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Abstract

Background: Traumatic brain injury (TBI) is one of the leading causes of disability and death among young people.
Although much is already known about secondary brain damage the full range of brain tissue responses to TBI remains to
be elucidated. A population of neurons located in cerebral areas associated with higher cognitive functions harbours a
vesicular zinc pool co-localized with glutamate. This zinc enriched pool of synaptic vesicles has been hypothesized to take
part in the injurious signalling cascade that follows pathological conditions such as seizures, ischemia and traumatic brain
injury. Pathological release of excess zinc ions from pre-synaptic vesicles has been suggested to mediate cell damage/death
to postsynaptic neurons.

Methodology/Principal Findings: In order to substantiate the influence of vesicular zinc ions on TBI, we designed a study in
which damage and zinc movements were analysed in several different ways. Twenty-four hours after TBI ZnT3-KO mice
(mice without vesicular zinc) were compared to littermate Wild Type (WT) mice (mice with vesicular zinc) with regard to
histopathology. Furthermore, in order to evaluate a possible neuro-protective dimension of chemical blocking of vesicular
zinc, we treated lesioned mice with either DEDTC or selenite. Our study revealed that chemical blocking of vesicular zinc
ions, either by chelation with DEDTC or accumulation in zinc-selenium nanocrystals, worsened the effects on the aftermath
of TBI in the WT mice by increasing the number of necrotic and apoptotic cells within the first 24 hours after TBI, when
compared to those of chemically untreated WT mice.

Conclusion/Significance: ZnT3-KO mice revealed more damage after TBI compared to WT controls. Following treatment
with DEDTC or selenium an increase in the number of both dead and apoptotic cells were seen in the controls within the
first 24 hours after TBI while the degree of damage in the ZnT3-KO mice remained largely unchanged. Further analyses
revealed that the damage development in the two mouse strains was almost identical after either zinc chelation or zinc
complexion therapy.
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Introduction

Zinc is found in every cell of our body and is required for

processes as diverse as gene expression, DNA synthesis, enzymatic

catalysis, hormonal storage, tissue repair, neurotransmission and

memory [1,2]. The majority of zinc ions in the brain (approxi-

mately 85%) are intimately bound in proteins, such as zinc finger

proteins (DNA-binding proteins), enzymes and metallothioneins,

while the rest (approximately 15%) are sequestered in presynaptic

vesicles in the terminals of a special subset of neurons, called zinc

enriched (ZEN) neurons [3–7].

ZEN neurons in the mammalian brain are primarily glutama-

tergic [8–10] and forebrain regions such as hippocampus,

amygdala and neocortex are crowded with ZEN terminals [11].

The presynaptic zinc ions are located in a pool of synaptic

vesicles. These zinc ions are free or loosely bound and can be

chelated by zinc chelators some of which are fluorescent [11], or

captured as zinc-selenium nanocrystals and subsequently traced in

brain sections at LM and EM levels [12,13]. The neocortex of

rodents displays a dense and highly ordered selenium-AMG

staining in the light microscope and reveals the presence of in vivo

created zinc-selenium nanocrystals in the synaptic vesicles in the

electron microscope [13]. The complex patterns of ZEN terminals

in different parts of the brain and spinal cord have been described

in several papers [14–16].

The physiological significance of zinc ions in the ZEN terminals

is far from fully understood. It has been suggested that the zinc

ions are released into the synaptic clefts [3,17–19] where they act

as a neuro-modulating agent on one or more postsynaptic

receptors [20,21].

In 1996 it was suggested that the zinc transporter 3 protein

(ZnT3) was responsible for transport of zinc ions into the synaptic
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vesicles of the ZEN terminals [22]. Later studies confirmed that

the ZnT3 protein is abundantly present in the ZEN mossy fibres

and that the zinc transporter protein is located to the membranes

of the synaptic vesicles and controls the amount of zinc in the

synaptic vesicles [23,24]. ZnT3-KO mice lack the ZnT3 protein

and hence these animals are completely void of zinc ions in their

ZEN terminals. This finding is supported by the fact that the total

zinc levels in the hippocampus and the neocortex have been

reported to be reduced by 20% [23,25]. In harmony with former

observations based on a temporary chemical binding of the

vesicular zinc pool [26,27] or a reduced level of vesicular zinc

following an adrenally induced loss of zinc ions [28] no major

physiological and behavioural changes were found in studies

comparing the ZnT3 mouse to the WT littermate. The only

recorded important difference was that the ZnT3 mouse tends to

be more seizure prone when treated with kainic acid [25,29].

In addition to influencing neuronal transmission vesicular zinc

might contribute to neuronal injury under pathological circum-

stances where dys-homeostasis of vesicular zinc ions has been

advocated to be partaker in the development of the neurodegen-

erative changes following brain damage [30].

Neuronal damage following TBI [31], ischemia [32,33] and

seizures [34] has been hypothesized to be exacerbated as a result

of a dynamic presynaptic release of zinc ions that subsequently

transcend into postsynaptic neurons causing cell death.

The present study aims at scrutinizing this hypothesis using

ZnT3-KO mice and WT controls, i.e. mice with and without

vesicular zinc.

Materials and Methods

Animals
The ZnT3-KO and WT mice used were obtained by courtesy

of Dr. R. Palmiter.

The animals were kept in plastic cages in a room with a 12-hour

light/dark cycle at 21–22uC and 50% humidity. They were fed

Altromin No. 1324 (Spezialfutterwerke, Germany) ad libitum and

had free access to tap water.

Ethics statement. All efforts were made to minimize animal

suffering and the number of animals used. The experimental

procedures followed were carried out in accordance with the

regulations of the animal protection laws of Denmark.

A total of fifty-eight animals were sacrificed during this study

(n = 58). The mice selected for chelation therapy were divided into

six groups of five (n = 30). The mice selected for in vivo selenium

autometallography (ZnSeAMG) and FluoroJade B staining were

divided into four groups of five (n = 20). Eight mice were selected

for control sectioning (n = 8).

Temgesic (buprenorphin) was used as an analgesic throughout

the procedures.

The Stereotaxic Cut Lesion
The mice were deeply anaesthetized prior to the operation. The

anaesthetic used was a combination of Ketaminol Vet. 50 mg/ml,

0.25 ml Narcoxyl Vet. 20 mg/ml and 3.75 isotonic salt water.

0.1 ml per 10 gram bodyweight of the solution was injected

intraperitoneally (IP). Each animal was observed closely for

withdrawal reflexes as a test of satisfactory anaesthesia. Then it

was placed in a small animal stereotaxic instrument designed to

keep the head of the animal securely fixed. The skin above the

calvarium was cut mid-sagitally and kept aside by two clips. Under

the operation microscope a 1 mm wide and 3 mm long furrow

was drilled 2 mm lateral to bregma in the right parietal bone. A

scalpel was then mounted in an electronic stereotaxic devise,

lowered to the drilled furrow and then further lowered 1 mm,

penetrating the neocortex, and gently moved 3 mm caudally. The

major advantage of this procedure is that it is highly reproducible

and that our model of TBI gives us access to specific target areas

with high amounts of ZEN terminals.

The skin above the calvarium was sutured after the operation to

avoid introduction of micro-agents into the wound.

Zinc Ion Capturing
One hour before TBI, the animals chosen for chemical in situ

capturing of zinc ions were anaesthetized with a Ketaminol/

narcoxyl solution and IP injected with either 5 mg per kg

bodyweight sodium selenite (Na2SeO3) or 150 mg per kg body-

weight diethyldithiocarbamate (DEDTC). Sodium selenite and

DEDTC were dissolved in deionised water in a concentration of

1 mg sodium selenite per 1 ml distilled water and 15 mg DEDTC

per 1 ml distilled water. This low dose of DEDTC (150 mg/kg)

only produces a temporary block of the vesicular zinc pattern

which within a few hours is re-established, and doses up to

1000 mg/kg DEDTC are tolerated well [35]. Other studies have

used doses of 200 mg/kg DEDTC without inducing and without

recording apoptosis evaluated with TUNEL stain or evaluated

histologically with either H&E or acid fuchsin stains [36,37].

From studies of retrograde axonal transport of zinc in rats and

mice we have found that doses up to 8 mg/kg selenite are

tolerated well at a survival time of 24 hours [14,38,39,40]. Thus

5 mg/kg selenite IP is considered a relatively safe dose unable to

induce brain damage on its own.

Selenium was chosen as a chemical blocker of loosely bound

and free zinc ions because of the long known fact that zinc ions

react with selenide ions creating zinc selenide molecules that again

accumulate in zinc-selenium nanocrystals [12,40]. Furthermore,

we have previously traced the ZEN terminals to the ultrastructural

level applying the ZnSeAMG method, which makes a direct

coupling of previous anatomical findings to the findings of the

present study possible [41].

DEDTC was chosen because it is a well known, relatively

nontoxic chelator with preferences to zinc ions. In 1973 it was

found to enable a blockage of all the vesicular zinc ions in the

brain [35]. DEDTC is believed to be transformed to Bis(diethyl-

dithiocarbamate)zinc, a diethyldithiocarbamic acid zinc salt. This

molecule is not very stable in vivo and will within a few hours

release the zinc ions/ be metabolized releasing the zinc ions [35].

Zinc Tracing and FluoroJade B (FJB)
Twenty-four hours after TBI the animals chosen for zinc and

FJB staining were re-anaesthetized and sacrificed by transcardial

perfusion with a 3% glutaraldehyde solution (GA) in a 0.1%

phosphate buffer solution for 3 min. The perfusion pressure was

set at 140 mmHg.

Tissue Processing
The brains selected for TUNEL, caspase-3 or GFAP staining

were quickly dissected, dehydrated through graded alcohol,

imbedded in paraffin, and cut in series of 3 mm sections.

Brains selected for FJB staining (cryo-sectioning) were post-fixed

for at least one hour in a paraformaldehyde (PFA) solution. The

newly dissected brains were placed in a 30% solution of sucrose

until they sank to the bottom of the jar. The brains were then

frozen with CO2 for a period of 2 min. Thereafter the tissues were

placed in a cryostat and allowed to increase in temperature to

217uC. 30-mm-thick sections were cut in 5 series, placed on glass-

slides and stained with FJB according to the protocol (vide infra) or

were counterstained with a 0.1% aqueous toluidine blue solution,

Zinc Chelation in TBI
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dehydrated in alcohol to xylene, and ultimately embedded in

DEPEX and covered with a cover-glass.

Autometallography (AMG)
The AMG developer consists of a) 60 ml gum arabic solution

(Bidinger, Aarhus, DK), b) 10 ml sodium citrate ebuVer (23.5 g

sodium citrate (Merck 6448, VWR,DK) to 100 ml distilled water),

c) 15 ml reducing agent (0.85 g hydroquinone (Merck 4610,

VWR, DK) dissolved in 15 ml distilled water at 40uC), and d)

15 ml of a solution containing silver ions (0.12 g silver lactate

(Fluka 85210 supplied by Sigma-Aldrich, Vallensbæk, DK) in

15 ml distilled water at 40uC). Mix solution a (60 ml), solution b

(10 ml), and solution c (15 ml) carefully in a 100 ml beaker. Add

solution d (15 ml) immediately before use and mix thoroughly.

The AMG development takes place in a water bath at 26uC for

60–70 min under a dark hood. Development is stopped by

replacing the developer with a 5% thiosulphate solution for

10 min. Finally, the tissue sections/slices are rinsed several times

in distilled water [13,40].

Tissue Slicing
Tissue slices to be analysed for zinc staining at the light

microscopical level were treated in accordance with the following

two procedures, respectively:

(1) For light microscopical analyses of thick sections the slices

were placed in a 30% solution of sucrose until they sank to the

bottom of the glass. The slices were then frozen with CO2,

Figure 1. Tracing of zinc using the ZnSeAMG method. (A) Cryo-section: Wild Type mouse 24 hours after TBI. Asterisks denote lesion tract; a distinct
layering of the neocortex is noticeable. Closest to the lesion tract no AMG development is possible because all cells are severely damaged. This is shown
as a little tint of white on both sides of the lesion tract. Scale bar: 1 mm. (B) Cryo-section: ZnT3-KO mouse 24 hours after TBI. Asterisks denote lesion. In
the periphery of the lesion a number of ZnSe nanocrystals containing neurons are just visible. These somata marked neurons border the area between
morphologically damaged tissue and morphologically intact tissue. (C) Semi-thin section: Wild Type mouse, a close-up of what is seen in A. There is a
distinct neuropil stain; the tissue is oedematous with bleeding. The neurons are distorted, with vacuolation of their cytoplasm and some with
eccentrically placed, pycnotic nuclei; none of the neuronal cell-bodies contain any ZnSe nanocrystals. Scale bar: 30 mm. (D1–2) Semi-thin sections: ZnT3-KO
mouse. In the periphery of the lesion some neurons containing ZnSe nanocrystals in their somata can be seen. Going towards the lesion tract most cells
are heavily distorted with condensed, eccentrically placed nuclei. The tissue is severely damaged with massive oedema. Scale bar: 30 mm. Tracing of dead
and dying neurons with Fluorojade B (FJB). (E) Cryo-section: Wild Type mouse stained with FJB; fluorescent neurons border the lesion tract. Scale bar:
300 mm. (F) Cryo-section: ZnT3-KO mouse stained with FJB; numerous neurons line the lesion tract. Scale bar: 300 mm.
doi:10.1371/journal.pone.0010131.g001
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placed in a cryostat, and allowed a temperature fall to 217uC.

After AMG development (see below), the sections were

counterstained with a 0.1% solution of aqueous Toluidine

blue (pH 4.0), dehydrated in ascending concentrations of

alcohol and xylene, embedded in DePex and covered with a

cover-glass.

(2) For light microscopical analysis of zinc staining in semi-thin

sections the slices were cut on a vibratome and the resulting

100-mm-thick sections were developed in AMG. The areas to

be analysed were cut out, placed in osmium tetroxide (1% in

phosphate buVer for 30 min) and embedded in Epon. From

these Epon blocks 3-mm-thick sections were cut and

counterstained with toluidine blue.

FluoroJade B (FJB) Staining
The FJB staining solution consists of: 10 mg of a stock solution

of FJB dye powder in 100 ml of distilled water (0.01%). To make

up 100 ml staining solution, 4 ml of the stock solution is added to

96 ml of 0.1% of acetic acid vehicle. This results in a final dye

concentration of 0.0004%.

The tissues for FJB staining were cryo-proctected with sucrose

20–30% for 24 hours, frozen with CO2 and cut in 30 mm sections

on a cryostat. The sections were dried on a slide warmer at 50uC
for at least half an hour. The slides were then immersed in a

solution containing 1% sodium hydroxide in 80% alcohol (20 ml

of 5% NaOH added to 80 ml of absolute alcohol) after which they

were placed in 70% alcohol for 2 min and distilled water for

another 2 min. They were then treated with a 0.02% potassium-

permanganate solution for 10 min while being gently shaken on a

‘‘shaker’’ table. Finally the slides were yet again rinsed in distilled

water for 2 min.

The slides were placed in a 0.0004% FJB solution for 20 min

while being gently shaken, and subsequently rinsed for 1 min in

each of three distilled water washes. Excess water was removed by

briefly draining the slides vertically on a paper towel. They were

then placed on a slide warmer, set at 50uC, for 5–10 min (until

dry), and cleared by immersion in xylene for approximately 1 min

before being cover-slipped with DPX, a non-aqueous, non-

fluorescent plastic mounting media [42].

Systemic Selenium and DEDTC Treatment
Twenty-four hours after TBI (and 25 hours after IP injections of

selenite and DEDTC, respectively), the animals were re-anaes-

thetized and sacrificed by transcardial perfusion with 4% PFA in a

0.1% phosphate buffer solution for 3 min. The perfusion pressure

was set at 140 mmHg.

In situ Detection of Apoptosis
In situ detection of DNA fragmentation (TUNEL) Terminal

deoxynucleotidyl transferase (TdT) - mediated deoxyuridine

triphosphate (dUTP)-biotin nick end labelling (TUNEL) was

performed using the Fragment End Labeling (FragEL) Detection

Kit (Calbiochem, USA, code QIA33). The FragEL kit contains all

the materials used below and each step was performed according

to the manufacturer’s recommendations. Rehydrated sections

were incubated with 20 mg/ml proteinase K for 20 min to strip off

nuclear proteins. After immersion in an equilibration buffer for

20 min, the sections were incubated with TdT and biotin-labeled

deoxynucleotids (dNTP-biotin) in a humified chamber at 37uC for

90 min. This was followed by a wash buffer and the stop solution

for 5 min at room temperature to stop the reaction. After washing

in TBS and incubation in blocking buffer for 10 min the sections

were incubated with peroxidase-streptavidin for 30 min, and

finally DAB was used as chromogen. The sections were

counterstained with methyl-green. Negative control sections were

treated similarly, but incubated in the absence of TdT enzyme,

dNTP-biotin or peroxidasestreptavidin.

Caspase-3
The paraffin embedded sections were rehydrated according to

standard procedures, after which they underwent heat-induced

epitope retrieval and blocking as previously described in detail

[43,44]. Sections were then incubated overnight at 4uC with the

following primary antibody: Rabbit anti-caspase-3 (activated/cleaved

caspase-3 as a marker of apoptosis) diluted 1:50 (Cell Signaling

Techn. Inc., USA, cat. no.: 9661). On the second day the primary

antibody was detected by incubating the sections for 30 min at room

temperature with a biotinylated secondary antibody: anti-rabbit IgG

(Sigma-Aldrich, cat. no.: 3275, diluted 1:400).

The staining was then visualized using a streptavidin-biotin-

peroxidase complex (StreptABComplex/HRP, Dako, Glostrup,

DK, code K377) and a tyramide signal amplification (TSA)-kit

(NEN, Life Science Products, Waltham, MA, USA, code

NEL700A), which were applied following the manufacturer’s

recommendations. Then, immunoreactions were visualized by

using 0.015% H2O2 in 3,3-diaminobenzidine-tetrahydrochloride

(DAB)/TBS for 10 min at room temperature.

In situ Detection of Reactive Gliosis
GFAP. The sections were incubated overnight at 4uC with the

following primary antibody: Rabbit anti-GFAP (a marker of

astrocytes) diluted 1:250 (Dako, DK, cat. no.: Z334). The primary

antibody was detected using biotinylated secondary antibodies

(incubation for 30 min at room temperature), followed by

streptavidin-biotin-peroxidase complexing (StreptABComplex/

HRP, Dako, DK, code K377) and tyramide signal ampliWcation

(TSA)-kit (NEN, Life Science Products, USA, code NEL700A),

according to the manufacturer’s recommendations. Finally, the

immunoreactions were visualized using DAB as chromogen.

In all experiments, the extent of non-specific binding of

antiserum was evaluated by omitting the primary antibody step.

Results were considered only if these controls were negative.

Cell Counts. Positively stained cells were defined as cells with

positive staining of the soma except in the case of TUNEL

staining, where the apoptotic cells were defined as those with

nuclear staining (nuclear TUNEL).

The cell counts were performed on five mice per group by the

same investigator, who was blinded to the animals’ identity and

treatment. The quantifications were used for statistical comparisons.

Five sections per animal were collected from the lesioned

hemisphere and counted. Every third section down through the

lesion was collected, starting randomly on slides 1–3 until a total of

5 sections were obtained from each animal using the Cavalieri

principle. A frame was superimposed on the border of the lesion

Table 1. Students t-test.

TBI n = 10 mean 95% ci

WT n = 5 570.6 [348.16 793.04]

ZnT3 n = 5 983.0 [664.20 1301.80]

Diff n = 5 2412.4 [2769.58 255.22]*

FluoroJade B staining of cryo sections.
* Indicates statistically significant difference, p,0.05.
doi:10.1371/journal.pone.0010131.t001
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Figure 2. Evaluation of apoptosis and reactive gliosis. The rows illustrate TUNEL stains in (A-F), GFAP stains in (G-L) and Caspase 3 stains in (M-
R). All sections are paraffin sections 24 hours after TBI: (A) Wild Type mouse, not chelator treated. (B) Wild Type mouse treated with DEDTC 1 hour
before TBI. An increased number of apoptotic neurons are seen. (C) Wild Type mouse treated with selenite 1 hour before TBI. Even more apoptotic
neurons are lining the lesion tract. (D) ZnT3-KO mouse not chelator treated. Numerous apoptotic neurons are seen. (E) ZnT3-KO treated with DEDTC
1 hour before TBI. Still a number of apoptotic neurons are seen. (F) ZnT3-KO mouse treated with selenite prior to TBI. No major changes compared to
the other ZnT3-KO sections are observed. (G) Wild-type mouse not chelator treated; some reactive cells are seen in the area. (H) Wild Type mouse
treated with DEDTC 1 hour before TBI. No major changes are observed. (I) Wild Type mouse treated with selenite 1 hour before TBI. No major
changes are observed. (J) ZnT3-KO mouse not chelator treated; some activated glia are seen. (K) ZnT3-KO mouse DEDTC treated 1 hour before TBI.
The gliosis remains unchanged. (L) ZnT3-KO mouse selenite treated 1 hour before TBI. A massive increase in the reactive gliosis is seen with big
amoeboid cells and increased staining intensity. (M) Wild Type mouse. Sparse Caspase 3 positive cells are seen near the lesion tract. (N) Wild Type
mouse treated with DEDTC before TBI. More caspase 3 positive neurons are seen in the proximity of the lesion tract. (O) Wild Type mouse treated
with selenite before TBI; a clear increase in the number of caspase 3 positive neurons is seen near the lesion. (P) ZnT3-KO mouse. Sparse Caspase 3
positive cells are seen near the lesion tract. (Q) ZnT3-KO mouse, treated with DEDTC before TBI. No significant increase in the number of Caspase 3
positive cells is observed. (R) ZnT3-KO mouse treated with selenite before TBI. A major increase in the number of positive cells is observed in the
entire lesioned area. Scale bar: 300 mm.
doi:10.1371/journal.pone.0010131.g002
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tract ranging into the lesioned area where the damaged cells were

counted.

All pictures used for counting procedures were taken in one

session and all counting procedures were performed on light

microscopic photographs taken using the 620 objective on a Carl

Zeiss Vision light microscope equipped with Carl Zeiss Imager.Z1

and with an AxioCam MRc5 from AxioLab. Fixed settings and

conditions were used to ensure proper comparison of the images.

Statistical Analysis
The average cell counts obtained from the Zinc/ FJB groups

were compared using Students t-test. The groups used for

chelation treatment and multiple comparisons were analysed

using analysis of variance (ANOVA). All values are given as

means 6 SEM (with a 95% confidence interval (ci)), and the

significance level was set at P,0.05.

Results

Autometallographic Analysis
In the ZnT3-KO mice the ZnSeAMG method revealed numerous

neurons with silver enhanced zinc nanocrystals in their somata.

After 24 hours the loaded neuronal somata were all found in the

periphery of the lesion, marking the transition between TBI

influenced neocortex and morphologically intact brain tissue

(Figure 1B, D1-D2).

Opposite to this characteristic ZnT3-KO TBI AMG pattern the

WT control mice were completely void of stained neuronal somata

although clear signs of morphological cell damage were conspic-

uous. LM analysis revealed that the ZnSe nanocrystals were

confined only to the neuropil (see Figure 1A, C [41]).

Cell Death/FluoroJade B Neurons
Neuronal counting of FJB positive neurons and statistical

analysis show that the ZnT3-KO mice have significantly more

dead or dying neurons evaluated after 24 hours after TBI

(Figure 1E, F). Students t-test revealed this to be a significant

difference with P,0.05 (see Table 1).

Apoptotic Cell Death/TUNEL
In the groups not treated with DEDTC the TUNEL stains also

reveal a significant difference in the number of apoptotic neurons

between the WT and the ZnT3-KO mice, the latter having the

majority of damaged neurons (Figure 2A, D). After chelation

therapy the pattern of damage in the two stains resembles one

another (Figure 2B, E & C, F) and the WT controls exhibit a

significantly increased number of apoptotic neurons compared to

WT animals not treated with DEDTC or selenite (compare

Figure 2B, C to A). Table 2 summarizes the TUNEL results:

Astrocytes/GFAP
Activated glial cells were counted 24 hours after TBI. The data

reveal that the selenite treated ZnT3-KO mice have a higher

degree of reactive gliosis compared to the controls. This is made

evident by the significant increase in the number of counted

astroglia in the o66–70 group (compare Figure 2L to G, J). Table 3

summarizes our GFAP findings:

Apoptotic Cell Death/Caspase-3
The caspase 3 stain showed an increased amount of neurons

undergoing programmed cell death after selenite treatment

(Figure 2O, R). This is also a tendency seen in group o51–55

and group o56–60 where DEDTC is applied as chelator, even

though this effect is not significant (compare Figure 2N,Q to M, P).

Table 4 summarizes these results:

Chemical Binding of Zinc in Un-injured Mice, Control
Sections

Twenty-four hours before transcardial perfusion, animals

chosen for control sectioning were anaesthetized with a Ketami-

nol/narcoxyl solution and subsequently treated IP with either 5

mg per kg bodyweight sodium selenite (Na2SeO3) or 150 mg per

kg bodyweight diethyldithiocarbamate (DEDTC).

The tissue was further processed for either morphological

evaluation (Toluidine stain) or for FJB or TUNEL stain. All

sections were negative for FJB and TUNEL staining and displayed

a normal morphology. There were no observable differences

between the WT and the ZnT3-KO mice (See Figure 3).

Table 2. TUNEL; the group o46–50 has significantly more
apoptotic neurons than o41–45, this difference equalizes after
chelator application [o51–55;o56–60], [o61–65;o66–70].

TBI n = 30 mean 95% ci

WT o41–45 n = 5 241.2 [164.01 318.39]

ZnT3 o46–50 n = 5 478.8 [401.61 555.99]

WT + DEDTC o51–55 n = 5 532.2 [454.81 609.19]

ZnT3 + DEDTC o56–60 n = 5 590.4 [513.21 667.59]

WT + selenite o61–65 n = 5 588.3 [510.81 665.19]

ZnT3 + selenite o66–70 n = 5 465.8 [388.61 542.99]

doi:10.1371/journal.pone.0010131.t002

Table 3. GFAP; only the group o66–70 contains more GFAP
positive cells although a tendency towards the cells becoming
more GFAP positive after chelation therapy is noted.

TBI n = 30 mean 95% ci

WT o41–45 n = 5 60.16 [51.00 69.31]

ZnT3 o46–50 n = 5 74.96 [65.81 84.11]

WT + DEDTC o51–55 n = 5 54.33 [45.18 63.48]

ZnT3 + DEDTC o56–60 n = 5 70.14 [60.99 79.30]

WT + selenite o61–65 n = 5 59.36 [50.21 68.51]

ZnT3 + selenite o66–70 n = 5 92.79 [83.64 101.94]

doi:10.1371/journal.pone.0010131.t003

Table 4. Caspase 3; the chelator treated groups o61–65 and
o66–70 contains significantly more apoptotic neurons than
the remaining groups.

TBI n = 30 mean 95% ci

WT o41–45 n = 5 17.14 [7.83 26.45]

ZnT3 o46–50 n = 5 22.70 [13.39 32.01]

WT + DEDTC o51–55 n = 5 25.44 [16.13 34.75]

ZnT3 + DEDTC o56–60 n = 5 33.96 [24.64 43.27]

WT + selenite o61–65 n = 5 41.96 [32.65 51.27]

ZnT3 + selenite o66–70 n = 5 86.48 [77.17 95.80]

doi:10.1371/journal.pone.0010131.t004
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Discussion

The finding that TBI exposed neurons of ZnT3-KO mice

accumulate zinc ions in their somata and reveal significantly more

damaged neurons by the FluoroJade B staining suggests that zinc

ions, in complete contrast to what has been suggested until now,

have protective qualities to the TBI aftermath. This interpretation

was strengthened by the finding that the WT controls after TBI

did not accumulate zinc ions in their neuronal somata, although

the surrounding neuropil was teeming with ZEN terminals and

further that the amount of dead neurons was significantly lower in

the WT controls.

This notion was further supported by results from chemical

binding of zinc ions. We found that although the ZnT3-KO

mice had initially more damaged neurons, as demonstrated by

FluoroJade B and TUNEL stains this difference was equalized

after chemical binding of the free or loosely bound zinc ions in

the ZEN neurons. Further support was gained by the fact that

no statistical difference was found in the number of apoptotic

neurons between the ZnT3-KO and WT mice exposed to

DEDTC and selenium. The observation that the longer period

of chemical blocking of zinc ions in zinc-selenide nanocrystals

(as opposed to the shorter living zinc-DEDTC molecules)

resulted in an increase in the number of GFAP positive cells

in the ZnT3-KO mice suggests that the effects of zinc ions might

be far more multifarious than hitherto envisaged and possibly

that zinc ions are an important part of controlling post TBI

inflammation.

Figure 3. Control sections. Sections are toluidine stained in (A-H). Both the WT mice and The ZnT3-KO mice display a normal morphology
24 hours after respectively DEDTC and selenite treatment. The tissue is without oedema and the cells are all intact with normal configuration. A, B, E,
F are Cryo-sections 30 mm thick. C, D, G, H are semi-thin sections 3 mm thick. No major differences between the ZnT3-KO and the WT mice are
noticeable. Scale bar A,B: 100 mm. Scale bar E: 200 mm. Scale bar F: 300 mm. Scale bar C, D, G, H: 30 mm. Control sections, FJB stained (I-L). Sections I, J
are pretreated with DEDTC and sections K, L are pretreated with selenite. All sections are FJB negative. Control sections, TUNEL stained (M-P). Sections
M, N are pretreated with DEDTC and sections O, P are pretreated with selenite. All sections are TUNEL negative. M, P depict part of the hippocampus
formation and N, O depict all the six neocortical layers. Scale bar I-P: 200 mm.
doi:10.1371/journal.pone.0010131.g003
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The AMG staining seen in the neuronal somata in a zone

around the lesion in ZnT3-KO mice must have an origin in the

loosely bound or free zinc ions that are dynamically present in all

tissues. It can also be deduced that the somata staining does not

result from axonal transport when looking at the control group.

The fact that the neurons in the lesion borders of the WT mice

were void of zinc ions in their somata 24 hours after TBI is most

likely due to the axons being disabled by the nearby cut lesion

blocking the normal retrograde transport of vesicular zinc from the

terminals. This transport can be traced in undamaged/ normal

animals subjected to an IP or IC injection of a sodium selenite/

sodium selenide solution. 6–24 hours after the treatment, ZEN

neuronal somata in the whole CNS (injected IP), or ZEN neurons

projecting to the injection site (if injected IC into the brain or spinal

cord), will be filled with AMG enhanced zinc-selenium nanocrystals.

[7,12,13,14,18,39,45]. The only explanation for this lack of

transport in a zone around the TBI lesion is therefore that the

retrograde axonal transport of zinc ions has been compromised. A

likely explanation of the stained somata in the TBI-ZnT3-KO mice

might be that the removal of the gene for ZnT3 has in some way

changed/influenced the composition of zinc transporters that

populate the membranes of ZnT3-KO ZEN neurons. Anatomical

studies of TBI have shown that mice with a functioning ZnT3

protein respond to TBI by increasing their terminal content of zinc

in a period of 0–8 hours after TBI and that the ZnT3-KO mice

exhibit a number of somata marked neurons in the same period of

time [41,46]. We speculate that it is this difference in the neuronal

handling/ processing of zinc ions that is responsible for the increased

number of damaged neurons in the ZnT3-KO mice. This implies

that having a functioning ZnT3 protein is an integral part of

reducing brain damage after TBI.

For the last couple of decades it has been suggested that

vesicular zinc contributes directly to neuronal damage following

insults as diverse as seizure, ischemia and TBI [28,33,34]. Other

studies have implied that vesicular zinc 1) is not the causative agent

of neuronal damage [29,47,48], 2) that it excerpts a protective

effect [49], and 3) that zinc chelation provides a short-term

neuroprotection (evaluated histologically), but fails to improve

long-term functional outcome [50].

However, the results obtained in recent studies concerning zinc

chelation have been somewhat mixed. Studies using the

antibiotic/zinc chelator Clioquinol have revealed an association

with this zinc chelating agent and transient global amnesia and

neurodegenerative disorders [51]. In related areas of neurobiol-

ogy, studies on Alzheimer diseased brains have shown a rather

deleterious effect when removing zinc from the diet, with a

subsequently increased plaque load especially in the neocortex

which contains high amounts of ZEN neurons [52].

The fact that genetic (ZnT3-KO mice) or chemical removal

(binding) of vesicular zinc increases post TBI cell death could rely

on the pro-oxidative effect of zinc removal/ zinc deficiency [53],

thereby generating more oxidative stress, or on a direct pro-

excitatory effect of zinc deficiency [54]. The lack of effect of zinc

binding on the non-injured brain could also reflect the possibility

that the main function of the vesicular zinc pool is not to be found

during standard physiological conditions, but perhaps rather

under pathological situations. Studies of seizures have shown that

pre-treatment of mice with DEDTC renders them susceptible to

otherwise sub convulsive doses of kainite acid [36,37] and that the

ZnT3-KO mice also have an increased susceptibility to seizures

[29] suggesting that vesicular zinc during seizures acts as a neuro-

protective agent. We speculate that the function of vesicular zinc

in the TBI aftermath may resemble the above scheduled.

Furthermore, low zinc concentration in cells has been associated

with pro-apoptotic mechanisms and increased cell death [55],

whereas increased zinc levels appear to be anti-apoptotic by

reducing oxidative stress [53,54]. In relation to neurodegenerative

disorders, zinc deficiency has been shown to increase the plaque

load in a model of Alzheimer’s disease, supposedly also due to

increased oxidative stress [52].

The fact that TBI on ZnT3-KO mice initially causes more

damaged neurons than on the WT mice, and that this difference

equalizes after chemical blocking of the vesicular zinc, strongly

suggests that vesicular zinc is not the aetiological agent causing

neurological damage as suggested by earlier studies

[28,33,34,56,57] and that the vesicular zinc ions have other

functions than neuro-degenerative ones in the TBI aftermath.

We hope that the present data may help to clarify the role of

zinc ions in the aftermath of brain damage.
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36. Côté A, Chiasson M, Peralta MR, 3rd, Lafortune K, Pellegrini L, Tóth K (2005)
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