, j∣νðθÞ� �

∣2 ð49Þ

=
1
d
� 1

d
∣∑
le
ale

eiθlb�le
∣
2 ð50Þ

≥
1
d
� 1

d
∑
le
∣ale

eiθle ∣2 ∑
le
∣ble

∣2 =0: ð51Þ

Thus, we have demonstrated (i) and the entangled state we use for (ii)
is ∣νðθÞ�

Tr½∣νðθÞ� νðθÞ�
∣WðθÞ�= 1

d
� ∣ νðθÞ∣νðθÞ� �

∣2 ð52Þ

= � d � 1
d

<0: ð53Þ

Hence, given d = 3, we have shown that we are using a valid witness.

Witness decomposition
The decomposition of entanglement witness into a series of local
measurement is described in refs. 62,63,79. As described in the main
text, for a qutrit, a convenient decomposition is in terms of the Gell-
Mann matrices. These are defined by the following construction80,

χ ±
lel

0
e
= ∣x ±

lel
0
e
ihx ±

lel
0
e
∣ and ∣x ±

le l
0
e
i= 1ffiffi

2
p ð∣le

�
± ∣l0e

�Þ,
ϒ±
lel

0
e
= ∣y±

lel
0
e
ihy±

lel
0
e
∣ and ∣y±

lel
0
e
i= 1ffiffi

2
p ð∣le

�
± i∣l0e

�Þ, ð54Þ

the matrices are then given by

λ1 = χ
+
01 � χ�01 λ2 =ϒ

+
01 � ϒ�

01

λ4 = χ
+
0�1 � χ�0�1 λ5 =ϒ

+
0�1 � ϒ�

0�1

λ6 = χ
+
1�1 � χ�1�1 λ7 =ϒ

+
1�1 � ϒ�

1�1

λ3 = ∣0i 0h ∣� ∣1i 1h ∣
λ8 =

1ffiffi
3

p ð∣0i 0h ∣+ ∣1i 1h ∣�2∣� 1i �1h ∣Þ:

ð55Þ

These matrices can be related to the well-known Pauli matrices.
For example, the measurement λ3 = L̂∣∣, corresponds directly to an
OAMmeasurement, similar to the σz Pauli matrix, while λ1, λ4, λ6 can be
related to σx as they are all pairwise superposition of two OAM states
with the phase±. The measurements λ2, λ5, λ7 relate to σy as they are
pairwise superposition with the phase ± i. Measurements λ1–λ7 have
eigenvalues of −1, 0, 1, as with OAM, while λ8 has eigenvalues �2=

ffiffiffi
3

p

and 1=
ffiffiffi
3

p
.

The full entanglement witness decomposition given in terms of
the Gell-Mann matrices is

WðθÞ= 1
12

�
8
3
1�2 � λ�2

3 � κ2ðκ�4 + 1Þðλ�2
4 + λ�2

5 Þ + λ�2
8

+
ffiffiffi
3

p
ðλ3 � λ8 + λ8 � λ3Þ+ iκ2ðκ�4 � 1Þðλ4 � λ5 � λ5 � λ4Þ

� κðκ�2 + 1Þðλ1 � λ6 + λ6 � λ1 + λ2 � λ7 + λ7 � λ2Þ

� iκðκ�2 � 1Þðλ1 � λ7 � λ7 � λ1 � λ2 � λ6 + λ6 � λ2Þ
�
,

ð56Þ
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where κ = eiθ. This decomposition is specific to the Gell-Mannmatrices,
however, a general proceduremay be outlined for any complete set of
measurement bases. Thus, if it is simpler to measure in another way,
use another entanglement witness or perform this for a higher-
dimensional system, the following recipe can be used to achieve the
decomposition. For a complete set of one-particle measurements
defined by the operators λi for i∈ [1, d2] and a known entanglement
witness W, the decomposition in terms of the local one-particle
observables may be written as

W = ∑
ij
cijλi � λj , ð57Þ

where the coefficients cij can be used to combined with experimental
local expectation values to determine W. This sum can be inverted to
find cij via vectorization, i.e., flattening one dimension. We may define

Wv = vecðWÞ
= ðW0,0,W0, 1, :::,W0,d2�1,W1, 0, :::,Wd2�1,d2�1ÞT

ð58Þ

and cv = ðc0,0, c0, 1, :::, c0,d2�1, c1, 0, :::, cd2�1,d2�1ÞT . This reduces the
d2 × d2 matrix operators, W and c, to d4 dimensional vectors. Now we
defined a d4 × d4 matrix

Mv = vecðλ0 � λ0Þ, ::, vecðλd�1 � λd�1Þ
� �

, ð59Þ

where each row is the vectorized matrix λi⊗ λj for specific values of i
and j. Nowusing thesedefinitionswemay rewrite (57) as a linearmatrix
equation Wv =Mcv, thus we may obtain the coefficients by inverting,
such that cv =M

�1Wv. For our finite-dimensional systemwith d = 3, this
can be done quickly and straightforwardly.

Data availability
The data generated for all figures used in this study have been
deposited in the Zenodo database and are freely available at https://
doi.org/10.5281/zenodo.6610379.

Code availability
All codes and scripts are available upon request,
andrew.maxwell@phys.au.dk.
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