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Abstract
Actinidiaceae is a well-known economically important plant family in asterids. To elucidate

the chloroplast (cp) genome evolution within this family, here we present complete genomes

of three species from two sister genera (Clematoclethra and Actinidia) in the Actinidiaceae

via genome skimming technique. Comparative analyses revealed that the genome structure

and content were rather conservative in three cp genomes in spite of different inheritance

pattern, i.e.paternal in Actinidia and maternal in Clematoclethra. The clpP gene was lacked

in all the three sequenced cp genomes examined here indicating that the clpP gene loss is

likely a conspicuous synapomorphic characteristic during the cp genome evolution of Actini-

diaceae. Comprehensive sequence comparisons in Actinidiaceae cp genomes uncovered

that there were apparently heterogenous divergence patterns among the cpDNA regions,

suggesting a preferred data-partitioned analysis for cp phylogenomics. Twenty non-coding

cpDNA loci with fast evolutionary rates are further identified as potential molecular markers

for systematics studies of Actinidiaceae. Moreover, the cp phylogenomic analyses including

31 angiosperm plastomes strongly supported the monophyly of Actinidia, being sister to

Clematoclethra in Actinidiaceae which locates in the basal asterids, Ericales.

Introduction
Actinidiaceae as an economically important plant family includes the well-known kiwifruit
species, i.e. Actinidia chinensis Planch. and A. chinensis var. deliciosaH.L.Li that can be eaten
as fresh fruit or made into juice, jelly and dried fruit. There are c. 357 species included in three
genera, i.e. Actinidia Lindl., ClematoclethraMaxim. and SaurauiaWilld., in the kiwifruit family
[1]. This family is widely distributed in Asia and the Americas displaying highly diverse mor-
phological traits. In Clematoclethra species have bisexual flowers in one individual i.e. her-
maphrodites, while in Actinidia species are dioecious or functionally dioecious [1–3]. The
chloroplast (cp) genomes of Clematoclethra and Actinidia descend differently, that is with
maternal and paternal transmission in Clematoclethra and Actinidia respectively [4]. However,
currently little is known about the cp genomes evolution in these two closely related lineages.
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The size of cp genomes in flowering plants ranges from 19 [5] to 218 kb [6], typically con-
sisting of a pair of inverted repeats (IRs), a large single-copy (LSC) region and a small single-
copy (SSC) region with the former one separating the latter two apart [7]. In spite of large
degree conservation of organization and structure of the cp genomes in comparison to nuclear
and mitochondrial genomes, gene losses and/or additions within cp genomes have been
observed in several angiosperm lineages, e.g. orchids [8], Campanulaceae [9] and Rafflesiaceae
[10]. Additionally, gene transfer between plastome, chondrome and nucleus has also been
revealed in plants [11–13]. It has been proven that cp genome structural variations are accom-
panied by speciation over time, which likely provides evolutionary information [14]. Whether
there are common structure variations in the cp genomes alongside the evolution of Actinidia-
ceae is so far little known.

Rates of nucleotide change between non-coding (intergenic regions and introns) and coding
(exons of protein-coding genes) sequences can vary tremendously within a given taxonomic
group [15–16]. As lack of phylogenetic information is one of the major problems leading to
incompletely resolved phylogenetic trees [17], thus to generate maximum phylogenetic signal,
the non-coding sequences should be especially considered, in particular when inferring phylog-
enies at lower taxonomic levels e.g. at generic level [18–19]. By far the phylogeny of Actinidia-
ceae, particularly the genus Actinidia, remains largely elusive and controversial [20–21].
Therefore, it is valuable to develop global non-coding molecular markers from Actinidiaceae
plastomes to resolve phylogenetic relationships within this family (e.g. the genus Actinidia).

Genome skimming technique is so far one of the simplest and the most economical method-
ologies to obtain high-copy sequences [22–23], for instance plastome sequences, and to con-
duct intergeneric or family-wide phylogenomic analyses [24–26]. It is now convenient to
obtain complete cp genome sequences and mine markers for plant systematics via genome
skimming [27–28]. To date, there are few cp genomes that have been sequenced from basal
asterids lineages [29–32]. As one of them, Actinidiaceae has only one species (A. chinensis)
been sequenced the cp genomes [33]. Undoubtedly, more sequenced cp genomes from other
species of Actinidiaceae will not only improve our understanding of the cp genome evolution
in the kiwifruit family, but will also aid resolving the phylogenetic relationships of the Actini-
diaceae, even of the asterids [34]. In this study, we generated and characterized the complete cp
genomes of one representative of Clematoclethra (C. lanosa) and two species of Actinidia (A.
polygama and A. tetramera) from Actinidiaceae using genome skimming approach. By apply-
ing comparative genomic analyses we aimed to 1) test whether the cp genomes of Clematocle-
thra and Actinidia evolved congruently in spite of their contrasting genetic patterns; 2) identify
the most variable cp genome-wide markers for subsequent evolutionary studies of the kiwifruit
family; and 3) uncover the potentiality of cp phylogenomic practice at varying taxonomic levels
in asterids.

Materials and Methods

Plant materials and DNA sequencing
Fresh leaves of Actinidia polygama (ZXZ15021), Actinidia tetramera (ZXZ15014) and Clema-
toclethra lanosa (ZXZ15007) were collected from Huoditang forestry farm of Qinling Moutains
in Shaanxi Province, China, in July 2015. Field studies were permitted and supported by North-
west A&F University to whom the Huoditang forestry farm belongs as an education and
research experimental base. The voucher specimens of these three species were all deposited at
the Trees Herbarium of Northwest A&F University.

Total genomic DNA was extracted from fresh leaf tissues of single individual per species
using CTAB method [35]. Paired-end libraries (100 bp read length, insert size c. 500 bp) for
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each species were constructed from fragmented genomic DNA following standard Illumina
protocols (Illumina, California, USA). DNAs from different species were indexed by barcodes
and pooled together. Prepared libraries for all three species were finally sequenced in one lane
on the Illumina HiSeq 2000 platform in Beijing Genomics Institute (BGI) in Shenzhen, China.

Genome assembly, annotation and repeat analysis
Raw reads of each species were quality-filtered and de novo assembled using CLC Genomics
Workbench v7.5 software (CLC Bio, Aarhus, Denmark). Contigs with length<300 bp and
sequence coverage<50 were discarded [36]. The remaining contigs were analyzed by a BLAST
search (http://blast.ncbi.nlm.nih.gov/) against the cp genome of A. chinensis [33] which was
used as a reference in this study. Aligned contigs with�90% similarity and query coverage
were designated as cp genomic contigs and ordered according to the reference. Small gaps were
filled using trimmed Illumina reads, as conducted in Bock et al. [37] and Zhang et al. [26].

Initial cp genome annotation was performed using DOGMA software [38]. Start/stop
codons and intron/exon boundaries were adjusted manually by comparing to the available A.
chinensis cp genome [33]. tRNA genes were further conformed using tRNAscan-SE 1.21 [39].
OGDRAW program [40] was applied to graphically display the physical map of the circular cp
genomes.

Tandem and palindromic repeats were determined by applying program REPuter [41].
Minimal tandem repeat size was set to 10 bp, intervening size between palindromic repeats
constrained to a maximal length of 2 kb. Simple sequence repeats (SSRs) were detected using
MISA perl script (http://pgrc.ipk-gatersleben.de/misa/). Minimum repeat unit was defined as
10 for mono-, 6 for di-, and 5 for tri-, tetra-, penta-, and hexanucleotide SSRs [42].

Genome comparison and divergent hotspot identification
Chloroplast genome sequences of two additional Actinidiaceae species, i.e. A. chinensis
(NC_026690) and A. chinensis var. deliciosa (NC_026691), were downloaded from GenBank.
Together with our own sequenced cp genomes of A. polygama, A. tetramera and C. lanosa, we
aligned these five cp genomes using MAFFT program [43] and manually adjusted where neces-
sary. Full alignments with annotations were visualized using VISTA viewer [44] by referring to
A. chinensis [33]. Multiple alignments of LSC, SSC, IRa (representing the two identical IRs),
coding and non-coding regions in the matrix of five cp genomes were extracted respectively.
Each region was compared to tally numbers of constant and variable alignment positions in
MEGA v5.2 [45]. The number of nucleotide substitutions, in terms of single nucleotide poly-
morphisms (SNPs), divided by the total aligned length in each partition resulted in the percent
variability for each region compared [19].

Five Actinidiaceae cp genomes were analysed to identify rapidly evolving molecular markers
which can be used in subsequent phylogenetic studies. Both the coding and non-coding DNA
fragments>200 bp in each cp genome were extracted separately by applying “Extract
Sequences” option of DOGMA [38]. Then the homologous loci were aligned individually using
MUSCLE [46] implemented in Geneious v9.0 [47] with default settings. Manual adjustments
were made where necessary. The proportion of mutational events for each coding and non-
coding loci was calculated as follows: the proportion of variation = (NS/L)�100, where NS = the
number of nucleotide substitutions, L = the aligned sequence length.

Phylogenomic analyses
Thirty-one complete cp genomes representing eight major lineages of the superasterids were
included for phylogenomic analyses (S1 Table). Arabidopsis thaliana (L.) Heynh. and Vitis
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vinifera L. from superrosids were defined as outgroups according to previous studies [34, 48].
Given concerns about the likely effects of missing data on phylogenetic inferences [49], we ana-
lyzed the following two kinds of dataset accordingly: first, 79 plastid protein-coding unique
genes of Actinidiaceae (S2 Table) were used, while that absent in other taxa were treated as
missing data (“data-incomplete”); second, analyses based merely on the 56 common protein-
coding genes (S3 Table) shared by all the representatives (S1 Table) were conducted (“data-
complete”). Each gene was aligned individually using MUSCLE [46] in Geneious v9.0 [47], and
then concatenated as a supermatrix for phylogenetic analyses. Gaps were not coded in both
datasets.

Phylogenetic analyses of the concatenated datasets were carried out by maximum parsi-
mony (MP), maximum likelihood (ML), and Bayesian inference (BI). MP analyses were imple-
mented in PAUP� v4.0b10 [50]. Parsimony heuristic tree searches were performed with 1000
random addition sequence replicates, TBR branch swapping, MulTrees option in effect. Branch
support (MPBS) was evaluated by 1000 bootstrap replicates [51].

ML and BI trees were inferred using RAxML v.8.2.8 [52] and MrBayes 3.2.6 [53] respec-
tively in the CIPRES Science Gateway v3.3.3 [54], with concatenated supermatrix partitioned
by genes. RAxML searches relied on the GTR + CAT model of nucleotide substitution, and
1,000 fast bootstrap ML reps were performed to assess the relative degree of support (MLBS)
for internal nodes. In Bayesian analysis, two runs with four chains were run for 20,000,000 gen-
erations under the model GTR + G, with a sampling every 1,000 generations till convergence
(the average standard deviation of split frequencies was less than 0.01). The first 25% of trees
were discarded as burn-in, and the remaining trees were used to construct majority-rule con-
sensus tree and estimate posterior probabilities (PP).

Results

Genome assembly and features
About 20 million reads were generated via genome skimming for each species. There were
516,840, 332,220, and 401,858 paired-end reads that were aligned for A. polygama, A. tetramera
and C. lanosa, repsetively (Table 1). Based on de novo and reference-assisted assembly, com-
plete cp genomes of the three species were obtained with high genome coverage (> 200×)
(Table 1). The sequences of three cp genomes were deposited in GenBank (accession numbers:
KX345297-KX345299).

Table 1. Statistic summary of the chloroplast genome sequencing, assembly and features.

Actinidia polygama Actinidia tetramera Clematoclethra lanosa

Total paired-end reads 20,224,568 20,188,340 20,200,620

Aligned paired-end reads 516,840 332,220 401,858

Mean coverage 330.1 210.8 256.4

Size (bp) 156,583 157,659 156,731

LSC length (bp) 88,568 89,572 89,032

SSC length (bp) 20,397 20,497 20,399

IRs length (bp) 23,809 23,795 23,650

Number of genes 131 131 131

Protein-coding genes 83 83 83

Structure RNAs 48 48 48

GC content (%) 37.2 37.1 37.1

Coding regions (%) 49.4 49.3 50.0

doi:10.1371/journal.pone.0162324.t001
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Eventually determined cp genome size of A. polygama, A. tetramera and C. lanosa was
156,583, 157,659 and 156,731 bp respectively (Table 1). All three complete cp genomes exhib-
ited the typical quadripartite structure of land plants, consisting of a pair of IRs (23,650–23,809
bp) separated by one LSC (88,568–89,572 bp) and one SSC (20,397–20,497 bp) region
(Table 1). An identical set of 131 genes with the same linear order were encoded in three cp
genomes. Here we reported the cp genome map of C. lanosa as the representative (Fig 1). 113

Fig 1. Genemap of Clematoclethra lanosa representing the chloroplast genome structure of three Actinidiaceae species.Genes
drawn outside the circle are transcribed clockwise and those inside are counterclockwise. Genes belonging to different functional groups
are color coded. The darker gray in the inner circle indicates the GC content of the chloroplast genome.

doi:10.1371/journal.pone.0162324.g001
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genes are unique, of which 79 are protein-coding genes (Fig 1). The clpP gene was undetectable
in both Clematoclethra and Actinidia cp genomes (Fig 1, S2 Table). Among the 11 intron-con-
taining genes (atpF, ndhA, ndhB, petB, petD, rpl2, rpl16, rpoC1, rps12, rps16, ycf3), only rps12
and ycf3 contained two intervening introns, while others contained one intron each. The
boundaries between IRs and single copy regions were conserved in Clematoclethra and Actini-
dia cp genomes, with ycf1 and psbA extending into the IRb (Fig 1).

Three classes of repeats (tandem, palindromic and SSRs) were investigated in our
sequenced cp genomes. Tandem repeats that ranged from 10 to 20 bp were the most abun-
dant, that had their sizes between 20 and 30 bp were secondarily abundant, while that with
lengths greater than 30 bp were much less in all three species (Fig 2A). Palindromic repeats
were much more in the cp genome of C. lanosa (99) than that in two Actinidia species (34
and 41 respectively) (Fig 2B). Analysis of occurrence and type of SSRs indicated that four
categories of SSRs, i.e. mono-, di-, tri-, and hexa-nucleotide were detected. Mononucleotide
repeats were the most dominant, while other types were far less in the cp genomes of three
species (Fig 2C). Not all the SSRs mentioned above occurred in all the species, that is, there
were three types in A. polygama (mono-, di- and tri-nucleotide) and A. tetramera (mono-,
di- and hexa-nucleotide), but only two types in C. lanosa (mono- and tri-nucleotide)
(Fig 2C).

Sequence divergence estimation and molecular marker identification
Sequence divergences among the five Actinidiaceae species (A. chinensis, A. chinensis var. deli-
ciosa, A. polygama, A. tetramera and C. lanosa) were visually quantified by “percent identity
plots” and estimated by the percentage of nucleotide substitutions (SNPs) (Fig 3). Global align-
ments further confirmed that the five cp genomes of Actinidiaceae were perfectly syntenic (Fig
3A). Across the whole cp genomes, we found that sequence variations were not uniform but
highly heterogenous among different regions (Fig 3A). The estimation of the percentage of
SNPs in LSC, SSC and IRs (here in terms of IRa) regions suggested that sequences of the IRs
diverged at slower rates (1.21%) than that of their adjacent single-copy regions, LSC (2.94%)
and SSC (3.92%) (Fig 3B). Coding regions (2.30%) were more conserved than non-coding
regions (3.81%) as expected (Fig 3B).

Fig 2. Repeat analyses. (A) Histogram showing the number of tandem repeats in the three Actinidiaceae chloroplast genomes. (B) Summary of palindromic
repeats in each chloroplast genome. (C) SSR unit size distribution in the three chloroplast genomes.

doi:10.1371/journal.pone.0162324.g002
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Distribution patterns of variable characters (uninformative + informative SNPs) differed
largely in coding and non-coding loci (>200 bp) in these five Actinidiaceae cp genomes (Fig
4). It showed that the proportion of variability in non-coding loci ranged from 0.00% to 9.04%
with mean value as 3.36% which was 1.6 times greater than that in the coding loci (2.01% on
average) (Fig 4). Variations in most (57 out of 65) of the coding DNA fragments were less than
3% (Fig 4A). Only three genes i.e. rpl20, accD and ycf1 had their variations exceeded 5%. In
contrast, there were 32 non-coding loci showed relative high degree of divergence (above 3.6%,
Fig 4B). Considering the relatively high percentage of variations and the convenience of univer-
sal primers developing for PCR and sequencing experiments, we chose 20 highly variable inter-
genic loci as potential molecular markers for subsequent phylogenetic studies (Table 2).
Percentage of variations of these 20 non-coding loci all exceeded 3.7%, among which 16 had a
percentage of variable characters (VCs) greater than 4% (Table 2).

Fig 3. Heterogenous sequence divergence of the five Actinidiaceae chloroplast genomes. (A) VISTA-based identity plots of Actinidiaceae chloroplast
genomes with A. chinensis used as a reference. Thick arrowed black lines show the inverted repeat regions (IRs) in the chloroplast genome. All the
chloroplast genome regions are color coded as protein coding, rRNA, tRNA or conserved non-coding sequences (CNS). (B) Varied sequence divergence
among the LSC, SSC and IRs (in terms of IRa), as well as the coding and non-coding regions. The percentage of nucleotide substitutions (SNPs) for each
region was estimated respectively.

doi:10.1371/journal.pone.0162324.g003
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Phylogenomic reconstruction
The final length of the aligned matrix for the “data-incomplete” and “data-complete” data sets
contained 91,222 and 58,876 unambiguously aligned nucleotide characters respectively.
Because these two data sets generated congruent phylogenetic trees, we here only reported the
results based on the 56 common protein-coding plastid genes (“data-complete” data set) as
shown in Fig 5. Asterids was highly supported as monophyletic (100/100/1.00) and the sister
relationship of lamiids and campanulids was well supported (100/100/1.00). Cornales was
resolved as the basal most group in the asterids (100/100/1.00), and the Ericales diverged subse-
quently (100/100/1.00). Caryophyllales was revealed as the sister to asterids in the superasterids
clade (100/100/1.00). The sister relationship of Ericales and core asterids (lamiids + campanu-
lids) also obtained high support values (100/100/1.00).

The Actinidiaceae were recovered as a monophyly in Ericales with high statistic supports
(100/100/1.00). The phylogenomic tree indicated a branching order of Actinidiaceae, Erica-
ceae, Primulaceae and Theaceae as (((Actinidiaceae, Ericaceae), Theaceae), Primulaceae) in
Ericales, each node getting high support values (100/100/1.00). The sampled four Actinidia
taxa clustered in a clade with high statistic supports (100/100/1.00), being sister to Clematocle-
thra. A. tetramera diverged firstly (95/97/1.00), followed by A. polygama (100/100/1.00) in the
Actinidia lineage. As expected, A. chinensis and A. chinensis var. deliciosa were closely related
(100/100/1.00).

Discussion

The conserved chloroplast genomes of Clematoclethra and Actinidia
Selective pressure leads to divergent traits during plant evolution, which may be tracked in
chloroplast genomes, for instance, the non-photosynthetic lifestyle of certain plant groups such
as Epipogium aphyllum and Epipogium roseum [5], Orobanche [13], and Petrosavia stellaris
[55] tends to be associated with the enormously reduced cp genome size. Complete sequencing
and comparative analyses here revealed that the Clematoclethra species (C. lanosa) bears a
highly conserved cp genome in terms of its architecture and linear sequence order with either
the two newly sequenced Actinidia (A. polygama and A. tetramera) in this study or the pub-
lished A. chinese cp genome [33]. Chloroplast genome size of C. lanosa (156.7 kb) is similar to
that of A. polygama (156.6 kb) and A. tetramera (157.7 kb) (Table 1), showing a typical cp
genome size range (115 to 165 kb) of angiosperms [56]. Although the different inheriting pat-
terns of the Actinidia and Clematoclethra cp genomes, i.e. paternal passing in Actinidia and
maternal in Clematoclethra [4], no significant structural variation was observed (Figs 1 and
3A). The gene content, gene order, GC content, size of IRs regions, and junctions of single
copy and IR regions (Table 1, Fig 1) all indicate highly syntenic nature of the cp genomes in the
two closely related genera within Actinidiaceae.

clpP gene was completely lost in the sequenced cp genomes of Actinidia [this study, 33] and
also was absent in Clematoclethra (C. lanosa). The lack of certain plastid genes is not unusual
since previous studies illustrated that several cp genes have been lost in certain groups, such
like, the clpP gene in Primula poissonii [31] and Camellia oleifera [32], the accD gene in Trifo-
lium [57], the rpl32 gene in Populus [58], and the infA gene in rosids [59]. The clpP gene loss
detected in both Clematoclethra and Actinidia is most likely a conspicuous common feature
during their cp genomes evolution, suggesting that the clpP gene loss event might happen in
their common ancestor. More species from the kiwifruit family, especially representatives of
the third genus Saurauia, will be sequenced to determine whether clpP gene loss is synapomor-
phy of the Actinidiaceae.

Chloroplast Genome Evolution in the Kiwifruit Family
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Occurrences and types of tandem repeats are quite similar with approximately the same lev-
els in each cp genomes (Fig 2A). However, the palindromic repeats in the cp genome of C.
lanosa were more than that in two Actinidia species (Fig 2B). Different abundance of palin-
dromic repeats in the cp genomes of Clematoclethra and Actinidia would likely provide addi-
tional evolutionary information since presence and abundance of repetitive sequences in cp or
nuclear genomes may contain phylogenetic signal [16, 60]. Mononucleotide SSRs are abundant
in all the three cp genomes (Fig 2C), which can be used as potential cpSSR markers in studies
on population genetics of kiwifruit species [33].

Heterogenous divergence patterns in chloroplast genomes and
molecular markers development
Alignment of our three cp genomes and two other published cp genomes of Actinidiaceae (A.
chinensis and A. chinensis var. deliciosa) [33] uncovered obvious heterogenous sequence

Fig 4. Percentage of variable characters (SNPs) in homologous loci among five chloroplast genomes of Actinidiaceae. (A) Coding region. (B) Non-
coding region. The homologous loci are oriented according to their locations in the chloroplast genome.

doi:10.1371/journal.pone.0162324.g004
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divergence within the Actinidiaceae cp genomes (Fig 3A). The single-copy regions (LSC and
SSC) show a higher sequence divergence than that in the inverted repeat regions (in terms of
IRa) (Fig 3B). This is possible because the gene conversion of IRs constrained the nucleotide
variations of inverted repeat sequences [61], which results in the lower genetic divergence of
IRs. The coding regions are more conserved than non-coding regions (Fig 3B), likely resulting
from the strong selective pressure on the function constraint of coding sequences [62]. Differ-
ent regions of cp genomes display varied evolutionary rates reflecting that data-partitioned cp
phylogenomic analysis such as partitioning cp genomes data by LSC, SSC and IRs [16], by cod-
ing and non-doing regions [63] or by genes [27–28], may be more reasonable in the Actinidia-
ceae cp phylogenomic practice.

Sequence variation analyses of the coding and non-coding loci (longer than 200 bp) across
the five examined cp genomes indicate that each locus shows independent/distinct evolution-
ary patterns (Fig 4) as revealed in Poaceae [64], mimosoid legume [65] and Silene [66]. In gen-
eral, coding genes would have their sequence variations (percentage of variable characters)
lower than 4% but some exceptions are observed here, for instance, accD (in the LSC region),
rpl20 (in the LSC region) and ycf1 (in the SSC region). These exceptions display more SNPs
than all other coding loci particularly with rpl20 as one which varies the most quickly. There
have been some observations of accelerated variation rate of the plastid genes, such as psb in
Poaceae [67], rps in Saxifragales [68], and rps and clpP genes in Caryophyllales [69]. Neverthe-
less, those speeded divergence observations were thought as results of abnormal DNA replica-
tion, repair or recombination [65, 70]. It is likely that the heterogenous divergences among
plastid genes in Actinidiaceae probably are driven by similar mechanism as in the above
described groups.

Table 2. Twenty plastid non-coding loci with high genetic divergence identified in Actinidiaceae.

Region Length (bp) Aligned length (bp) No. VCs Percentage of VCs (%) No. PICs Percentage of PICs (%)

rps18-rpl20 283–326 332 30 9.04 9 2.71

trnT(GUG)-trnL(UAA) 523–636 639 50 7.82 27 4.23

trnG(UCC)-trnR(UCU) 341–408 448 35 7.81 8 1.79

atpF-atpH 397–437 449 28 6.24 11 2.45

petN-psbM 609–754 756 47 6.22 14 1.85

rpl32-trnL(UAG) 760–787 813 48 5.90 6 0.74

ndhC-trnV(UAC) 921–1200 1234 71 5.75 15 1.22

ndhF-rpl32 735–953 980 54 5.51 8 0.82

trnC(GCA)-petN 712–743 765 41 5.42 8 1.06

rps16-trnQ(UUG) 869–1478 1544 78 5.05 11 0.72

petA-psbL 963–978 1010 50 4.95 11 0.73

trnE(UUC)-trnT(GGU) 793–823 832 40 4.81 7 0.84

trnP(UGG)-psaJ 398–400 403 19 4.71 5 1.24

rpoB-trnC(GCA) 1139–1265 1271 57 4.48 7 0.55

ndhG-ndhI 264–357 357 16 4.48 5 1.40

trnF(GAA)-ndhJ 692–714 722 32 4.43 11 1.52

ycf4-cemA 653–950 951 37 3.89 6 0.63

psaA-ycf3 730–749 764 29 3.80 15 1.96

atpH-atpI 1107–1149 1196 45 3.76 8 0.67

ycf3-trnS(GGA) 823–831 832 31 3.73 8 0.96

VCs: variable characters; PICs: parsimony informative characters.

doi:10.1371/journal.pone.0162324.t002
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Chloroplast DNA fragments such likematK, psbC-trnS, rbcL, and trnL-trnF have been used
most commonly in Actinidia phylogenetic studies [20–21, 71], but the resulted trees have not
been resolved clearly. The difficulty mainly lies in the lack of phylogenetic information due to
the low sequence variation of commonly used genetic markers [21]. Therefore, we need to
develop rapidly evolving genetic markers for the phylogenetic study of Actinidiaceae, particu-
larly of the genus Actinidia, which will shed light on our understanding of the evolutionary his-
tory of this valuable economical plant group. The average proportion of variability in non-
coding loci is higher (3.36%) than that in the coding loci (2.01%) (Fig 4). In addition, it is con-
venient to design universal PCR and Sanger sequencing primers for non-coding DNA frag-
ments with length from c. 300 bp to 1,500 bp by using the adjacent conserved coding sequences
[18–19]. We thus choose 20 highly variable non-coding cpDNA loci as potential molecular
markers (Table 2) for subsequent phylogenetic studies of the kiwifruit family. Some of these
loci such as trnT(UGU)-trnL(UAA) and rpl32-trnL(UAG) has been used in phylogenetic stud-
ies of intractable plant groups, e.g. in woody bamboos (Poaceae, Bambusoideae) with relatively
robust solutions [72]. These 20 cp genome-wide intergenic loci will probably provide sufficient
phylogenetic information for the reconstruction of the phylogeny of Actinidiaceae.

Chloroplast phylogenomic practice
The presence of missing data is not unusual in phylogenomic analyses, though its impact on
phylogenetic evaluation has been widely debated [73–76]. Using our sequenced three cp
genomes via genome skimming together with 28 other publically available plastomes data (S1
Table), we reconstructed the phylogeny of Ericales and its related groups. The “data-incom-
plete” and “data-complete” data sets give rise to a congruent topology of the 31 sampled taxa

Fig 5. Maximum likelihood (ML) tree for 31 taxa based on 56 common plastid protein-coding genes (“data-complete”). Values above the branches
represent maximum parsimony bootstrap (MPBS)/maximum likelihood bootstrap (MLBS)/Bayesian inference posterior probability (PP). The Actinidiaceae
lineage is indicated in shaded.

doi:10.1371/journal.pone.0162324.g005
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with high level of confidence (Fig 5, from the “data-complete” data set), which indicates that
the relatively small missing data (23 out of 79 plastid genes) probably have no ill impact on the
phylogenetic inferences.

The relationships derived from our phylogenomic analyses among the major lineages of
asterids, i.e. Cornales, Ericlaes and core asterids (lamiids + campanulids), are highly supported
as stated previously [34, 46, 77]. The branching orders of species within lamiids and campanu-
lids are consistent with recent studies [78–79] as ((Solanales, Lamiales), ((Dipsacales, Apiales),
Asterales)). Our analyses also recover the phylogenetic relationships of four sampled families
in Ericales as (((Actinidiaceae, Ericaceae), Theaceae), Primulaceae), in agreement with the
result of Yao et al. [33]. The Actinidiaceae is a monophyly with the sampled four Actinidia taxa
clustering in a clade as sister to Clematoclethra (Fig 5). The sister relationship of A. chinensis
and A. chinensis var. deliciosa is consistent with the results of previous studies [20, 71]. More-
over, phylogenetic placements of A. polygama and A. tetramera are also resolved with high sup-
ports within Actinidia.

To date, the genome skimming method has been thought as an economical and advanced
technique with great potential not only in the plastomes but also for the mitochondrial and
nuclear genomes studies [80–83]. Chloroplast genome has been broadly employed as a routine
practice in the plant systematics because of its essentially recombination-free and high degree
of identical copies per cell [84]. Applying genome skimming on the expanded taxon samples
will facilitate the phylogenomic study of the large asterids clade in angiosperm.

Conclusions
In summary, in the present study we generated cp genomes of three species from the family
Actinidiaceae, including one species of Clematoclethra and two species of Actinidia, using
genome skimming approach. These finished cp genomes will facilitate the development of plas-
tid genetic engineering for these valuable fruit species and provide additional information
about the evolutionary history of cp genomes in the whole kiwifruit family. The cp genomes of
Clematoclethra and Actinidia are highly conserved in the structure and content in spite of their
contrasting genetic processes of plastomes. The clpP gene loss likely provides a prominent
synapomorphic characteristic of Actinidiaceae. Obviously heterogenous divergence patterns in
different regions of the Actinidiaceae cp genomes are revealed, according to which 20 rapidly
evolving intergenic loci are identified as potential cp genome-wide markers for subsequent
phylogenetic studies of this family. The Actinidiaceae and its subordinate genera are both
strongly supported as monophyletic located in the Ericales in basal asterids. The phylogenetic
relationships within the large asterids clade, even within the enigmatical genus Actinidia, have
been robustly resolved based on the cp genomes data, suggesting the bright probability of cp
phylogenomics for tackling difficult phylogenies in flowering plants.
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