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Abstract

The average individual is expected to harbor thousands of variants within non-coding genomic regions involved in gene
regulation. However, it is currently not possible to interpret reliably the functional consequences of genetic variation within
any given transcription factor recognition sequence. To address this, we comprehensively analyzed heritable genome-wide
binding patterns of a major sequence-specific regulator (CTCF) in relation to genetic variability in binding site sequences
across a multi-generational pedigree. We localized and quantified CTCF occupancy by ChIP-seq in 12 related and unrelated
individuals spanning three generations, followed by comprehensive targeted resequencing of the entire CTCF–binding
landscape across all individuals. We identified hundreds of variants with reproducible quantitative effects on CTCF
occupancy (both positive and negative). While these effects paralleled protein–DNA recognition energetics when averaged,
they were extensively buffered by striking local context dependencies. In the significant majority of cases buffering was
complete, resulting in silent variants spanning every position within the DNA recognition interface irrespective of level of
binding energy or evolutionary constraint. The prevalence of complex partial or complete buffering effects severely
constrained the ability to predict reliably the impact of variation within any given binding site instance. Surprisingly, 40% of
variants that increased CTCF occupancy occurred at positions of human–chimp divergence, challenging the expectation
that the vast majority of functional regulatory variants should be deleterious. Our results suggest that, even in the presence
of ‘‘perfect’’ genetic information afforded by resequencing and parallel studies in multiple related individuals, genomic site-
specific prediction of the consequences of individual variation in regulatory DNA will require systematic coupling with
empirical functional genomic measurements.
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Introduction

A growing number of studies associate variation within regulatory

DNA and risk of human disease [1–3]. Variation in regulatory DNA

may result in modulation of recognition by sequence-specific

transcription factors (TFs), resulting in altered gene expression [4–

6]. That the vast majority of variants emerging from human

resequencing studies lie in non-coding regions creates an urgent need

for determining the consequences of variation within regulatory DNA.

Functionally significant variation within the genomic recogni-

tion sequences for certain TFs appears to be correlated in

aggregate with nucleotide-level evolutionary conservation and/or

position-specific information content [7–10]. Although surveys

have identified sites of allele-specific occupancy of TFs and RNA

Polymerase II or allele-specific chromatin states [11–15], these

studies have not established the distinguishing characteristics of

regulatory sequence variation with an experimentally-observed

effect on occupancy. As such, it is currently not possible to

interpret reliably the functional consequences of variation within

any given TF recognition sequence.

To address this, we apply a novel experimental design to

identify comprehensively patterns of genetic variation with

heritable effects on the occupancy of the major genomic regulator

CTCF [16]. Unlike most sequence-specific regulators which rely

on cooperative interactions with other factors to bind DNA,

CTCF is able to access target DNA within chromatin in a

relatively autonomous fashion through its rich binding interface.

By combining quantitative genome-wide occupancy analysis by

ChIP-seq in a multi-generational pedigree with comprehensive

resequencing of the binding site landscape across all individuals,

we achieve complete knowledge of variation in both sequence and

occupancy, thus creating a benchmark for assessing the charac-

teristics of functional and heritable regulatory sequence variation.

Results

Components of heritable transcription factor occupancy
We mapped binding sites for CTCF by ChIP-seq in B-

lymphoblastoid cells derived from 12 members of a three-

generation pedigree (Figure 1A, 1B). We identified a total of

51,686 binding sites across all individuals at a false discovery rate

(FDR) of 1%. To comprehensively identify genetic variation with

potential functional consequences for CTCF binding, we per-

formed targeted resequencing by array capture focused on the
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134 bp interval surrounding 46,568 CTCF sites (total ,6 Mbp) in

all family members assayed by ChIP-seq. 7,394 of the 35,709

surveyed binding sites (or 21%) overlapped one or more SNPs,

some of which had clear associations with occupancy in the

direction predicted by the CTCF motif (Figure 1C, 1D). We did

not consider other variation such as copy number variants or small

indels. In order to minimize reference mapping bias for the ChIP-

seq data, we remapped tags to personalized genomes including

discovered SNPs [17]. Additionally, to avoid artifacts resulting

from uncertain mapping of 36 bp reads to the genome, we

simulated all reads including discovered SNPs from 6147 bp

centered on the ChIP-seq peak and excluded sites with too many

ambiguously mapped tags.

We integrated the genetic and functional data sets to survey

genome-wide heritable variation in transcription factor occupancy.

We reasoned that the strongest signal of heritable variation would

be from segregating variants overlapping the binding site. Thus we

performed a linear regression of the ChIP-seq density on the SNP

genotype in cis (Figure 1D). Of 5,828 polymorphic sites, this

analysis identified 325 (5.6%) sites with a significant association of

SNP genotype with occupancy at a false discovery rate (FDR) of

1% (Figure 2, Table S4). We tested whether several confounding

factors might be responsible for our results, however sites at which

SNPs were significantly associated with changes in occupancy

were similar to polymorphic sites without changes in occupancy in

terms of GC content (median 53.7% vs. 53.0%, Mann-Whitney

p,0.044) and ChIP-seq input signal (3.61 vs. 3.61, Mann-Whitney

p,0.84), and distance to the nearest RefSeq TSS (33 kb vs. 36 kb,

p,0.96). Significant sites were only slightly weaker in terms of

ChIP-seq density (2.73 vs. 2.93, p,2.7*1023), and DNase I signal

(5.47 vs. 6.92, p,7.8*1028). Thus we conclude that the SNP

genotype is associated with differences in occupancy at 325 of

5,828 sites tested.

We used a hypothesis-driven linkage analysis to assess the

heritability of the remaining unexplained differential occupancy.

First, we identified 1,376 sites of differential occupancy. Of these,

200 (15%) were already associated to an underlying SNP (FDR

1%), 65 (4.7%) had allele-specific occupancy (FDR 0.1%), and 197

(14%) were on chromosome X. To test for heritable inheritance of

occupancy not explained by these factors, we performed Hase-

man-Elston sib-pair linkage analysis in aggregate at sites

differentially occupied among the 6 grandchildren (Figure S1A

and S1B; see Materials and Methods). The 47 binding sites already

significantly associated with SNPs had a regression slope of 22.86

(Figure S1C), confirming substantial heritability (p,8.9*1027,

permutation). The remaining 50 sites without significant associ-

ations had a regression slope of 21.01 (Figure S1D), indicating a

lower but still significant level of heritable variation (p,3.2*1025).

These results suggest that SNPs directly overlapping the cognate

recognition sequence explain most but not all of the heritable

variation in this pedigree. Remaining variation in occupancy

might be heritable due to sequence variants not considered in our

SNP-based analysis or heritable epigenetic variation such as

methylation. However, it is quantitatively less significant than the

heritability attributable to the direct effect of SNPs on occupancy

(Figure S1E).

Using motifs to align regulatory polymorphism from
multiple sites

Understanding the effect of DNA sequence variation on

transcription factor occupancy is critical to a mechanistic

interpretation of non-coding variation. To interpret the association

results in the context of the CTCF motif, we scanned the center of

the ChIP-seq peak with the known position weight matrix (PWM)

[18], which measures the contribution of each nucleotide in the

binding site to the energy of the protein-DNA interaction [19,20].

888 binding sites did not contain a motif match (fimo p-

value,1022) and 1,040 binding sites overlapped multiple SNPs

within 6180 bp of the ChIP-seq peak. Excluding these sites, we

analyzed the 4,428 binding sites with a single SNP and a single

motif match. These SNPs were distributed throughout the

resequenced region surrounding each CTCF motif (Figure 3A).

In contrast, we expected that SNPs associated with occupancy

differences would be concentrated in the 44 bp region of protein-

DNA contact [21]. Indeed, despite a slight reduction (1.08-fold) in

local sequence diversity, 85% of the SNPs that affected occupancy

were within this region (Figure 3B). The allele observed to have

higher occupancy matched the energetically more favorable one

for 83% of these SNPs. Associated SNPs outside the region of

contact had less significant q-values (median q-value of 1.3*1023

outside the versus 1.3*1025 inside), consistent with these SNPs

being false positives or sites with ambiguity in the true location(s) of

protein-DNA interaction. Alternatively, some of these SNPs might

affect CTCF occupancy indirectly by perturbing an adjacent co-

factor binding site.

We compared our results to an allele-specific occupancy test

performed at heterozygous sites (Figure S2). Despite a weaker

enrichment of significant sites within the core motif and a less

substantial concordance of the higher occupancy allele with the

energetically more favorable nucleotide, this allele-specific analysis

broadly corresponded to the results of the association analysis.

Thus, we interpret the results of our analysis as indicating that we

have correctly identified the motifs at most binding sites, and that

the significant SNPs directly affect occupancy through modulating

the protein-DNA interaction at these sites.

Context-dependent effect of identical changes
Although differences in occupancy were largely associated with

SNPs at positions strongly affecting overall binding energy

(Figure 3B), only 13% of SNPs at the interface of protein-DNA

interaction affected occupancy (Table S4). Thus although

functional SNPs are highly concentrated in the region of

protein-DNA contact, the majority of SNPs, even in this region,

do not measurably affect occupancy. Since our data set includes

multiple sites with the same two alleles at the same position

measured relative to the binding motif, we investigated the

proportion of sites at which a given change was found to affect

Author Summary

A comprehensive understanding of the contribution of
individual genome sequences to disease and quantitative
traits will require the general ability to predict conse-
quences of genetic variation in non-protein-coding re-
gions, particularly those involved in gene regulation. Here
we tested the power to predict such consequences when
presented with ‘‘complete’’ information encompassing the
genomic DNA binding site patterns of a well-studied
regulatory protein across multiple related individuals,
coupled with all individual genome sequences at the
binding positions. We find that, while there is reasonable
ability to predict the average effects of variation within the
consensus recognition sequence of a transcriptional
regulator, it is not possible to determine reliably the
consequences of variation at any given genomic instance.
This suggests that the interpretation of individual genome
sequences will require comprehensive complementation
with functional genomic studies.

Prevalent Buffering of Regulatory Polymorphism
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occupancy (Figure 4A). Like in Figure 3, the most disruptive

changes were observed at positions of high information content in

the motif. However, even over the 14 bp core motif, changes

affected occupancy at a median of only 36% of the sites where they

were observed. We found no changes that uniformly affected

occupancy without regard to context. Instead, we observed a

strong, progressive depletion in the proportion of changes affecting

occupancy at the strongest sites (Figure 4B), and a smaller

depletion at the weakest sites. Indeed, simply clustering the ChIP-

seq intensities identified three major groups, of low, medium and

high occupancy, which were also distinguished by varying

proportions of significant SNPs (Figure S6). This result places an

upper limit on the accuracy of methods that predict the effects of

non-coding SNPs without consideration of their context.

Strength-dependent buffering could be explained by a model

where changes in occupancy are observed only when a SNP causes

the affinity of a site to cross a threshold for binding. In this case,

the strongest and weakest sites will only be affected by the greatest

genetic perturbation, while smaller perturbations would affect

binding only at sites of intermediate strength. This would create

the impression of epistasis between all positions in the cognate

recognition site as any affinity-affecting change could potentially

buffer another [22,23]. We thus compared the inherent affinity of

the site with the magnitude of the perturbation caused by each

Figure 1. Systematic identification of the effect of genetic variation on transcription factor occupancy. (A) We performed ChIP-seq for
the transcription factor CTCF followed by targeted resequencing of its complete occupancy landscape in 12 members of CEPH pedigree 1459 (CEU).
(B) Three qualitative levels of occupancy correspond to three genotypes of a SNP located at the binding site, with G/G homozygotes having the
highest occupancy (region shown: chr1:151,853,500–151,859,700 [hg18]). (C) The SNP shown in (B) disrupts a critical position in the CTCF consensus
sequence (note that G better matches the consensus recognition sequence). (D) Regression of ChIP-seq signal on genotype at the site in (B)
quantifies the effect of SNPs on occupancy. We applied this strategy genome-wide to identify sites where SNPs are associated with differences in
occupancy. At this site, Akaike information criterion favored a dominant effect model (GT and GG coded identically) over an additive model.
doi:10.1371/journal.pgen.1002599.g001

Figure 2. Genome-wide survey of the effect of genetic
variation. (A) Filtering strategy for testable CTCF binding sites. A
number of binding sites were excluded from the analysis due to
microarray probe design constraints, poor mappability, differing
mappability between two alleles, or insufficient resequencing coverage.
(B) Summary of the prevalence of SNPs that affect CTCF occupancy at
an FDR of 1%. Some sites overlapping SNPs were excluded for having
insufficient data points per genotype to perform a robust regression.
The model explained a substantial amount of the variance at significant
sites (median r2 of 0.61).
doi:10.1371/journal.pgen.1002599.g002

Prevalent Buffering of Regulatory Polymorphism
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SNP. We divided SNPs affecting occupancy into bins based on the

strength of their match to the canonical motif. We found that

SNPs at sites matching the CTCF motif more strongly in turn

exhibited higher log-odds differences (Figure 4C). We observed no

such trend at SNPs not associated with occupancy differences

(Figure S3). These results are consistent with stronger motifs being

buffered against all but the largest perturbations. Although a linear

regression identifies a significant effect (p,0.006), an r2 of 0.04

indicates that the strength of the motif match alone can not

explain the breadth of buffering observed.

Buffering might also be a consequence of the non-additive effect

on binding energy of individual positions in the cognate binding site,

as has been observed in vitro [24]. The relevance of non-additive

interactions for identifying binding sites has been questioned

[25,26], but the implications for understanding the function of

specific variants in vivo have remained unclear. To explore the power

of our data set to discover epistatic interactions, we measured the

mutual information between the sequence context per-base in the

core motif and whether a SNP at each location affects occupancy

(Figure 4D). This analysis identifies two positions in the consensus

sequence that significantly buffer the effect of a SNP at another

position. First, of the 24 SNPs observed at position 1 in the motif,

13/13 that affected occupancy had an adenine at position 5,

compared to only 5/11 for those that did not affect occupancy

(Figure 4E, above). Interestingly, the second significant buffering

interaction is between position 7 and SNPs at the adjacent position 8

(Figure 4E, below), suggesting local compensation for the adjacent

SNP. These results indicate that higher-order models may be

necessary to fully model the effect of polymorphism on protein-

DNA interaction, and are consistent with a model where local

factors determine whether polymorphism affects occupancy.

Power to predict functional polymorphism in non-coding
regions

Resequencing and association studies are producing large

amounts of data on polymorphism in non-coding regions, yet as

we have illustrated, their functional classification is difficult. To

investigate the power of existing metrics to predict functional

polymorphism in non-coding regions, we used as a reference set the

1,368 sites with SNPs within the 44 bp vicinity of a recognizable

CTCF motif. We first assessed the predictive power of evolutionary

constraint, which has been used successfully to discover regulatory

motifs [27], to highlight functional positions within motifs [9,10,28],

and to predict the effect of coding variants [29–31]. Conservation is

a particularly attractive operational metric in genome scans, as it

can be applied in an unbiased fashion without directly measuring

protein-DNA interaction or modeling context effects. Indeed,

CTCF binding sites are clearly marked by increased conservation

[32]. Thus, we tested the sensitivity and specificity of per-nucleotide

conservation (phyloP 44-way vertebrate alignment, from UCSC

browser) to correctly identify the 186 significant SNPs in our

reference set. However, despite being applied only across

experimentally determined binding sites, conservation had little

predictive power on this data set, with an AUC of 0.57 (Figure 5).

Then we measured the improvement from evaluating poten-

tially functional SNPs within the context of protein-DNA binding

energetics. Applying such predictor showed a marked improve-

ment over conservation, with an AUC of 0.75 (Figure 5), although

positive predictive power was greatest for the most severe

perturbations (Figure S4). Nevertheless, these results illustrate the

power to be gained from considering non-coding polymorphism

within the context of functional genomics data on transcription

factor occupancy.

Figure 3. Functional SNPs recapitulate the CTCF binding motif. (A) 4,428 SNPs identified by resequencing at as many sites. Y-axis indicates
the number of SNPs identified at a given position (x-axis) relative to the aligned and strand-oriented CTCF motif (below). Bar color indicates alleles of
SNPs. Gray shading indicates the 44-bp extent of protein-DNA interaction. Note that SNPs are uniformly distributed throughout the entire window,
except for a slight reduction in diversity corresponding to the high-information content positions of the motif. (B) Of the SNPs in (A), 218 are
significantly associated with ChIP-seq occupancy (FDR 1%). Color indicates SNPs for which the higher-occupancy allele (according to association
analysis) also had a higher log-odds score in the known motif. Gray indicates SNPs that affected occupancy, but the higher-occupancy allele had a
lower score in the motif. See Figure S2C for full color. Note that these SNPs are concentrated in the region of protein-DNA contact, and 84% match
the allele predicted by the canonical motif (above).
doi:10.1371/journal.pgen.1002599.g003

Prevalent Buffering of Regulatory Polymorphism
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Discussion

In contrast to the vast diversity of protein function, the elements

that regulate gene expression recruit from a shared repertoire of

transcription factors, offering the potential for a common

regulatory sequence code. The torrent of variants emerging from

human resequencing studies – the vast majority of which lie in

non-coding regions – coupled with the growing number of

common, disease-associated non-coding variants [1–3] has created

an urgent need for determining the consequences of variation

within regulatory DNA. However, the proportion of variants

within regulatory DNA that have reproducible functional

consequences on regulatory factor binding is currently unknown,

and our ability to predict such outcomes from known rules of

protein-DNA interaction is uncertain.

We have described a novel, hypothesis-driven genetic method

employing targeted capture and genome-wide in vivo occupancy

profiling to investigate directly the consequences of heritable

Figure 4. Sequence context buffers effect of polymorphism on occupancy. (A) Average effect of SNPs on occupancy across 1,368 different
sites, broken down by genotypes (panels) and position (x-axis) relative to the canonical motif (top). Y-axis, proportion of sites where a change is
associated with differences in occupancy (FDR 1%). In comparison, 1% of changes observed outside this 44 bp region affected binding (Table S4).
Only changes observed at least 3 sites are considered; in particular, few A–T transversions were observed due to the GC-rich nature of the motif. (B)
SNPs at the weakest and strongest sites are less likely to affect occupancy. X-axis, decile of ChIP-seq signal for the heterozygote genotype according
to the regression model; each decile represents 583 sites. Y-axis, proportion of sites in at which SNPs are associated with differential occupancy. (C)
SNPs affecting occupancy despite stronger motif contexts involve more severe perturbations. X-axis, log-odds score of motif match, stronger matches
at the right, label represents lower limit of bin. Y-axis, magnitude of perturbation, represented by the difference in log-odds scores between the two
alleles. Error bars indicate standard deviation. In contrast, SNPs not affecting occupancy show no such trend (Table S9). (D) Each cell measures the
mutual information between the base pair at positions in the core motif (x-axis) and whether a SNP at another position in the motif (y-axis) affects
occupancy (FDR 5%). (E) Sequence context at sites with SNPs (arrows) at position 1 (above), 6 (below), divided by whether the SNP affected
occupancy. Red stars highlight significant sequence differences (q,0.05, see Materials and Methods) between buffered and unbuffered sites at
positions with elevated mutual information along the x-axis in (D).
doi:10.1371/journal.pgen.1002599.g004

Prevalent Buffering of Regulatory Polymorphism

PLoS Genetics | www.plosgenetics.org 5 March 2012 | Volume 8 | Issue 3 | e1002599



variation in regulatory sequence. Our results show that individual

transcription factor binding sites are surprisingly robust to genetic

variation, even at evolutionarily constrained positions. While

previous studies have observed differences in transcription factor

occupancy among individuals using occupancy profiling alone

[15], genome-wide linkage scans [33], or allele-specific occupancy

approaches [11], this work is the first systematic analysis of

patterns of functional alteration in TF recognition sequences. This

study further advances the characterization of heritable variation

in TF binding by using highly accurate sequence information

throughout a three-generation pedigree.

Our study has revealed a large degree of context dependence for

changes to the CTCF recognition sequence. Indeed, even over the

core 14 bp motif, only 36% of SNPs affected occupancy

(Figure 4A). Our estimate of the percentage of SNPs that affect

occupancy in this 14 bp region ranges between 24% to 42% at

FDRs 0.1% and 5%, respectively, indicating that the magnitude of

this effect cannot be explained by the choice of significance cutoff.

We have suggested that buffering is partly mediated by the

strength of the binding site, as well as the sequence context at the

local CTCF recognition sequence. In addition, buffering might be

facilitated by a feedback process that maintains a constant CTCF

occupancy despite alterations to the site’s inherent affinity.

However, while 21% of the SNPs in the region of protein-DNA

contact that were significant in our association analysis also

exhibited allele-specific occupancy in heterozygous samples, only

3.7% of the non-significant SNPs did, indicating that buffering is

not likely to be the consequence of a feedback process. Alterations

in DNA methylation might also mask the effect of otherwise

significant genetic changes. However, only 30% of polymorphic

CTCF sites contain a CpG at positions 1 or 11 of their recognition

sequences. Furthermore, the prevalence of CpGs at these positions

is the same at sites where a SNP does and does not affect

occupancy, limiting the potential scope of methylation to fully

explain the observed buffering. As this study was performed on

transformed B-lymphoblastoid cells, it is worth noting that the

specific CTCF sites that are buffered may not be extrapolated to

primary cell types. However, assuming that EBV transformation

does not invoke novel cellular mechanisms to regulate protein-

DNA interaction, our primary conclusion stands that TF

occupancy is strongly modulated by site-dependent effects.

Our results establish a low level of mutational load directly

affecting transcription factor occupancy in the 4 founder genomes.

Although variants were found at 21% of surveyed CTCF sites,

only 0.9% of binding sites exhibited a difference in occupancy due

to polymorphism (Figure 2). Previous studies have identified

varying levels of positive and negative selection in transcription

factor recognition sequences by estimating changes in binding

energy [34–36]. However, our results indicate that 87% of

polymorphism observed in the region of protein-DNA contact

does not affect binding (Table S4). This is a higher proportion of

silent variation than predicted by binding energy models (Figure

S4), providing evidence that the scope of sequence change

consistent with neutral evolution may be larger than previously

thought.

Interestingly, we observed that the allele with higher occupancy

was the derived allele in 40% of the cases (assuming the

chimpanzee allele is ancestral). This indicates that approximately

40% of the functional substitutions in the human lineage increased

occupancy, which is surprisingly high given that most mutations

might be expected to reduce binding energy.

Previous work studying the power of comparative genomics has

predicted a steep increase in the number of sequenced genomes

required to obtain nucleotide resolution, particularly in the

absence of perfect conservation [37]. While genome-wide

phylogenetic footprinting approaches have highlighted substantial

conservation of transcription factor sequence specificities

[27,32,38,39], functional studies of diverged species have uncov-

ered low conservation in occupancy at orthologous sites [40–42].

Any phylogenetic approach is thus a compromise between

statistical power gained by sampling more diverged species and

the ability to recognize similar functional elements by sequence

similarity. The optimum evolutionary distances to sample may be

different for assessing functional non-coding elements than for

more conserved coding sequence [43,44]. This tradeoff suggests a

potential motivation for broad resequencing of natural popula-

tions, though even this approach faces the fundamental limitation

of ineffective purifying selection in primates and humans [45].

Gene-based studies have successfully identified causal variants

using current methods for prediction of functional non-synony-

mous protein variants [46]. Coding mutations in the CTCF gene

affecting its DNA binding specificity have been identified in cancer

samples [47], but lesions in its binding sites are harder to interpret.

The link between cognate recognition sequence and cellular

consequence is complicated by potential influences from the cell-

type specific chromatin landscape [48], maintenance of regulatory

function despite sequence rearrangement [49], altered association

with protein complexes [50,51], and the lack of binding specificity

and occupancy data for common transcription factors. In spite of

these caveats, our results indicate that a motif-based classifier of

variation in experimentally-identified CTCF binding sites predicts

functional variation with a 59% true positive rate and a false

Figure 5. Power of existing measures to predict the effect of
regulatory polymorphism. ROC curve evaluating the power of two
measures on the 1,368 SNPs in this study found within the region of
protein-DNA contact, 186 of which significantly affect occupancy.
Dotted blue line represents predictions by ranking SNPs in decreasing
order of inferred purifying selection (phyloP per-nucleotide conserva-
tion score) at the location of the SNP. Solid red line represents
predictions by ranking SNPs based on the difference in log-odds scores
between alleles. Area under the curve (AUC) summarizes overall
predictive power. Gray line indicates a random predictor and has an
AUC of 50%. A perfect predictor would be plotted as a right angle,
ranking all functional SNPs ahead of all nonfunctional SNPs, and would
have an AUC of 1.0. While per-nt conservation performs little better
than chance, consideration of binding energetics substantially improves
performance.
doi:10.1371/journal.pgen.1002599.g005

Prevalent Buffering of Regulatory Polymorphism
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positive rate of 20% (Figure 5). In comparison, current methods

for prediction of non-synonymous protein variants achieve a 73%

to 92% true positive rate at the same false positive rate [30] – not

dramatically greater considering the comparatively greater depth

of variant databases used to assess coding variation. Given the

encouraging performance of a straightforward functional geno-

mics approach, that the majority of variants presently associated

with human physiology and pathology lie in non-coding regions

[3] should be grounds for optimism.

In summary, our results indicate the existence of widespread

recognition site-dependent buffering of polymorphism within

regulatory DNA regions. A major implication of our work is that

the potential for accurately predicting the consequences of

variation affecting regulatory factor recognition sequences is

severely limited by complex context dependencies, necessitating

empirical assessment using functional genomic approaches. The

feasibility of approaches such as the one we describe here has

recently dramatically increased owing to coupled advances in

next-generation sequencing technology and molecular biology,

and continuation of this trend should in the near future enable

further systematic investigations into the effect of polymorphism

on protein-DNA interaction on a routine basis.

Materials and Methods

Cell culture
The B-lymphoblastoid cell lines from CEPH pedigree 1459

were obtained from Coriell and cultured in RPMI1640 medium

(Cellgro), supplemented with 15% fetal bovine serum (FBS,

Hyclone), 2 mM L-Glutamine, and 25 IU/mL penicillin and

25 mg/mL streptomycin (Cellgro).

ChIP–seq
B-lymphoblasts (5 million cells) were crosslinked with 1%

formaldehyde (Sigma), lysed in lysis buffer (50 mM Tris-HCl

pH 8.0, 10 mM EDTA pH 8.0, 1% SDS), and sheared by

Bioruptor (Diagenode). The supernatant was further diluted 10-

fold with dilution buffer (50 mM Tris-HCl pH 8.0, 166 mM NaCl,

1.1% Triton X-100, 0.11% sodium deoxycholate). For each

immunoprecipitation, 100 mL Dynabeads (M-280, sheep anti-

rabbit IgG, Invitrogen) were incubated with 20 mL CTCF antibody

(#2899, Cell Signaling) for at least 6 hours at 4uC. The antibody-

conjugated beads were then incubated overnight with sheared

chromatin. The complexes were washed with IP wash buffer I

(50 mM Tris-HCl pH 8.0, 0.15 M NaCl, 1 mM EDTA pH 8.0,

0.1% SDS, 1% Triton X-100, 0.1% sodium deoxycholate), high salt

buffer (50 mM Tris-HCl pH 8.0, 0.5 M NaCl, 1 mM EDTA

pH 8.0, 0.1% SDS, 1% Triton X-100, 0.1% sodium deoxycholate),

and TE buffer (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA pH 8.0).

Crosslinking was then reversed in elution buffer (10 mM Tris-HCl

pH 8.0, 0.3 M NaCl, 5 mM EDTA pH 8.0, 0.5% SDS) at 65uC
overnight. The DNA was separated from the beads and treated with

Proteinase K (Fermentas) and purified by phenol-chloroform

extraction and ethanol precipitation.

Sequencing libraries were constructed according to Illumina’s

genomic prep kit protocol as previously described [28]. Briefly,

ChIP DNA was end-repaired using the End-it DNA repair kit

(Epicentre). Adenines were added to the 39 ends of the blunt-ended

DNA using Taq DNA polymerase (NEB). PE adapter (1:20

dilution, 1 mL for 15–50 ng starting ChIP DNA, Illumina) was

ligated to the ends of the A-tailed ChIP DNA with T4 DNA ligase

(NEB). 1/3-1/4 of the purified ligation product was PCR

amplified for 16 cycles with High-fidelity PCR master mix

(NEB) and PE primer 1.0/2.0 (Illumina). Libraries were run on

2% agarose gels, size-selected, and purified with QIAquick gel

extraction kit (Qiagen). The libraries were sequenced to 36 bp on

an Illumina Genome Analyzer by the High-throughput Genomics

Unit (University of Washington) according to standard protocol.

ChIP-seq experiments were performed on 2–3 independently

cultured biological replicates per sample (Table S1, Table S2).

ChIP–seq peak calls
High quality reads were aligned to the reference genome using

the Eland aligner. SPP [52] was used to call peaks on total tag data

from the 12 samples, resulting in 51,686 peaks at a Poisson-derived

FDR of 1%. Using the aggregate of all tags was more conservative

(in terms of number of peaks) than taking the union of peak calls on

individual samples, but less conservative than taking the intersec-

tion. The MTC method (‘‘tag.lwcc’’) was used to call point binding

positions (Table S5). Motif representations used Weblogo [53].

Capture resequencing
We designed an Agilent 244k SureSelect microarray for

targeted resequencing on the 51,686 ChIP-seq peaks identified

in the 12 samples. We used fimo (http://meme.sdsc.edu/meme/)

to scan for instances of the core 14 bp of the canonical motif [18]

with a p-value of 1022. We adjusted the target locations to center

on matches to the nearest CTCF motif if the motif was within

50 bp, and added flanking targets to capture additional nearby

motifs. 5 potential probes were tiled at 15 bp spacing to the

120 bp surrounding each target. We adjusted probe binding

energy similarly to Ng et al. [54], adjusting the spacing of probes

by up to 5 bp and adjusting the lengths to between 40–60 bp to

reach a predicted Tm between 60–72uC. We used the Duke

Uniqueness 20 bp track (UCSC genome browser) to filter out

5,828 probes with potential for cross-hybridization. We further

excluded 145 probes in satellite repeats (RepeatMasker, UCSC

genome browser) or with high blast scores to multiple genomic

locations. The final design had 242,380 probes targeting 46,652

CTCF sites.

Genomic DNA was extracted from cultured cells, and targeted

capture was performed based on Supplementary Protocol 3 of

Mamanova et al. 2010 [55] with modifications. Briefly, 12 mg of

genomic DNA was sheared in a Covaris S2 (Covaris, Inc.) using a

duty cycle of 10%, intensity 5, cycle/burst 100, time 600 sec.

DNA was end-repaired, A-tailed, and ligated to SE adapters

(Illumina), and purified with Agencourt AMPure XP beads

(Beckman Coulter). A trial PCR amplification using Phusion HF

polymerase (NEB) and SE primers SLXA_FOR_AMP and

SLXA_REV_AMP [54] (IDT) was performed on a fraction of

ligated DNA with an Roche LightCycler 480 to determine the

optimal number of cycles. PCR for all ligated DNA was then

performed in eight 200 mL tubes using the following program:

98uC for 30 s, then a previously determined number of cycles of

98uC for 10 s, 65uC for 30 s, 72uC for 30 s, followed by 72uC for

5 min. The final DNA library was pooled and concentrated to

5 mL in a SpeedVac. For hybridization, 10 mg of DNA library was

combined with formamide (Ambion), blocking oligos (SLXA_-

FOR_AMP, SLXA_REV_AMP, SLXA_REV_AMP_rev and

SLXA_FOR_AMP_rev [54], Human C0t-1 DNA (Invitrogen),

26 Hi-RPM Hybridization Buffer (Agilent) and 106 Blocking

Buffer (Agilent). Hybridization was performed using the Maui

Hybridization System (BioMicro Systems, Inc.) at 55uC for

48 hours according to ‘‘MAUI Mixer LC on Agilent 244K

CGH Microarrays’’ protocol. After hybridization, microarrays

were washed with Agilent aCGH Wash Buffers 1 and 2, sealed

with Secure-Seal (GRACE Bio-Labs) and placed on heat block

(VWR) for elution of DNA. DNA was eluted with 3 mL of 95uC
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PCR-grade water, concentrated, and amplified with SE primers

using the same PCR program as above. The libraries were

sequenced to 36 bp on an Illumina Genome Analyzer by the

High-throughput Genomics Unit (University of Washington)

according to standard protocol.

Reads were aligned to the human genome (hg18) using bwa

0.5.8 [56] using default settings, allowing up to 2 mismatches

(Table S3). Some lanes exhibited an excess of mismatches to the

reference sequence at the 59 or 39 end, so tags were trimmed by up

to 9 bp. Reads with identical 59 ends were presumed to be PCR

duplicates and were excluded using Picard v1.22 MarkDuplicates

(http://picard.sourceforge.net/). SAMtools v0.1.7 [57] was used

to generate a pileup of potential SNPs from uniquely-mapping

reads with a mapping quality above 30. SNPs were called (Table

S6) as biallelic variants with at least 86 resequencing coverage, a

Phred-scaled SNP quality of at least 30, at least 20% of reads

matching the allele with lower coverage, and Mendelian

segregation according to PLINK v1.07 [58]. The chimpanzee

allele was identified using axtNet alignment files for PanTro2 from

the UCSC Genome Browser.

We performed two validations of the SNP calls from our

targeted resequencing. First, we performed Sanger sequencing on

PCR products from genomic DNA (Table S8). We tested 33 SNPs

in all 12 samples. 0 of the 388 genotype calls were discordant.

Second, we compared genotypes with genotypes available from

the HapMap project for 6 of the 12 samples (Table S9). Release 27

genotypes were obtained from http://hapmap.ncbi.nlm.nih.gov,

and matched to capture resequencing SNPs by location. 244 of the

27,808 genotype calls in common (0.88%) were discordant.

Measuring occupancy differences among individuals at a
common set of peaks

For each individual, a custom human genome was created from

hg18 including autosomes, unscaffolded contigs, mitochondrial

DNA, a Y chromosome for males, and the Epstein-Barr virus

genome (gi|9625578|ref|NC_001345.1). Each genome was

personalized to reflect SNPs identified by resequencing, using

IUPAC codes to represent heterozygous position. ChIP-seq data

was mapped using MosaikAligner v1.1.0021 (http://code.google.

com/p/mosaik-aligner/) with the options ‘‘-bw 13 -act 20 -mhp

100 -m unique -mm 4 -minp 1.0’’, requiring a unique mapping

considering up to 4 mismatches. Reads with more than 2

mismatches were then discarded. Reads with identical 59 ends

were presumed to be PCR duplicates and were excluded using

Picard v1.22 MarkDuplicates. Smoothed density tracks were

generated using bedmap (http://code.google.com/p/bedops/) to

count the number of tags overlapping a sliding 150 bp window,

with a step width of 20 bp. Density tracks were normalized for

sequencing depth by a global linear scaling to fix an arbitrary

value of 25 as the 50th percentile of bins with more than 15 reads.

We identified instances of the canonical motif (fimo p-val-

ue,1022) within 15 bp of the center of the resequencing target,

keeping the motif with the best p-value. We measured occupancy

by the maximum normalized ChIP-seq tag density over the 14 bp

motif.

Regression of occupancy on genotype
We applied a regression method to measure whether a

particular biallelic SNP is associated with occupancy, and if so

which allele is associated with higher occupancy. We tested only

sites with $86 resequencing coverage in $6 samples, sufficient

mappability, and data for $4 data points each for $2 genotypes

and $12 data points overall (Table S7). We further excluded 242

sites overlapping indels in the CEU population identified by the

1000 Genomes Project release 2010_07 [59]. We used a negative

binomial generalized linear model (glm.nb in the R package

MASS) to measure the significance of the effect of polymorphism

on occupancy using an additive effect model, and including a

replicate term to account for batch effects. We used two ChIP-seq

replicates per sample, except for GM12870, which had one

replicate (Table S1).

For sites with more than one SNP, we tested only the SNPs with

more data points and those inside the region of protein-DNA

contact. If there were still multiple SNPs per window, we chose the

SNP with the lowest p-value, though these sites were then

excluded from analyses depending on the known position of the

SNP relative to the motif. We also tried fitting a dominant effect

model where permitted by sample size: we chose between additive

and dominant effect models using the Akaike information

criterion. We separately fitted a linear model on the same data

to estimate the r2.

We used the R package qvalue to estimate q-values (Figure S5)

[60], which established a cutoff of p,9.6*1024 as an FDR of 1%

(325 sites). Using a Benjamini-Hochberg FDR strategy confirms a

similar cutoff for FDR 1% (4.9*1024, 293 sites). To independently

confirm our FDR methodology, we considered the proportion of

significant SNPs within the region of protein-DNA contact

(Figure 3), which ranged from 71%, to 85%, to 91% at FDRs

5%, 1%, 0.1%, respectively (Table S4).

Aggregate Haseman-Elston linkage analysis
We used 31,128 SNPs identified in our resequencing as markers

to generate a map of identity-by-descent (95th percentile marker

spacing of 0.5 cM). We used recombination rate data [59] to place

our SNP coordinates onto a genetic map, choosing SNPs with

fewer missing genotypes at duplicate map positions. We then used

MERLIN [61] to filter out improbable genotypes and compute

IBD at our marker locations (option ‘‘–ibd’’). We used the nearest

marker at each binding site to estimate IBD for the 15 possible sib

pairs. IBD values were placed into 3 bins (0, 0.5, and 1.0); values

with .0.05 uncertainty were excluded.

We then used the package DESeq [62] to identify differentially

occupied regions, both throughout all 12 samples as well as among

just the grandchildren, using two replicates per sample (Table S1).

We then applied a variance stabilizing transformation, and

normalized the occupancy at each site to a mean of 0 and

standard deviation of 1. We then averaged the occupancy of the

two replicates.

We then performed Haseman-Elston regression at the 97

autosomal sites differentially occupied among the grandchildren,

treating separately sites whose differential occupancy was already

associated with a SNP or allele-specific binding. We considered all

sib pairs and all sites simultaneously. Although regression methods

exist with higher power [63] or that use data from all members of

the pedigree [64], we applied the original method of regressing

squares of trait differences for sib pairs, reasoning that the

robustness of a simple method would have more forgiving

assumptions. To account for the non-independence of measuring

multiple sib pairs from the same family, we assessed the

significance of the regression slope by permuting IBD vectors to

random sib pair difference vectors for all differentially occupied

sites, thus maintaining any correlation structure in the data.

Allele-specific occupancy analysis
We tested allele-specific occupancy in pooled replicate data for

each sample. Given the reliance of allele-specific occupancy tests

on high coverage at heterozygous sites, we included data from an

additional replicate for 4 samples (Table S1). We had sufficient
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power to test 2,535 heterozygous binding sites with adequate

mappability and 136 ChIP-seq read coverage. We used a chi-

squared test against a 50:50 null expectation to derive a p-value

from the counts of the ChIP-seq tags mapping to the two alleles.

We used the R package qvalue to estimate an FDR (Figure S5)

[60]. In interpreting our FDR threshold, we considered the

observed concentration of significant SNPs within the 44 bp

region of protein-DNA interaction (Figure S2), which increased at

more conservative FDRs: 63%, 66%, 68% at FDRs 1%, 0.5%,

0.1%, respectively (Table S4). At sites for which multiple samples

had testable heterozygous sites with the same alleles, the sample

with the most total reads was picked as representative for plotting.

Position weight matrix (PWM) motif models
We used PWM models [19] to measure the effect of a

polymorphism on information content. CTCF binds in a

multivalent fashion [21,65,66], wherein three modes of binding

are distinguished by the presence and position of an upstream

motif. At each site we chose the best-matching of the three motif

models. To measure information content, we converted frequen-

cies to log-odds, using a pseudo-frequency of 0.01 (the minimum

observed frequency).

Mutual information analysis
We calculated the mutual information between whether a given

SNP affected occupancy (FDR 5%) and sequence context at 14

positions in the core CTCF motif using the mutualInfo function of

the R package bioDist. To estimate the significance of the mutual

information values, we applied a bootstrap method for each pair of

positions tested. We calculated p-values from 2,000 iterations of

resampling per pair of positions (Figure S7). To account for multiple

testing across all positions, we used the R package qvalue [60].

ROC curve
We downloaded phyloP based on a 44-way vertebrate

alignment from the UCSC Genome Browser. SNPs were ranked

in decreasing order of the phyloP score at the location of the SNP,

thus ranking sites with the most indication of purifying selection

the likely to be disrupted by a SNP. To measure the predictive

power of models of protein-DNA binding energy, we used a

position weight matrix to compute the difference in log-odds score

between the two alleles of each SNP. Sites with the largest

difference between alleles at the location of the SNP were ranked

as most likely to be disruptive. Plots were generated using the R

package ROCR [67].

Data availability
ChIP-seq data are viewable in the UCSC Genome Browser

(http://genome.ucsc.edu, version hg18), and have been deposited

in GEO (GSE30263). Resequencing data are available in the SRA

(SRP009457), and the capture resequencing array design in GEO

(GPL14147).

Supporting Information

Figure S1 Aggregate linkage analysis confirms that association

analysis identifies most but not all heritable signal. (A) Example site

showing differential occupancy among the 6 grandchildren (B)

The alleles transmitted to each grandchild illustrate identity by

descent (IBD). PF, paternal grandfather; PM, paternal grand-

mother; MF, maternal grandfather; MM, maternal grandmother.

Note that the grandchildren who share alleles from the same

grandparent have more similar occupancy; compare the ChIP-seq

signal in (A) for the grandchildren who inherited an allele from the

paternal grandmother (PM) for (GM12867, GM12868 and

GM12870) to the signal for those who inherited an allele from

the paternal grandfather (PF; GM12866, GM12869 and

GM12871). (C, D) Aggregate Haseman-Elston linkage analysis

sites exhibiting differential occupancy in the 6 grandchildren,

analyzing occupancy at (C) a positive control of 47 autosomal sites

where already associated with a SNP or (D) the remaining 50

autosomal sites not significantly associated with a SNP. A negative

slope indicates that sib pairs with more similar inheritance at the

binding site also exhibit more similar occupancy at that site, thus

implying that the variation in occupancy is heritable. (E)

Permutation analysis to quantify significance of slopes from (C,

D). Both sets of sites (arrows) show significant heritability

compared to permuted data, and the signal is weaker for sites

not directly implicated in the association analysis (right arrow).

(EPS)

Figure S2 Comparison of association and allele-specific analy-

ses. (A–B) Y-axis indicates the number of SNPs tested for (A)

association with occupancy and (B) allele-specific occupancy at a

given position (x-axis) relative to the known CTCF motif (below).

Color indicates alleles of the SNPs at each position. Gray shading

indicates the extent of protein-DNA contact. Although SNPs were

found distributed uniformly throughout the resequencing window,

note that in (B) fewer SNPs are testable overall and at the flanks

given the need for heterozygous SNPs with high ChIP-seq

coverage, despite several additional replicates. We observed a

slight reduction in SNPs directly over the core motif, correspond-

ing to the most evolutionarily conserved region. (C–D) SNPs

significantly associated with differences in ChIP-seq occupancy (C)

and sites demonstrating allele-specific occupancy (D). Color

indicates higher-occupancy allele. Both analyses demonstrate an

enrichment of significant SNPs over the region of protein-DNA

contact, though to a greater extent in (C). (E–F) Same as (C–D),

but color indicates SNPs for which the higher-occupancy allele

(according to association analysis) also has a higher log-odds score

in the canonical motif and gray indicates SNPs that affect

occupancy, but the higher-occupancy allele has a lower score in

the motif. In comparison to the allele specific occupancy (F), the

regression analysis (E) identifies more sites (325 vs. 181), has a

higher concentration of significant SNPs within the region of

protein-DNA contact (85% vs. 66%), and has a higher proportion

of SNPs matching the expected binding energetics (84% vs. 68%).

(A, E) are reproduced from Figure 3.

(EPS)

Figure S3 SNPs not affecting occupancy show no relationship

between the magnitude of the perturbation and the strength of

motif match. Y-axis, magnitude of perturbation, represented by

the difference in log-odds scores between the two alleles. X-axis,

log-odds score of motif match, stronger matches to the right, label

represents lower limit of bin.

(EPS)

Figure S4 Positive predictive value of PWM model to predict

the effect of SNPs on occupancy. X-axis measures stringency of

cutoff, represented by the difference in log-odds scores between

alleles. At a log-odds difference cutoff of 7.1, 41% of predictions

represent true positives.

(EPS)

Figure S5 Statistical identification of association with differential

occupancy and allele-specific occupancy. (A–C) Association of

SNPs in cis with ChIP-seq occupancy (A) Histogram of p-values for

all tested binding sites (B) Histogram of FDR-adjusted q-values (C)

Effect size of SNPs associated with differences in occupancy (FDR

Prevalent Buffering of Regulatory Polymorphism

PLoS Genetics | www.plosgenetics.org 9 March 2012 | Volume 8 | Issue 3 | e1002599



1%), measured by r2 of a linear regression (D–F) Allele-specific

occupancy at heterozygous sites (D) Histogram of p-values for all

tested binding sites (E) Histogram of FDR-adjusted q-values (F)

Effect size of SNPs associated with allele-specific occupancy (FDR

0.005%), measured by the log of the ratio of the counts of reads

mapping to the higher and lower alleles.

(EPS)

Figure S6 Hierarchical clustering confirms strength-dependent

buffering. (A) Normalized ChIP-seq density for 379 CTCF sites

(Y-axis) with polymorphism in the core region of protein-DNA

contact (positions 0–13) in the six grandchildren (X-axis).

Hierarchical clustering resolves three clusters (labeled at right).

(B) However, the percentage of polymorphisms that significantly

affect binding is higher in cluster 3 (42%) than in cluster 1 and 2

(33% and 27%). (C) The sites comprising the three clusters are

distinguished by their overall ChIP-seq intensity, with cluster 1

being the weakest sites, cluster 3 being intermediate, and cluster 2

being the strongest sites; compare to Figure 4B.

(EPS)

Figure S7 Statistical significance of the mutual information

between sequence context and SNPs affecting occupancy. P-values

estimated by bootstrap; two interactions with p,0.0025 were

considered significant (q,0.05, see Materials and Methods).

(EPS)

Table S1 Summary of ChIP-seq data mapped to customized

genomes with Mosaik. Tags used in analysis indicates the uniquely

aligned tags remaining after removing duplicates. Enrichment

indicates the proportion of tags mapping to a ChIP-seq peak,

representing the enrichment over background and indicating the

quality of the data. Biological replicate structure: Replicates a and

b were used in the regression analysis. 4 further available replicates

(for GM12864, GM12865, GM12872, and GM12873) were used

to add power for the allele-specific occupancy analysis, but were

not used elsewhere. * Replicate ‘‘b’’ of GM12870 was only used

for the linkage analysis.

(TXT)

Table S2 Pearson correlation of two replicates per individual of

ChIP-seq data. Correlation performed after normalization at

signal at ChIP-seq binding peaks.

(TXT)

Table S3 Summary of resequencing data mapped using bwa.

Tags used in analysis indicates the uniquely aligned tags remaining

after removing duplicates. On-target percent indicates the fraction

of tags mapping back to within 6100 bp of a resequencing target.

(TXT)

Table S4 Survey of the effect of SNPs at transcription factor

binding sites - 36,834 CTCF sites. SNPs are broken down by

location relative to motif in the first two columns, either within the

region of protein-DNA contact or outside it. The third column

summarizes SNPs regardless of location relative to the motif; sites

with multiple overlapping SNPs are counted once.

(XLS)

Table S5 Location of ChIP-seq binding positions in CEPH

Pedigree 1459 called by SPP.

(TXT)

Table S6 Resequencing SNP calls in CEPH Pedigree 1459.

chrom, chromStart, chromEnd ID, Strand, the 0-indexed hg18

location of the SNP. numNonRefAllelesGrandparents, number of

nonreference alleles in 4 grandparents; genotype, nonreference /

reference allele; GM12864-74, called genotypes with 00 indicating

missing data.

(TXT)

Table S7 Sites tested in association analysis. chrom, chromStart,

chromEnd, Strand, the strand-oriented hg18 coordinates of

134 bp window around the motif. peakID refers to the ChIP-seq

peak; flag, nonzero indicates that the SNP was excluded from the

analysis; position location of the SNP relative to motif; position-

Flag, TRUE indicates position can not be reliably determined.

allele.1, allele.2, and chimpAllele, the stronger, weaker and chimp

alleles of the SNP. Slope, y.intercept, q.value refer to the

regression. Signal.het, ChIP-seq density of the heterozygote class

from regression model.

(TXT)

Table S8 Sanger validation of SNPs from capture resequencing.

33 sites tested exhibit no discordance between capture resequen-

cing and Sanger validation. chrom, chromStart, chromEnd,

Strand, the strand-oriented hg18 coordinates of the SNP; SNP

ID, from Table S6; nonref/ref, alleles of the SNP; amplicon_start,

amplicon_end, coordinates of predicted amplicon; Left PCR

Primer, Right PCR Primer, primer sequences for PCR; genotypes

of 12 samples, 00 indicates that Sanger sequencing failed;

num_concordant, num_discordant, number of concordant and

discordant genotypes for this SNP.

(TXT)

Table S9 Validation of SNPs from capture resequencing using

HapMap genotypes. 4,246 sites tested exhibit 244 discordant calls

(out of 27,808, 0.88%) between capture resequencing and public

HapMap genotypes. chrom, chromStart, chromEnd, Strand, the

strand-oriented hg18 coordinates of the SNP; SNP ID, from Table

S6; nonref/ref, alleles of the SNP; genotypes of 6 samples, 00

indicates no HapMap data available; num_concordant, num_dis-

cordant, number of concordant and discordant genotypes for this

SNP.

(TXT)
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