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Abstract: Childhood obesity is a leading public health problem worldwide, as it is increasingly
prevalent and therefore responsible for serious obesity-related comorbidities, not only in childhood
but also in adulthood. In addition to cardio-metabolic obesity-related disorders, recent evidence
suggests that excess adipose tissue in turn is associated with immune cell infiltration, increased
adipokine release, and the development of low-grade systemic inflammation obesity. Exercise is
considered a non-pharmacological intervention that can delay obesity-related comorbidities, im-
proving cardiovascular fitness and modulating the inflammatory processes. It has been reported
that the anti-inflammatory effect of regular exercise may be mediated by a reduction in visceral fat
mass, with a subsequent decrease in the release of adipokines from adipose tissue (AT) and/or by
the induction of an anti-inflammatory environment. In this narrative review, we discuss the role
of AT as an endocrine organ associated with chronic inflammation and its role in obesity-related
complications, focusing on the effect of exercise in reducing inflammation in children and adolescents
with obesity. Regular physical exercise must be considered as a natural part of a healthy lifestyle, and
promoting physical activity starting from childhood is useful to limit the negative effects of obesity on
health. The crucial role of the immune system in the development of obesity-induced inflammatory
processes and the efficacy of exercise as an anti-inflammatory, non-pharmacological intervention may
provide possible targets for the development of new treatments and early preventive strategies.
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1. Introduction

Childhood obesity is a leading public health problem worldwide, as it is increasingly
prevalent and therefore responsible for serious obesity-related comorbidities, not only in
childhood but also in adulthood [1–4]. Childhood obesity is associated with increased
comorbidities, including insulin resistance, diabetes mellitus, dyslipidemia, hypertension,
and sleep apnea, which increase the risk of cardiovascular diseases and premature death
during adulthood [1]. In addition to cardio-metabolic obesity-related disorders, recent evi-
dence suggests that excess adipose tissue in turn is associated with immune cell infiltration,
increased adipokine release, and the development of low-grade systemic inflammation
obesity from pediatric to adult age [1].
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An inactive lifestyle leads to the accumulation of adipose tissue, as energy expenditure
is lower than energy intake.

Physical activity (PA) can be defined as any movement of the body that requires
increased energy expenditure above the resting level. Exercise is part of PA and refers to
planned and structured activity that aims to improve a specific outcome such as cardiores-
piratory fitness, functional ability, body mass reduction, or body recompositing [5].

As recommended by the World Health Organization (WHO) in 2020, promoting an
active lifestyle and appropriate levels of physical exercise is mandatory to reduce the
risk of preventable adverse health events for all people [4]. Exercise is considered a
non-pharmacological intervention that can delay obesity-related comorbidities, improv-
ing cardiovascular fitness and modulating inflammatory processes in both children and
adults [6]. As reported by Gleeson, the anti-inflammatory effect of regular exercise may
be mediated by a reduction in visceral fat mass, with a subsequent decreased release of
adipokines from AT and/or by the induction of an anti-inflammatory environment [7].

In this narrative review, we discuss the role of AT as an endocrine organ associated with
chronic inflammation and its role in obesity-related complications, focusing on the effect of
exercise in reducing inflammation in children and adolescents with obesity. The crucial
role of the immune system on the development of obesity-induced inflammatory processes
and the efficacy of exercise as anti-inflammatory non-pharmacological intervention may
provide possible targets for the development of new treatments and early preventive
strategies. Considering that the acquisition of a healthy lifestyle could track to later ages,
studying the phenomenon starting at childhood could offer a better preventive strategy to
preserve children’s health.

2. Methods

A narrative review was performed; we presented a non-systematic summation and
critical analysis of current knowledge on the topic of the role of exercise in the reduction
in obesity-related inflammation, also considering data on adults [8]. To refine the scope
of our narrative review, we established a set of inclusion criteria: articles published up to
April 2022 in the English language; original scientific papers, clinical trials, meta-analyses,
and reviews published on a specific topic; and articles on pediatric patients and adults.
Case reports or series and letters were excluded. The authors assessed the abstracts of
the available literature (n = 171) and reviewed the full texts of potentially relevant articles
(n = 98) that were analyzed to provide a critical discussion. In addition, the reference list
of all articles was checked to identify relevant studies. The following keywords were
used for the search (alone or in combination): exercise, physical activity, inflammation,
obesity, pediatric obesity, obesity-related chronic inflammation, adipose tissue. PubMed,
Scopus, EMBASE, and Web of Science were used (from February to April 2022) as electronic
databases for this research. The contributions were collected by V.R., C.B., E.C., R.G., V.T.,
and V.C.P. and critically analyzed with V.C. and M.V. The resulting draft was discussed by
V.C., M.V., and C.C. and critically revised by G.Z. The final version was then recirculated
and approved by all.

3. Obesity in Pediatric Age

Obesity is defined as an excess in body fat mass. The current practical definition of
obesity is generally assessed with the body mass index (BMI) and is calculated by dividing
body weight in kilograms by height in meters squared. It is the standard clinical measure of
overweight and obesity for children 2 years of age and older; however, BMI is a surrogate
measure of adiposity, since it is reasonably reliable in the healthy pediatric population [9],
but it may slightly overestimate adiposity in children who are short or have low muscle
mass due to low levels of physical activity [10]. For children younger than 2 years, weight-
for-length is the standard measure of overweight and obesity. Waist circumference and
waist-to-hip ratio can be used to assess abdominal obesity, whereas skinfold thickness is
a useful indicator of adiposity [1,11–13]. Due to the normal growth and development of
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children and adolescents, BMI cutoffs are used to report overweight and obesity in children
vary with age and sex. Regarding children and adolescents between the ages of 2 and
20 years of age, overweight is referred to as the BMI being between the 85th and the 95th
percentiles for age and sex; obesity is referred to as the BMI being at or above the 95th
percentile for age and sex; and severe obesity is referred to as the BMI being at or above
120% of the 95th percentile [14,15]. Some experts recommend classifying obesity into three
classes: class I obesity (BMI equal to or greater than the 95th percentile to less than 120%
of the 95th percentile), class II (BMI equal to or greater than 120% to less than 140% of the
95th percentile, or BMI equal to or greater than 35 kg/m2), and class III (BMI equal to or
greater than 140% of the 95th percentile, or BMI equal to or greater than 40 kg/m2) [16].

Although obesity rates vary among countries, in general, its prevalence has increased
steadily over the past 40 years, notably doubling from 1980 to the present in more than
70 countries [17,18]. Specifically, in developed countries, its prevalence reached 23.8% for
boys and 22.6% for girls in 2013 compared with 16.9% for boys and 16.2% for girls in
1980 [19]. In developing countries, prevalence also increased from 8.1% in 1980 to 12.9% in
2013 for boys and from 8.4% in 1980 to 13.4% in 2013 for girls [19]. According to a report
by the WHO, 39 million children under the age of 5 showed overweight or obesity in 2020
worldwide [20]. In addition, the rate of increase in obesity is greater in pediatric age than in
adulthood, and that the prevalence of childhood obesity shows the differences in the trends
across countries [17,21]. Based on the Global School-Based Student Health Surveys from
2005 to 2017, the trends in overweight and obesity adolescents aged 12 to 15 years showed
an increased prevalence in the Americas, Africa, and South East Asia. In contrast, the trends
in the prevalence in the Eastern Mediterranean and Western Pacific plateaued, although
the prevalence remained at a high level. In terms of relative change, lower-middle-income
countries experienced a more rapidly increasing prevalence of overweight and obesity
compared to high- and upper-middle-income countries [22].

Diet has been broadly investigated as a major cause of obesity. Rising intake of
fast food and sugary beverages is closely linked to childhood obesity; over the past two
decades, fast food consumption has dramatically increased in accordance with an increased
prevalence of childhood obesity [21,23,24]. Obesity is assumed to be caused by increased
fat intake, but it appears that besides than the amount of fat intake, the type of dietary fat
(e.g., trans fat) is more significant [21,25]. Dietary patterns, such as the number, regularity,
and duration of meals, are also traditionally considered as eating behaviors related to
obesity to obesity [26]. For example, eating without hunger, according to an uninhibited
eating pattern, leads to weight gain and binge eating in adults [21,27]. A sedentary lifestyle
on its own has been identified as being a consistent risk factor for obesity and related
diseases, regardless of physical activity [28,29]. Short sleep time and poor sleep quality
are other risk factors for obesity [30,31]. In addition, environmental factors, such as family,
school, community, and lifestyle, play an important role in the growing prevalence of
obesity worldwide [32]. Since parent–child relationships influence children’s behaviors,
such as their food choices and physical activity level, the home setting is definitely crucial
in childhood obesity [25]. School is where children typically spend most of their time and
receive their primary education; therefore, school can affect children’s behavior as well
regarding food choices and physical activity [25].

Childhood and adolescence are a crucial time for shaping eating and physical activity-
related behavior, and several environmental drivers influence this behavior. For instance,
the restrictive measures imposed during the COVID-19 pandemic have had detrimental
effects on various lifestyle components and have resulted in physical inactivity and seden-
tary behaviors, influencing the maintenance of weight and contributing to obesity among
children and adolescents [33–36]; a decreased frequency of engaging in active transport,
moderate or vigorous and high-intensity housework, physical activity (PA) during leisure
time, walking during leisure time, and increased sedentary, sleeping, and screen time has
been reported [37].
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Prevention rather than treatment is the key to successful obesity control: implementing
nutrition education, stimulating physical activity, and abolishing sedentary behavior are
the starting points of this prevention project [21].

4. Adipose Tissue and Associated Inflammation

AT has been always considered as the primary site of storage for excess energy,
although it is now effectively considered an endocrine organ, able to produce and release
biologically active compounds involved in obesity-associated chronic inflammation and
pathological metabolic processes [38].

As reported in humans and experimental models, the major cellular component of
AT is represented by adipocytes, which are supported by an extracellular matrix strewn
with fibroblasts, preadipocytes, endothelial cells, and immune cells [39,40]. In particular,
the discovery of a strong local presence of leukocytes such as macrophages, mast cells,
neutrophils, monocytes, natural killer cells (NKs), and T and B lymphocytes has led
scientists to define the human AT as a real immune organ involved in delicate immune
homeostasis [41–43]. This consideration is supported by further evidence: first, perinodal
adipocytes are detectable in the AT. They almost entirely accumulate polyunsaturated
fatty acids, essential for the synthesis of the main second messengers for immune cells
(eicosanoids and docosanoids), and the control of their lipolytic activity is performed
by lymphocytes and lymph nodal dendritic cells (DCs), confirming the close connection
between AT and lymphoid structures [44]. In addition, the presence of immune structures
at the level of the omental and mesenteric AT, better known as “milky spots”, assigned
to immune surveillance and rich in cells with peculiar characteristics when compared to
conventional secondary lymphoid organs, has been demonstrated [45,46]. Indeed, it is
known that AT immune cells show distinctive traits in animals [47] and that the imbalance
to which the body’s energy metabolism is subjected leads to an alteration of this profile,
feeding the inflammatory response typical of obesity and contributing to the onset of
related metabolic disorders in humans [48]. In conditions of positive energy balance, in
fact, the AT undergoes morphological and metabolic changes that lead to the presence of
acute-phase proteins and to a massive release of pro-inflammatory cytokines at the expense
of those with anti-inflammatory action, thus generating signals that recall the immune cells
in place and that consequently result in an increase in the inflammatory infiltrate in the AT;
hence the onset of a chronic low-grade inflammation [48].

Macrophages (M) are one of the main cell populations present in AT, and depending on
the expressed surface antigens and secreted molecules, they can be distinguished in ATM1
macrophages, with a typically pro-inflammatory phenotype, and ATM2 macrophages, with
an anti-inflammatory phenotype [49]. In humans, while the prevailing subtype in AT is
normally constituted by M2 macrophages, during obesity, there is not only an increase in
terms of quantity [50] but also a shift towards the M1 subtype, which forms crown-like
aggregates around the inflamed necrotic AT [51,52]. The one concerning the macrophage
shift is a complex and still not fully understood process, as it seems that, in vivo, ATMs
simultaneously show M1 and M2 typical markers [53,54]; however, it has been discovered
that this shift could be partly induced by the recruitment of circulating monocytes, which
then differentiate into M1 cells and by the stimulus to cell migration resulting from the
binding interaction between monocyte chemoattractant protein-1 (MCP1), secreted by
hypertrophic adipocytes, and CCR2 (C-C chemokine receptor type 2) on the macrophagic
surface [55,56], although the latter event still needs further investigation. However, given
the role that ATMs M2 play in maintaining adequate insulin sensitivity and glucose toler-
ance [57] through the secretion of anti-inflammatory cytokines such as IL-10 [51], it has been
found that the shift towards M1 leads to a remarkable secretion of tumor necrosis factor
(TNF)-α and interleukin (IL)6, whose elevated concentrations positively correlate with the
development of insulin resistance (IR) and the onset of type 2 diabetes mellitus (DMT2) [58],
thus demonstrating how macrophages are effectively involved in complications related to
obesity, in both murine models and humans.
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The secretion of pro-inflammatory molecules also affects mast cells and neutrophils;
these cell populations are increased in conditions of obesity and, by releasing molecules
such as TNF-α, IL-1b, IL-6, IL-4 and elastase, seem to promote the inflammatory state,
playing a role in the onset of insulin resistance (IR) [59–62]. Among other cellular pop-
ulations, CD14++ monocytes in adults with obesity are present in a pro-inflammatory
state [63], favoring the onset of obesity-related complications such as hyperglycemia and
atherosclerosis [64,65]; interestingly, this condition seems to already be present in younger
patients [66].

Finally, an important role in the onset of complications related to obesity is played by
B and T lymphocytes; studies on mice have shown that obesity activates B lymphocytes,
which infiltrate the AT and produce antibodies capable, in turn, of activating macrophages.
The action exerted by B lymphocytes promotes the progression of the inflammatory state;
moreover, through the activation of T lymphocytes and the selective suppression of Treg,
normally responsible for regulating the immune response itself in adults affected by obe-
sity [67,68]. However, CD4+ T lymphocytes, activated by adipocytes through the expression
of major histo-compatibility complex class II (MHCII), are involved in the early stages of
IR [69]; in fact, it has been shown through studies on mouse models fed on a high-fat diet
(HFD) that the number of CD4+ Th1 cells is increased compared to Th2 and Tregs cells
and that this event, with consequent greater secretion of IFN-γ, correlates positively with
IR [70]. A similar role is played by natural killer (NK) cells, whose presence in the AT
promotes, through the secretion of IFN-γ and TNF-α, the recruitment of inflammatory T
lymphocytes, macrophage infiltration, and, moreover, Th1 polarization itself [71–73].

Finally, it is important to underline that in subjects with obesity, there is a correlation
between IL-6 secretion and the presence of a remarkable concentration of Th17 cells, T
lymphocytes typically involved in inflammatory processes whose value seems to decrease
after therapeutic treatments with metformin, specific diets, and exercise. Th17 lymphocytes
mainly secrete IL-17, a cytokine with a pro-inflammatory action that in turn stimulates
the release of various other molecules capable of activating the immune system, such as
IL-6, IL-21, IL-22, TNF-α, and GM-CSF. The close relationship between obesity and Th17
lymphocytes was demonstrated in research conducted on animal models, where it was
found that maternal obesity causes an inflammatory state in the intestine of the fetus, with
high amounts of circulating IL-17 [74–76]. Treg lymphocytes, which are generally present
in high concentrations and have a peculiar cytokine expression profile in the AT, appear,
instead, to be decreased in conditions of obesity. Normally, they secrete large amounts of
IL-10, which maintains macrophages in the alternative M2 state and performs a positive
action on adipocytes by promoting insulin sensitivity; therefore, their reduction seems
to promote the inflammatory state in high-fat diet-induced mice [47,51]. Interestingly,
clinical research conducted on animal models fed an HFD and whose immune system was
stimulated to produce high concentrations of cytokine IL10 revealed an expansion of the
regulatory T subpopulation and, consequently, a significant reduction in blood glucose
levels, insulin resistance, and increased glucose tolerance [77]. In both children and adults,
the triggered Treg/Th17 imbalance has been the subject of recent studies and appears to be
involved not only in the generation of the low-grade inflammatory state typical of obesity,
but also in the onset of complications such as IR, hypertension, cardiovascular risks, and
DMT2 [78–80]. In addition, the interconnection between the two subpopulations has been
extensively evaluated in animal models, and several studies on adults have shown that, for
example, IL17 cytokine is able to promote the differentiation of Th17 cells and, at the same
time, inhibit Treg cells’ differentiation [81–83]. However, further investigation is needed in
order to validate these claims.

In addition to inflammatory immune cells, adipokines also play a critical role in
obesity-related inflammation. Adipokines are adipocyte-derived molecules that regulate
several pathways, including glucose and lipid metabolism. However, during chronic
inflammation, that adipokine profile becomes dysregulated. Adiponectin (AdipoQ) is
secreted by the healthy adipose tissue, and its levels are elevated in blood circulation in
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physiological conditions. In humans, AdipoQ, responsible for insulin sensitivity, increases
fatty acid and suppresses hepatic glucose production. Moreover, adiponectin has a protec-
tive immunomodulatory function: in fact, it is able to reduce pro-inflammatory cytokine
secretion (i.e., TNF-α, IL-6, MCP1) and to increase anti-inflammatory cytokines (such as
IL-10) [84]. However, plasmatic adiponectin concentration has been observed to be reduced
in patients with obesity, contributing to insulin resistance [85,86]. In addition, subjects
with overweight or obesity plasma adiponectin levels are negatively correlated with waist
circumference, BMI, fat mass, fat mass percent, and fat mass index [87,88].

It is well recognized that leptin, another hormone secreted from the adipose tissue
into the bloodstream, modulates food intake by binding to its receptors in the hypotha-
lamus [89]. However, leptin receptors have also been detected in a variety of cells types,
such as in adipocytes, pancreatic beta cells, and immune cells [90]. Thus, the activation of
leptin receptors in these different districts leads to a plethora of consequences. In fact, since
individuals with obesity have higher plasmatic leptin levels with respect to lean subject, hy-
perleptinemia contributes to IR and to the low-grade inflammatory states [91,92]. Moreover,
leptin promotes Th17 and pro-inflammatory cytokines, inhibiting Treg differentiation [93].

Increasing evidence has shown not only that is human resistin expressed in adipocytes
and pancreatic cells, but also that it is largely produced by immune cells [94]. Because
of its heterogeneous expression, it becomes clear that resistin regulates several biological
processes, from insulin resistance to pro-inflammatory reactions. In fact, it has been found
that resistin promotes the release of inflammatory cytokines, such as CRP, IL-1, IL-6, IL-12,
and TNF-α, in both rodents and humans [95].

Chemerin, initially discovered as a retinoic responsive gene, has recently been identi-
fied as an adipokine [96]. It is highly expressed in the WAT as compared to the BAT, sug-
gesting a role in both the proliferation and the differentiation of murine pre-adipocytes [97].
In addition, chemerin receptor CMKLR1 activation, being expressed by macrophages, den-
dritic cells, and natural killer cells, mediates their infiltration into AT [98]. Taken together,
these data support the existence of a vicious crosstalk between adipocytes and immune
system that promotes the maintenance of low-grade chronic inflammation in subjects
with obesity.

In Figure 1, the immunomodulatory property of adipose tissue is reassumed.
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5. Physical Activity Guidelines for Children and Adolescents

PA is essential for regular growth and development [99,100], has an important role in
the prevention of overweight and obesity in childhood and adolescence, and reduces the
health risks related to excess weight [101]. The WHO, through the Global Action Plan for
Physical Activity 2018–2030 [102] and the Physical Activity Strategy for the WHO European
Region 2016–2024, provided guidance and support for national policies to promote regular
PA for all people. Current WHO guidelines recommend that children and adolescents
between 5 and 17 years should perform at least 60 min of moderate- to vigorous-intensity
daily amount of PA, which may be realized by performing activities in multiple short bouts
during the day [103]. These proposals include play, games, sports, active transportation,
recreation, and physical education, as well as planned exercise or training sessions [104].
It is also recommended that 30 min of daily exercise should be performed in the school
routine. The structured and unstructured daily routine activities must be enjoyable and
preferably sustainable [105].

Some children and adolescents suffer from barriers related to demographic, personal,
social, and environmental circumstances that limit them from reaching their exercise and
PA goals. Youngsters are greatly affected by the PA level of the people who surround
them and their exercise habits. Even preschool-aged children are influenced by the amount
of exercise of their parents [106]. Preschoolers who have more physically active parents
exercise more than children of parents who are inactive [107]. Conversely, children who
spend more time outdoors are more active than those who spend more time at home [107].
Additionally, urban habitats with limited play space and omnipresent worry about child
safety contribute to spending less time outdoors, and the cost and perceived lack of access
to playgrounds, supervision, and equipment contribute to employing less time outside
as well [108]. Favorable predictors of PA levels include family, peer, and community
stimulation; an active and sportive self-identity; the wish to avoid weight gain; personal
achievement [109]; and perceived competence [110]. Children and parents together should
have an active lifestyle from a very young age and not depend on the school system to
maintain their children fitness level; thus, changing parental exercise habits may help with
childhood fitness. Moreover, parents and schools should stimulate children and adolescents
to play outside, play at recess, and walk or bike to school. Furthermore, Riddoch et al. [111]
also found gender differences in PA practice across age, with boys more active than girls,
especially at 9 years old (21% more active) and 15 years old (26% more active), where sex
gaps in active time spent in at least moderate-intensity activities are even more pronounced
(20% and 36% difference, respectively). In a study by Garaulet et al. [112], which investi-
gated 14- to 18-year-old adolescents, overweight girls showed nearly identical levels of PA
(work, sport, and recreational index) compared with their non-overweight counterparts,
but overweight boys had a significantly lower sport index than their non-overweight peers.
Sports clubs may be too competition-oriented and, therefore, exclude less-fit children and
adolescents, especially children and adolescents with obesity. Given the commonly low lev-
els of participation in sports by the young with obesity, the encouragement to participate in
sports from an early age may be important in the prevention and treatment of weight gain.

Although regular PA practice demonstrated clear benefits and a healthy lifestyle is
able to reduce cardio-metabolic risk factors in all subjects, children with obesity tend to
have lower PA levels compared to their peers [105,113,114]. As reported by Yu et al. [115],
children and adolescents with obesity spent 30% less of time engaging in PA pursuits
and 51% more time in sedentary activities during time dedicated to waking activities.
Many studies showed that children with obesity experienced difficulties to begin and
maintain PA programs due to the lack of motor skills caused by excessive body weight
and to the tendency to be inactive. Subsequently, children with obesity usually acquire
negative feelings related to the PA practice, increasing the rate of PA abandonment and
creating a vicious circle in which the sedentary habits became predominant. Moreover,
Babic et al. [116] showed that adolescents with a higher level of physical self-esteem had
more chances to engage in PA; conversely, lower perception in fitness could limit partici-
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pation in PA/exercise programs and, consequently, the perceived enjoyment [114,117]. A
previous study of Vandoni et al. [118] highlighted the importance of investigating physical
self-esteem and PA pleasure prior to engage into a regular exercise program in children and
adolescents. In fact, children with obesity also showed poor performance in the evaluation
of motor control [118]. An accurate evaluation of self-reported physical fitness could iden-
tify low-fitness (and possibly low-activity) children in order to enact primary surveillance
and design specific PA interventions to increase long-time PA adherence.

6. Anti-Inflammatory Effect of Exercise in Children and Adolescents with Obesity

In the last twenty years, a large number of studies have been conducted in order to
understand the influence of exercise on the inflammatory process in both the healthy and
the unhealthy adult populations suffering from non-communicable diseases [5].

There are well-known health benefits from regular exercise, and ample evidence points
to a decreased risk of developing several chronic diseases, including obesity, CVD, metabolic
syndrome, T2D, and several cancers (e.g., colorectal and breast cancers), which are conditions
typically associated with underlying chronic low-grade inflammation [119,120].

PA may successfully prevent adipose tissue accumulation through increased energy
expenditure while promoting cardiovascular health by improving the blood lipid profile,
which is presumed to limit the production of atherosclerosis. However, the protective
effect of a physically active lifestyle against chronic disease can be further attributed to
the anti-inflammatory effects of exercise [120,121]. Chronic low-grade inflammation is
characterized by a two- to fourfold increase in circulating pro- and anti-inflammatory
molecules compared with those observed in healthy adults [122].

Aadland et al., as previously stated by Ekelund et al., indicated that children and
teenagers should spend time training at moderate to vigorous intensities to improve their
cardio-metabolic health [123,124]. Specifically, a positive effect of PA is achieved during
intermittent activities of vigorous intensity, such as those involving running and jumping.
At the same time, a very weak association was found between sedentary time and metabolic
health [123].

Several studies have been conducted to highlight the beneficial role of PA in chronic
low-grade inflammation, and its impact on inflammation has received significant attention
in recent years.

Findings from a study performed by Haapala et al. [125] showed that higher levels
of moderate physical activity (MPA) and/or vigorous physical activity (VPA) and lower
levels of sedentary time (ST) were associated with lower levels of circulating biomarkers
of inflammation among children. Nevertheless, the same group also showed a strong
association between percentage fat mass (BF%) and circulating levels of inflammatory
biomarkers. Accordingly, the link between ST, MPA, and/or VPA levels and biomarkers
of inflammation in 6- to 8-year-old children also appears to be related to BF%: higher ST
levels and lower PA levels were associated with higher circulating levels of inflammatory
biomarkers in children with higher BF% but not in those with lower BF%. Furthermore, in
relation to diet, Haapala et al. showed that PA was inversely associated with circulating
levels of biomarkers of inflammation in children with a poor quality diet but not in those
with a better quality diet [125].

The most common biomarker in cohort studies to reflect inflammatory status is C-
reactive protein (CRP), which is widely used in clinical settings. CRP is an acute-phase
protein that is a nonspecific marker of systemic inflammation; it appears to be involved
in the pathogenesis of several chronic conditions, most notably CVD. A large collection
of studies have consistently reported inverse associations between self-reported physical
activity or objectively measured aerobic fitness with circulating levels of CRP [126].

In particular, a 2016 systematic review and meta-analysis of 83 randomized controlled
trials suggested that exercise performed for more than 2 weeks can reduce CRP. This
reduction was more evident when exercise was accompanied by a reduction in fat mass
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and BMI [127]. These results were confirmed by another 2019 meta-analysis, targeting the
effects of aerobic exercise on CRP in healthy adults [5].

The mechanism through which exercise affects CRP is unclear. It could be associated
with the reduction in IL-6, which induces a hepatic acute phase response and may be due
to confounders such as hypertension, age, smoking, and body mass-related variables with
which CRP is also associated [128].

Other biomarkers, particularly interleukin-6 (IL-6) and Tumor-Necrosis-Factor α (TNF-
α), are increasingly reported to be inversely associated with PA [121].

Skeletal muscle, as a metabolically active organ, produces and secretes a variety of
molecules in response to contraction [120,129]. The products of these tissues have been
termed “myokines” and have been shown to exert many different effects, some of which
occur locally within skeletal muscle itself, while others act distally in other organs and
tissues including the liver, pancreas, adipose tissue, and cardiovascular system [130].
Although our understanding of skeletal muscle as an endocrine organ is currently far from
complete, available evidence suggests that contraction-induced myokine production may
mediate many beneficial physiological effects of regular exercise that positively impact
metabolic health [131].

Currently, among the identified myokines, the most studied is the cytokine IL-6.
During acute exercise, muscle contraction stimulates the release of IL-6 from skeletal
muscle, with circulating levels increasing more than 100-fold with intense and prolonged
exercise, e.g., in a marathon [120]. Generally, however, more moderate responses are
observed that are proportional to exercise intensity and duration, individual fitness level
(inversely), and muscle mass utilized by the specific exercise modality [132]. Skeletal
muscle-derived IL-6 has been identified as a key metabolic intermediary, and research
has defined IL-6 as an energy sensor, which functions to preserve fuel availability during
exertion [133]. The marked increase in circulating levels of muscle skeletal-derived IL-6
is responsible for positive changes in circulating levels of several other inflammatory
mediators. The levels of IL-6 secreted depend on the recruited muscle mass and the length
and the intensity of exercise and is connected (inversely) to the amount of glycogen in
the muscles. Subsequently, in order to promote anti-inflammatory conditions using PA, it
should be of a high enough level that it uses glycogen as its primary fuel (greater than 70%
of maximal aerobic capacity) and/or of sufficient length to reduce stored glycogen. Thus, a
single workout is unlikely to cause adaptive changes. In contrast, the benefits produced
by PA are more likely to be observed when the activity is repeated over the long term. In
addition, the type of activity performed has a significant impact on the benefits obtained.
Low-intensity exercise programs, such as walking and other “lifestyle”-related efforts to
increase PA, for example, household tasks, are not sufficient to have a favorable impact on
circulating inflammatory markers [120]. Instead, to achieve such benefits, they must be
of a higher intensity, i.e., moderate-to-vigorous intensity (at least 70% of maximal aerobic
capacity). A combination of aerobic activities with muscle-strengthening exercise, i.e.,
resistance training, will likely yield the greatest benefit, particularly regarding optimizing
the anti-inflammatory effect of training.

Furthermore, in contrast to adipose-derived IL-6, which is commonly considered pro-
inflammatory, episodic increases in skeletal-muscle-derived IL-6 trigger an anti-inflammatory
cascade by inhibiting the release of pro-inflammatory cytokines (TNF-α and IL-1β) through
stimulation of their antagonistic soluble receptors that increases and remains elevated
during and after exercise [5,134,135].

Further to reducing pro-inflammatory factors, exercise-induced IL-6 also precipitates
the release of IL-10, a strong anti-inflammatory molecule, which subsequently inhibits
the synthesis of many pro-inflammatory mediators, such as IL-1α, IL-1β, TNF-α, the
chemokines IL-8, and macrophage inflammatory protein-1α (MIP-1α) [134]. These inflam-
matory mediators are the main players in the distribution of inflammatory responses and
the adoption of immune cells to inflammation site. Extensive exercise can also cause the
release of CRP the next day [134]. This may precipitate an extra anti-inflammatory effect by
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triggering the induction of anti-inflammatory cytokines from circulating monocytes and
reducing the synthesis of pro-inflammatory cytokines in tissue macrophages. Furthermore,
exercise may also promote an acute anti-inflammatory effect by causing the production
of cortisol and adrenaline, two hormones that give out potent anti-inflammatory effects
and seem to be capable of reducing the production of TNF-α and IL-1β [136,137]. Muscle-
derived IL-6 may in part be the cause of the cortisol reaction to exercise [120,132]. Other
skeletal-muscle-derived factors that may precipitate indirect effects (by affecting adiposity)
on systemic inflammation are irisin and IL-15 [129]. Irisin is a newly discovered myokine
that is secreted into the circulation in high levels following exercise and has the capability to
induce the transformation of white adipocytes into “brite” (brown-white) cells, which have
a phenotype that resembles those of brown adipocytes (metabolically deficient cells that
raise thermogenesis and energy expenditure, as opposed to white adipocytes, whose main
function is lipid deposition and storage). Thus, irisin may be a mid-point with a positive
contribution to energy homeostasis and metabolic regulation. IL-15 is also produced in
skeletal muscle as a reaction to contraction and also seems to give favorable results on adi-
posity. In particular, IL-15 seems to have a beneficial effect on abdominal fat, by reducing it,
as we have seen in experiments carried out on mice [120,138]. In humans, circulating IL-15
has been inversely connected to adipose tissue present at the trunk level [139]. That said,
further research is required in order to determine the processes by which IL-15 influences
central adiposity. Furthermore, intense exercise causes an increase in the number of circu-
lating leukocytes and a temporary reduction in many stages of immune cell function. These
effects are conditional on both the length of exercise and its intensity, with high-impact
exercise (prolonged and/or high intensity) providing the most heightened effects [140].
Leukocytes release a variety of cytokines (including IL-6), which are concerned in the trig-
gering and control of the immune response. That said, though exercise mobilizes specific
groups of leukocytes that are currently expressing cytokines from marginal pools, unlike
skeletal muscle, exercise does not directly contribute to cytokine release from leukocytes.

In the long term, physical exercise reduces the size of adipose tissue, which acts as an
endocrine and paracrine organ responsible for stimulating the increase in inflammatory
mediators. In support of this fact, some studies demonstrated that there is an overexpression
of IL-6 and TNF-α deriving from macrophages residing in adipose tissue in individuals
with obesity and overweight compared with normal weight adults [5].

Leptin and adiponectin are two adipokines that are cytokines produced by adipose
tissue and that act on several target organs, including brain, liver, pancreas, muscle, immune
system, and adipose tissue itself. Apart from their metabolic effect, both are involved in
inflammation and immune response, with leptin having inflammatory and adiponectin
having anti-inflammatory properties. A high level of leptin activates monocytes’ and
macrophages’ production of IL-6 and TNF-α. The latter stimulates the expression of
leptin and its receptor. On the other hand, adiponectin reduces TNF-α production in
macrophages. The levels of leptin and adiponectin correlate with BMI, positively and
negatively, respectively; in addition, for these reasons, adipose tissue reduction is associated
with inflammation decrease [141].

Tenòrio et al. [142] performed a 6-month randomized exercise intervention study
in adolescents to evaluate how biomarkers of inflammation and endothelial dysfunction
change according to two different training intensities.

It has been observed that both low-intensity exercise (low intensity training (LIT) and
high-intensity exercise (HIT) are able to significantly reduce the concentration of leptin;
however, there was a reduction in circulating levels of neutrophils, monocytes, IL6, and
TNF-α. Therefore, it is apparent that there is a potential superiority of aerobic training
performed at high-intensity over lower-intensity training in successfully modifying specific
biomarkers of CVD.

Yet another study carried out in children by Merlin et al. [143] comparing serum
adiponectin concentration and metabolic health level took the mean of daily steps as an
index of the intensity of physical activity. Children were clustered into two groups: cluster
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1 performed between 7039 and 11,023 daily steps (sedentary group), while cluster 2 showed
daily steps limits between 12,009 and 15,739 (active group).

This suggests that less physically active children present a predominance of Th1
response for lymphocyte differentiation, with a higher production of IFN-gamma and
TNF-alpha, lower adiponectin, and higher leptin plasmatic concentration.

On the other hand, more physically active children present an anti-inflammatory
response, especially of regulatory T cells. To conclude, children are represented by two
different levels of PA based on the average of the daily steps, and these differences are
reflected by their body composition and inflammatory responses. The sedentary group of
children, characterized by lower PA level, displayed higher BMI, body fat, and increased
Th1 cells, which h can be modulated by the higher production of leptin. The active group,
characterized by higher levels of PA, had lower BMI and body fat, as well as higher Treg
cell differentiation.

Furthermore, during exercise, there is a rapid elevation of PGC1-α via AMPK followed
by a return to baseline level post-exercise. PCG1-α is a transcriptional co-activator that
regulates genes involved in energy metabolism and regulates mitochondrial biogenesis.
Increased expression of PCG1-α is associated with changes in the musculature related to
long-term exercise, such as fiber-type switching toward the more oxidative types I and
IIa. This co-activator is also associated with the polarization from M1 pro-inflammatory to
M2 anti-inflammatory macrophages and the downregulation of oxidative stress-mediating
gene expression in vascular endothelial cells [5].

Chronic exercise has been demonstrated to decrease cell-surface expression of TLR
receptor on immune cells [144]. On the other hand, physical inactivity is associated with
an augmented TRL activation. TLRs are transmembrane proteins that play an important
role in the recognition of microbial pathogens and endogenous danger signals of tissue
damage and their activation causes systemic inflammation and is associated with chronic
non-communicable diseases [145].

PA can directly regulate the immune system and has the potential to indirectly af-
fect chronic disease by modulating our immunological response [7,146–150]. The earliest
studies regarding exercise’s effect on immune systems began in the mid-1980s and were
conducted by David Nieman. He observed that exercising regularly with moderate inten-
sity is beneficial for our bodies, whereas sustained bouts of intensive training can depress
immunity [151]. Both acute and chronic exercise have shown a remarkable response in
leukocyte redistribution, activity, trafficking, and function [140,152]. Intensity, duration,
and volume of PA have all been reported to influence the exercise-associated redistribution
of immune cells in the circulation in all people [146,153,154]. Our immune system is com-
posed of two main effectors: the innate immune system and the adaptive immune system.
The innate, or nonspecific, immune system includes both cells (neutrophils, macrophages,
dendritic cells (DCs) and natural killer (NK) cells) and soluble factors (complement proteins
and antimicrobial peptides) and is the first line of defense against pathogens. These cells
appear to increase immediately after exercise and then return to pre-exercise levels within
6 to 24 h after cessation of exercise [146,155–157]. On the other hand, adaptive immunity,
also known as acquired or specific immunity, is composed of T and B lymphocytes and can
create an immunological memory. T cells play an important role in cell-mediated immune
responses, whereas B cells are intimately involved in the humoral immune response [158].
It is widely accepted that, proportional to the duration and intensity of exercise, lymphocy-
tosis occurs during and immediately after exercise, falling below pre-exercise levels during
the early stages of recovery [146,148,159]. Regarding the effect of exercise on the humoral
component of the immune response, studies have reported that serum Ig concentration
appears to remain slightly increased or unchanged [134,146].

Evidence exists for an inverse association between exercise and inflammatory factors
in adults, yet evidence of these relationships among youth is inconsistent [160,161]. Some
studies support an inverse association between exercise and CRP, IL-6, and fibrinogen (Fg)
in youth, but there are also other studies that state the opposite [160]. Some observational
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studies conducted on children and adolescents have shown that a low-grade inflammatory
state is associated with adiposity in children and adolescents, as has been demonstrated
in adults [162–164]. Low-grade inflammation is associated with anthropometric measures
such as body mass index (BMI) and waist circumference in adolescents, but data on children
are sparse [162,163]. A school-based cross-sectional study of children aged 9.5 +/− 0.4 years,
involving 233 Swedish children and conducted by Ruiz et al., showed that levels of low-
grade inflammatory markers (CRP and C3) were negatively associated with cardiovascular
fitness (CVF) and positively associated with body fat in prepubertal children [165]. There
is a limitation due to the one-dimensional nature of CVF and body fat, which makes it
difficult to distinguish their separate influences in an observational study. Examining
the influence of the individual variables, however, it was observed that each explained
a significant portion of the variance in most variables, which are CRP, Fg, C3, and IL-6,
but considering them all together, only body fat maintained a significant role [165]. It was
shown that the change in CVF was significantly explained by at least moderate-vigorous
PA in children and adolescents, practiced on a regular basis [165–167]. Therefore, this
confirms that PA has a positive impact on low-grade inflammation through improvement
of CVF. Indeed, there are no studies examining the association of low-grade inflammation
with objectively measured PA in prepubertal children. However, it is noteworthy that
in this study by Ruiz et al., inflammatory markers were not associated with measures of
central adiposity (waist circumference, waist-to-hip ratio, and waist-to-height ratio). A
limitation of this study is the cross-sectional design, which precludes definitive conclusions
about whether changes in PA, CVF, and fat cause changes in low-grade inflammation in
prepubertal children. Results showed that levels of low-grade inflammatory markers were
negatively associated with CVF and positively associated with body fat in prepubertal
children. For most variables, the influence of fat was slightly greater than that of CVF. The
results suggest that the potential beneficial effects of PA on low-grade inflammation may
be explained by its association with CVF.

Platat et al. [168] demonstrated that IL-6 and insulin resistance were negatively as-
sociated with organized leisure-time PA, independent of adiposity and fat disposition, in
12-year-old children. Similarly, Cook et al. [169] found a borderline significant negative
association of CRP levels with self-reported PA after adjusting for weight index in 10- to
11-year-old children. However, in both studies, a limiting element was the assessment of
PA by questionnaires, which may introduce imprecision, especially in children [170].

Additionally, studies involving younger people often tend to use a single baseline
measurement of CRP, IL-6, or Fg, and it is possible that this does not indicate accurately
chronic inflammatory status. PA is particularly challenging to assess in young people [171].
Self-reporting is often the tool of choice, especially in epidemiological studies conducted
on a large population scale. However, accuracy of recall among children and adolescents
is variable, as they practice frequent but short periods of activity. To date, a limited
number of interventional studies have been conducted to evaluate regular PA impact of on
inflammatory factors in young people. Nevertheless, there is some evidence suggesting
that a beneficial association could be observed as early as childhood or adolescence. Yet,
it remains unknown how factors such as duration, intensity, and mode of exercise may
influence CRP, IL-6, and Fg levels in youth. Even though several studies have demonstrated
that PA is not related to inflammatory status, is it possible that blood concentrations in
healthy young people, including those who may present overweight or obesity, are still not
sufficiently high that regular exercise will have any appreciable effect.

A meta-analysis by Han et al. [172] highlighted distinct mechanisms that may be
responsible for the reduced levels of proinflammatory cytokines after exercise in children
and teenagers. Firstly, PA could improve inflammatory cytokines by lowering the visceral
fat mass; in fact there is a statistically significant positive relationship between the CRP
level and a change in BMI. In addition, PA may change macrophage activation, producing
a phenotypic switch from the M1 macrophage (pro-inflammatory) to the M2 macrophage
(anti-inflammatory). Therefore, this meta-analysis by Han et al. [172] agrees with the theory
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that PA could be used as a therapy for children and adolescents in order to reverse the
low-grade inflammatory state of overweight/obesity, resulting in a restoration of anti-
inflammatory levels the same as those seen in normal-weight children and adolescents.

In Figure 2, the anti-inflammatory effects of exercise are presented.
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7. Conclusions

The prevalence of obesity in children and adolescents has increased worldwide and
represents a major public health challenge. The main prevention and treatment of pediatric
obesity remains lifestyle modifications, including eating habits and training. In fact, lack
of physical activity and increased sedentary time are strongly associated with obesity. PE
can mitigate the global problems of obesity and related comorbidities, thereby improv-
ing cardiovascular fitness and impacting metabolic profile. Moreover, the exercise-linked
improvement in immunological response and the attenuation of low-grade chronic inflam-
mation, whose hallmark is represented by cytokine release, provide benefits at systemic
level. The identification of skeletal muscle as an endocrine organ, producing a wide range
of metabolic factors, such as myokines, has provided a mechanistic link between muscle
contraction and its beneficial influence on systemic inflammation and health. PA repre-
sents a non-pharmacological treatment to reverse the low-grade inflammatory state of
overweight/obesity.

Regular PE, associated with nutrition intervention, must be considered as a natural
part of a healthy lifestyle and promotes physical activity starting from childhood, and it is
useful to limit the negative effects of obesity on health.
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