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Fractal Dimensions of Macromolecular Structures
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1 Introduction

Molecules are commonly thought to interact via comple-
mentary surfaces, which possess surface properties that
allow the formation of stable complexes. Structure-based
drug design aims to target such complexes with synthetic
compounds to influence the complexes’ biological func-
tions in living tissue. To date, the best surface properties
for predicting molecular interactions are either physico-
chemical, such as lipophilicity and charge distribution, or
geometric, such as surface concavity and shape.[1] Several
attempts have been made to identify interaction “hot
spots” and predict the “druggability” or “ligandability” of
protein surface regions.[2] It has been realized that pure
geometric properties bear relevant information about the
nature of a protein-ligand interaction.[3] An intuitive way to
understand and quantify the geometric information of a sur-
face using a single number is to estimate its fractal dimen-
sion, D. A smooth surface is expected to have a lower frac-
tal dimension than a more irregular object.[4] Although this
concept was initially suggested three decades ago,[5,6] the
lack of large-scale studies on the topic as well as the par-
tially contradictory results have occluded its potential
impact on our understanding of macromolecular structure
and function. Here, we present a full-fledged analysis of the
fractal dimensions of both macromolecular surfaces and
low-molecular-weight drugs. The results of our study pin-
point surface roughness as a local, dynamic, and context-
dependent molecular property, and they highlight the
great relevance of this decisive feature of molecular interac-
tion sites to the discovery of innovative drugs and chemical
probes as well as for their modes of action.

2 Results and Discussion

To calculate the perceived roughness of a molecular sur-
face, we created a discrete approximation of the molecules’
solvent-excluded surface (SES) by sampling approximately
equidistant points on the SES. We worked with a density of
seven vertices per �2 and a rolling probe radius of 1.5 �
while ignoring hydrogen atoms for the SES calculations.[7]

We chose the spatial correlation dimension[8] to calculate
the fractal dimension and, thus, the perceived roughness of
the molecular surfaces. The correlation integral C(d) is
a measure of the spatial distribution of surface points X in
their embedding space. The integral is estimated by the
correlation sum C(X, d) (Equation 1), which is used as a mea-
surement at fractal scale d. In turn, d is the radius of the hy-
persphere used to define the neighborhood of a surface
point x. D was calculated by computing C(X, d) for the d

values 0.4, 0.8, 1.6, and 3.2 �. In that calculation, the lowest
radius used was considerably greater than the shortest dis-
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tance between any two adjacent points on the surface, and
the largest radius was of the same magnitude as the aver-
age diameter of an amino acid side chain. In Equation 1, V

is the Heaviside step function, which equals zero if the dis-
tance between surface points xi and xj exceeds d.

D � lim
d!0

log CðX; dÞ
log d

; ð1Þ

where

CðX; dÞ � 1
N2

XN

i;j¼1

V d� xi � xj

�� ��� �
:

Using this setup, we conducted a large-scale analysis of
crystallographically obtained structures, including DNA (n =
786), RNA (n = 449), proteins (n = 604), and protein-bound
drug-like ligands (n = 604), which were acquired from the
Protein Data Bank (PDB).[9] All of the molecules exhibited D
values greater than 2.0, which is the value of an idealized
flat surface (Dplane = 2.0), but smaller than the value for
a solid sphere (Dsphere = 3.0) (Figure 2). The molecules all
tended toward increasing D values as the sizes and degrees
of freedom increased. In general, the biological macromole-
cules were rougher than their ligands. This observation
could be explained by their substantial differences in size
and flexibility. Among the macromolecules, DNA structures
have the fewest degrees of freedom due to their relatively

rigid backbones, followed by RNA with its single strands,
loops, and bulges. Proteins have the greatest conformation-
al freedom among these three types of macromolecules.
The observed D values of the corresponding ligands were
the most diverse among the inspected molecule classes.

Local surface properties are of particular interest for pro-
tein-protein and protein-ligand interactions, and those in-
teractions are of great relevance for pharmaceutical re-
search, chemical biology and chemogenomics.[10] Thus, we
also extracted and calculated D values for four different
types of protein surface patches based on their locations
(Figure 2). Randomly sampled surface patches exhibited the
lowest roughness and had the highest average spreads.
Protein surface cavities, as calculated by PocketPicker,[11]

yielded higher average D values, while the D values of
known ligand-binding pockets and protein-protein interfa-
ces were the highest overall. This result suggests that the
roughness of a surface patch is either involved in the for-
mation and stabilization of the protein complex or is a con-
sequence of it. Our results support studies implying that
the perceived roughness of protein-protein interfaces is
higher than average,[5, 6] and this paper challenges the con-
clusion that enzymatic active sites are smoother than the
average protein surface.[5] The median values observed for
low-molecular-weight ligands (D = 2.193) and for known
ligand-accommodating pockets (D = 2.199) were similar ;
however, we found that there is no pairwise correlation be-
tween the ligands and either their respective pockets (R2 =
0.006) or their bound proteins (R2 = 0.002). This observation

Figure 1. Discrimination ability of the fractal dimension D depending on the fractal scale and point density (pp�2 : points per �2) calculated
for the 604 ligands of the main set of protein-ligand complexes. A) Dispersion of D. A tendency of decreasing dispersion is apparent with
increasing discretization density. A steep fall in D values as well as their dispersion manifests itself at density>6 pp�2. B, C) Regression
lines of the doubly logarithmic plot of the correlation sum for the ligand of the PDB ID: 1c5z complex for densities on both sides of the
steep fall in D : B) 5 pp�2, (r2 = 0.952); C) 7 pp�2, (r2 = 0.999). D) Gray scale coded matrix containing the Spearman’s rank correlation of the
vectors of D values of the ligands (one 604-dimensional rank vector for each density). Each filled square represents the pairwise rank corre-
lation between two corresponding vectors, illustrating how the change in density shuffles the relative positioning of the D values. Few
changes in the ligands’ positions in the rank vector indicate stable discrimination ability (strong correlation, dark color).

� 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2014, 33, 588 – 596 589

Full Paper www.molinf.com

www.molinf.com


contradicts the hypothesis that a pair of binding partners
should have similar or opposite perceived roughness values
from a statistical point of view, which was an unexpected
result.

While pursuing the answer to whether the perceived
roughness could pinpoint the locations of preferred ligand-
binding sites, we replaced the concept of predefined pock-
ets on the molecular surface with a neighborhood-around-
an-atom approach (Figure 3A). We investigated the rele-
vance of D for atoms close to known ligand-binding sites
as opposed to atoms that were located farther away. To ac-
quire comparable surface patches for each atom, we used
a sampling method that tallies the contributions to the SES
of all of an atom’s neighbors within a radius of 6 �. We
then calculated the D for each corresponding atom set and
gathered statistics about all of the D values for the atoms
within the distance threshold. Each obtained statistic for
a neighborhood was assigned to the atom in the center of
the hypersphere defining the neighborhood’s limits. We

observed a remarkable difference between the distributions
of D for interacting atoms and the distributions of D for
atoms farther away from the ligand-binding zone (Fig-
ure 3A, right panel). On average, binding sites contained
atoms with both high (rough neighborhoods) and low D
values (smooth neighborhoods). However, this effect was
not observed across the entire pockets dataset. Evidently,
a surface’s smoothness, in addition to its roughness, pro-
vides relevant information for detecting regions of interest
for ligand-receptor interactions when specifically consider-
ing potential binding sites outside of the surface cavity
context.

Based on these insights, we devised a local roughness
(LR) model that operated by gathering information from
the neighborhoods of surface-exposed atoms. The D
values of all of the atoms within a predefined radius r sur-
rounding a reference atom a constituted a set, i.e. , LRa(r) =
{Db j jjb�a jj < r}. An investigation of the distribution of
each LRa(r) set revealed a tendency toward increasing
means and decreasing standard deviations for D as the dis-
tance from a to the ligand binding site increased (Fig-
ure 3B). Negative control calculations were carried out by
randomly selecting atoms on the proteins’ surfaces to serve
as mock ligand-binding sites. We observed differences be-
tween atom sets of the actual interaction sites and the sets
of the atoms that were randomly chosen, indicating that
the neighborhood distribution of D contained a non-negli-
gible discriminative power, i.e. , a random group of atoms
did not mimic the behavior of atoms surrounding known
ligand-binding sites. The notable differences found in the
proteins’ roughness features were supported by a negative
pairwise correlation between the binding-site data and the
random controls (s(LRa(r)): R =�0.43, R2 = 0.19; LRaðrÞ : R =
�0.65, R2 = 0.42). To test our hypothesis, we conducted
a positive control calculation in which we set the individual
atoms closest to the geometric centers of the correspond-
ing ligands as the centers of the neighborhood spheres.
This test did not fail. Instead, the strong correlation ob-
served between the ligand atom-derived distribution of the
LRa(r) values and this coarser ligand center-derived distribu-
tion corroborated our conclusions s(LRa(r)): R = 0.97, R2 =
0.95; LRaðrÞ, R = 0.90, R2 = 0.82).

Finally, we incorporated this information into a computer-
ized learning experiment that was used to classify protein
atoms participating in ligand binding sites (potential bind-
ing “hot spots”). All of the protein atoms within 3 � of
a ligand atom were considered atoms of interest (positive
samples) and were compared with the background con-
taining all of the other protein atoms (negative samples)
(Table 1). In this experiment, the classifier function calculat-
ed the probability that a surface patch was ligandable. A
patch was considered ligandable if it received a predicted
probability greater than 50 %.

The best performance, in terms of separating the atoms
of interest from other atoms while balancing accuracy and
early retrieval, was achieved using the nearest-neighbor

Figure 2. Dispersion analysis violin plots of the fractal dimension
D of different biomolecular surfaces, including complete molecules
(DNA, RNA, proteins, and ligands) and protein surface patches.
Also shown are the liganded protein sites (LS), bound protein�pro-
tein interfaces (PPI), cavities on the protein surface (Cavities), and
the background, which was computed from randomly sampled
protein surface patches (BG). The symbol ‘*’ indicates statistically
insignificant differences between the distributions. We used a non-
parametric test (Mann-Whitney-U). To compensate for a-errors, the
p values of the 28 independent tests were Bonferroni-corrected.
The null hypothesis could not be rejected for the Ligands-PPI, and
LS-PPI pairs implying similarities in their distributions. The sample
sizes were as follows: DNA (n = 786); RNA (449); Proteins (604); Li-
gands (604); LS (604); PPI (466); Cavities (12,543); BG (11,953).
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classifier.[12] Among the methods tested, the naı̈ve Bayesian
algorithm[13] showed the highest specificity (0.78�0.03)
without sacrificing much of the sensitivity (0.55�0.03) and
was therefore the most restrictive (Table 1). We also applied
a random forest[14] implementation as well as a multitude

of voted combinations of three of the binary classifiers. All
of the methods achieved balanced results, but they either
underperformed compared with the naı̈ve Bayesian and
nearest-neighbor algorithms or were on par with them
(Table 2). The best results were achieved when the features

Figure 3. A) The class-conditional probability P(wjD) of a liganded or unliganded surface (w) given a certain observed fractal dimension
(D). Pockets (left, n = 13,148 surface cavities) were extracted using the PocketPicker method.[11] The classifier clearly distinguished known li-
ganded pockets from unliganded pockets. In the atom-neighborhood context (right, n = 791,476 surface patches), “Liganded” refers to pro-
tein surface patches with center atoms located �3 � from the corresponding bound ligand. “Unliganded” refers to protein surface patches
with center atoms located >3 � away from a bound ligand. B) The distance-to-ligand dependency of the fractal dimension D for neighbor-
ing atoms, LRa(r) (n = 791,476 surface patches; r = 6 �). The average values of all of the neighborhood means (left) and standard deviations
s (right) are presented as lines. The shaded areas give the standard error of the mean. Negative control : randomly selected atoms (dashed
line). Positive control : the protein surface atom closest to the geometric center of the corresponding ligand (dotted line).

Table 1. Machine learning performance of the LRa(r) model assessed by stratified 10-fold cross-validation (mean� stddev.). Abbreviations:
m= LRa(r) ; s=s(LRa(r)) ; sa = surface patch area; NB: naı̈ ve Bayes classifier ; NN: 25-nearest neighbor classifier ; AUC: area under the curve;
ROC: receiver operator characteristic.

Feature Classifier 10-fold stratified cross-validation

AUC(ROC) Sensitivity Specificity Balanced accuracy

D NB 0.58�0.02 0.34�0.03 0.79�0.03 0.56�0.03
m 0.61�0.02 0.41�0.03 0.78�0.02 0.59�0.03
s 0.69�0.02 0.48�0.03 0.77�0.02 0.62�0.03
[m ; s] 0.71�0.02 0.53�0.03 0.77�0.02 0.65�0.03
[m ; s ; sa] 0.72�0.02 0.55�0.03 0.78�0.03 0.66�0.03
D NN 0.57�0.02 0.51�0.03 0.59�0.03 0.55�0.03
m 0.59�0.02 0.52�0.03 0.63�0.03 0.57�0.03
s 0.66�0.02 0.64�0.03 0.60�0.03 0.62�0.03
[m ; s] 0.69�0.02 0.66�0.03 0.64�0.03 0.65�0.03
[m ; s ; sa] 0.73�0.02 0.70�0.02 0.66�0.02 0.68�0.03

� 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2014, 33, 588 – 596 591

Full Paper www.molinf.com

www.molinf.com


used as inputs for the program were a combination of
LRaðrÞ, s(LRa(r)) and the patch surface area Sa.

We also computed predictions for an external dataset,
which was compiled from the sc-PDB database.[15] This con-
tained surface patches participating in known ligandable
binding sites (n = 13,109,496 surface patches). In this data-
set, our approach demonstrated a performance comparable
to our internal dataset (balanced accuracy, naı̈ve Bayesian
algorithm: 0.64; nearest-neighbor algorithm: 0.64). Based
on these encouraging results, we defined a Local Rough-
ness Indicator (LoRI) model for predicting protein-ligand in-
teraction hot-spots by training a naı̈ve Bayesian classifier
over the triple values of [LRaðrÞ; s(LRa(r)) ; Sa] . According to
our LoRI, we expect approximately 22 % of a protein’s sur-
face outside of the crystallographically known ligand bind-
ing sites to be targetable by small molecules.

The LoRI model performed stably in a sizable external
test ; therefore, we subjected the method to a series of ret-
rospective and prospective surveys. We applied LoRI to
concrete pharmaceutical targets not contained in our train-
ing data. To enable a visual inspection of the LoRI predic-
tions, we projected the probabilities of ligandability that
were calculated using LoRI onto the atoms contributing to
the corresponding surface patch. We then colored atoms
with higher probabilities (attractive) with warm colors,
whereas atoms with lower probabilities (unattractive) were
colored with colder colors.

The first blind test was performed on 4-diphosphocytid-
yl-2-C-methylerythritol synthetase (IspD), a cytidyltransferase
in the non-mevalonate pathway for isoprenoid biosynthesis

present in numerous prokaryota, algae, and protozoan par-
asites such as Plasmodium falciparum.[16,17] Because verte-
brates synthesize isoprenoid precursors using a mevalonate
pathway, all of the enzymes of the non-mevalonate path-
way, including IspD, are interesting therapeutic targets.
IspD is active as a dimer and catalyzes the conversion of 2-
C-methyl-d-erythritol-4-phosphate (MEP) into 4-diphospho-
cytidyl-2-C-methyl-d-erythritol (CDP-ME).[18] LoRI successfully
identified the active site of the co-crystal model, as indicat-
ed by the bright red coloring showing potential hot spots
for ligand binding (Figure 4A).

The second blind test aimed to analyze a protein�pro-
tein interface because these macromolecular interaction
sites are often flat and lack specific structural features.[19,20]

We selected human interleukin-2 (IL-2), a cytokine signaling
protein of the immune system. IL-2 binds to the a- and b-
chains of the IL-2 receptor (IL-2R). IL-2 and the a-chain of
IL-2R interact via a large surface patch.[21] Several complexes
formed by IL-2 and small molecule inhibitors have been re-
ported.[22] LoRI identified the inhibitor-binding site in the
protein-protein interface based on the surface representa-
tion of IL-2 alone (Figure 4B). This result demonstrates that
LoRI does not focus on cavities or buried residues but in-
stead represents an independent view of molecular interac-
tion sites.

To further challenge our approach, we applied it to
a comparative (homology) model of HIV-1 protease subtype
B. We computed LoRI values for each conformational snap-
shot of a 20 ns molecular dynamics simulation trajectory of
the protease model (Figure 4C). LoRI identified the catalytic

Table 2. Machine learning performance of the LRa(r) model assessed by stratified 10-fold cross-validation (mean� stddev.). Abbreviations:
m= LRa(r) ; s=s(LRa(r)) ; sa = surface patch area; NB: naı̈ve Bayes classifier ; NN: 25-nearest neighbor classifier ; RF: 40-random forest classifier ;
VAP: voted average probability of MB, NN, and RF; VM: voted majority of MB, NN, and RF; VPP: voted product of probabilities of MB, NN,
and RF; AUC: area under the curve; ROC: receiver operator characteristic.

Feature Classifier 10-fold stratified cross-validation

AUC(ROC) Sensitivity Specificity Balanced accuracy

D RF 0.53�0.02 0.52�0.03 0.52�0.03 0.52�0.03
m RF 0.54�0.02 0.53�0.03 0.53�0.03 0.53�0.03
s RF 0.58�0.02 0.55�0.03 0.55�0.02 0.55�0.03
[m ; s] RF 0.64�0.02 0.60�0.03 0.61�0.03 0.60�0.03
[m ; s ; sa] RF 0.69�0.02 0.64�0.02 0.65�0.02 0.65�0.02
D VAP 0.56�0.02 0.53�0.03 0.53�0.03 0.53�0.03
m VAP 0.58�0.03 0.55�0.03 0.55�0.03 0.55�0.03
s VAP 0.65�0.02 0.61�0.03 0.59�0.03 0.60�0.03
[m ; s] VAP 0.69�0.02 0.63�0.03 0.66�0.03 0.64�0.03
[m ; s ; sa] VAP 0.73�0.02 0.67�0.02 0.68�0.03 0.68�0.03
D VM 0.55�0.02 0.45�0.03 0.67�0.03 0.56�0.03
m VM 0.58�0.02 0.48�0.03 0.68�0.03 0.58�0.03
s VM 0.62�0.02 0.58�0.03 0.67�0.03 0.62�0.03
[m ; s] VM 0.64�0.02 0.68�0.03 0.64�0.03 0.65�0.03
[m ; s ; sa] VM 0.67�0.02 0.66�0.03 0.70�0.03 0.68�0.03
D VPP 0.54�0.02 0.52�0.03 0.53�0.03 0.53�0.03
m VPP 0.56�0.02 0.54�0.03 0.55�0.03 0.55�0.03
;s VPP 0.62�0.02 0.59�0.02 0.59�0.03 0.59�0.03
[m ; s] VPP 0.69�0.02 0.62�0.03 0.68�0.03 0.64�0.03
[m ; s ; sa] VPP 0.73�0.02 0.67�0.03 0.67�0.03 0.67�0.03
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Asp25 as ligandable, and predicted elevated ligandability
probabilities for the residues flanking the elbow region
(called the “Exo-site”), particularly one of the monomers
(Table 3). We then crystallized HIV-1 protease subtype B
and subjected this new crystal structure to LoRI analysis.
Not only were the predictions of the homology model con-
firmed, we also observed pronounced electron density in
one of the Exo-sites of the protease structure, thereby fully
corroborating the computer-based prediction (Figure 4D).
Similarly to the HIV-1 protease structure solved by Perry-

man et al. (PDB ID: 4e43),[23] this density could be attributed
to the presence of bound acetate and glycerol.

3 Conclusions

In this study, we introduced the local fractal dimension of
a molecular surface D as a unique and robust indicator of
molecular interaction sites. The LoRI model represents
a knowledge-based, alignment-free prediction approach
that relies solely on surface roughness information. We veri-
fied this concept using blind tests and a prospective study,
and our results suggest that LoRI has broad applicability to
drug discovery and structural biology. We were also able to
resolve previously discrepant interpretations of the mean-
ing of molecular fractal dimension analysis[5,6] by showing
that ligand binding sites possess higher D values than the
rest of the protein’s surface. Intriguingly, LoRI also provides
a unifying concept for differently shaped protein surface
areas that are attractive for protein�ligand interactions, in-
cluding both deeply buried surface cavities as well as
nearly planar protein�protein interaction sites. These find-
ings suggest that local fluctuations in the fractal dimension
of a surface of a putative binding site play an essential role
in molecular recognition. For now, the physical nature of
this phenomenon remains unknown, but we hope that our

Figure 4. LoRI case studies. Warm colors indicate a higher predicted probability that the corresponding area is ligandable, while colder
colors suggest the opposite. A) The IspD dimer in complex with CTP (PDB ID: 1l52).[16] B) IL-2 in complex with the a-chain of IL-2R (cartoon)
(PDB ID: 1z92),[21] aligned and superimposed on IL-2 (surface) bound to a small molecule inhibitor (shown as sticks) (PDB ID: 1qvn).[35] In
both test cases, LoRI was able to pinpoint the correct interaction location. C) A homology model of the HIV-1 protease subtype B colored
by LoRI values averaged over the 20 ns MD simulation. D) A new crystal structure of the HIV-1 protease subtype B, which showed excess
electron density in one of its two Exo-sites.

Table 3. The LoRI scores of residues in the active center and in the
Exo-site of the HIV-1 protease. The values represent the highest
atom ligandability scores per residue. The average per-residue
scores are shown in parentheses.

Amino acid residue Homology model X-ray structure

Ile13 0.99 (0.75) 0.68 (0.53)
Ile15 0.74 (0.57) 0.86 (0.59)
Ile64 0.91 (0.71) 0.91 (0.61)
Asp25 1.00 (0.69) 0.50 (0.50)
Asn88 0.67 (0.56) 0.86 (0.69)
mean� stddev. 0.43�0.20 0.45�0.12
min/max 0.11/1.00 0.12/0.91
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study will prompt further research aimed at solving this
question. We are convinced that the fractal analysis of bio-
logical macromolecules holds much unexplored potential
for structure analysis and drug design.

4 Materials and Methods

4.1 Fractal Scales and Density

Choosing the parameters for the calculation of the fractal
dimension of a discretized non-strictly self-symmetrical nat-
ural object is the first step in its surface roughness assess-
ment. There is a strict connection between the density of
points of the discretized set, the fractal scales used for the
calculation of D, and the D value itself (Figure 1). The
choice of fractal scales may be summarized as follows: (i)
choose exponential distances between the different scales;
(ii) select the smallest scale greater than the resolution of
the discretization, otherwise D will be severely overestimat-
ed (Figure 1B), and the largest scale to not exceed the size
of the smallest object inspected, otherwise it will include
a large amount of empty space which will result in under-
estimated D values. Following these rules, we chose fractal
scales d2 {0.4, 0.8, 1.6, 3.2} �. The largest one is about the
size of a small ligand or amino acid side-chain diameter.
The next step in parameterizing the calculation of D is the
selection of a suitable density of the points on the SES gen-
erated by MSMS[24] (Figure 1A). While calculating D for dif-
ferent densities between one and 20 pp�2, we identified
two intervals separated around 6 pp�2, in which D behaved
differently. The first interval harbors densities that are too
low for the selected fractal scales, so that the hyperspheres
for the smallest d cannot reach any neighboring points,
thus c(X,d) = 1/N, which leads to overestimating D. This in-
terval has a large dispersion compared to the other one
(Figure 1A), but the orderings of the elements appear to be
stable (Figure 1D), meaning that a switch in density inside
the interval would not drastically change the overall order-
ing of the set. The same assumption also holds for the
second interval containing densities greater than 6 pp�2. It
contains densities that are more favorable for a fractal di-
mension calculation, i.e. the production of stable regression
lines, as well as the lower dispersion introduced by surface
sampling effects. Naturally, a decrease in point density re-
duces the qualities of the discretization and results in
a more crude approximation of D, but it also speeds up the
computations, so we found a compromise at a density of
7 pp�2. Note that choosing different fractal scales shifts the
limit between the two intervals, depending on the choice
of the lowest d.

4.1.1 Local Roughness Model

Comprehensive Definition of the Model Parameters:

A ¼ faðx,y,zÞ j a is an atom with positive SESg

Aa ¼ fbðx,y,zÞ j jjb�ajj < r; b 2 Ag

S ¼ fsðx,y,zÞ j s 2 SES of the moleculeg

Sa ¼ fsaðx,y,zÞ j s 2 SES associated with ag

Pa ¼ fsb 2 Sb j 8 b 2 Ag

DPa
¼ lim

n!1

log CðX; dÞ
log d

LRaðrÞ ¼ fDPa j jjb�ajj < rg

LoRIaðrÞ ¼ ½mðLRaðrÞÞ,sðLRaðrÞÞ,Sa�

4.2 Data Sets

The analyzed spatial molecular data relied exclusively on
prior crystallographic surveys on protein-ligand complexes,
DNA and RNA. The PDB ID lists are provided as Supplemen-
tary Information. Structures were compiled from different
sources:

Protein-ligand-complexes. The protein-ligand complexes
used in this survey were selected from two publicly avail-
able databases: (i) The PDBbind[25] (www.pdbbind.org) was
accessed to create the main set of complexes, the results of
which were verified on (ii) a subset of the sc-PDB,[15] termed
the verification set for reference.

Main set. A subset of 604 protein-ligand complexes
based on the PDBbind database was selected according to
the following criteria: (i) Monomeric structures with predict-
ed primary binding site volume not exceeding the volume
of the corresponding ligand by more than 50 %; (ii) struc-
tures for which the MSMS SES calculation failed due to soft-
ware errors were excluded. The main set (Supplementary
Listing 1) provided the following five sets of spatial data
used in the survey at hand: (i) The proteins set contains
spatial data gathered by stripping any atoms from the
complexes that did not belong to a protein chain such as
waters and ligands resulting in a set of 604 proteins; (ii)
The ligands set contains the ligands of the active sites of
the protein-ligand-complexes resulting in a set of 604 small
molecules; (iii) The liganded pockets set contains the main
pockets of the complexes resulting in a set of 604 active
sites; (iv) The protein surface clefts set consists of pockets
selected by PocketPicker[11] that are missing a ligand in the
published crystallographic model ; (v) The background sur-
face patches set comprises of protein points subsets ex-
tracted using MSMS at uniformly distributed random posi-
tions on the surfaces of the 604 proteins.

External test set. A subset of 8639 protein-ligand com-
plexes based on the sc-PDB database was selected accord-
ing to the following criteria: (i) The complexes are not pres-
ent in the main set; (ii) Very large structures (more than
2.35 � 105 surface points) and structures for which the
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MSMS SES calculation failed due to software errors were ex-
cluded.

4.2.1 Pockets and Clefts

The positions of the pockets and unliganded clefts were
identified by PocketPicker.[11] The surface patches for the
pockets and clefts were excised using a hard proximity
margin of 3 � around the output of PocketPicker.

4.2.2 Random Surface Patches

For the sampling of the background surface patches 20
random atoms on the surface of each protein were select-
ed. Each single surface patch was then defined by using
spheres with 6 � radius around each randomly selected sur-
face atom.

4.2.3 Protein�Protein Interfaces

The PPI set was extracted from the freely available Dock-
ground PPI database (dockground.bioinformatics.ku.edu/),
benchmark 3.0.[26] It contains 131 complexes with both
bound and one available unbound structures for each
entry, as well as 102 complexes, each with both bound and
both unbound structures available and provided. Thus, we
were able to inspect 233 complexes with a grand total of
466 PPIs. Since we analyzed PPIs of known bound com-
plexes, we used the corresponding complex partners for
the definition of the interface’s position, and a hard proxim-
ity margin of 3.5 �. We chose this to be slightly higher than
3.0 �, because at 3.0 � the sampled patches for the PPI ex-
hibited cut-off artifacts such as holes in the surfaces influ-
encing the roughness estimation.

4.3 X-Ray Structure Analysis

HIV-1 protease, catalog number RH1P0001 was purchased
from Biovendor, Heidelberg, Germany. The protein, deliv-
ered in 20 mM acetate buffer, pH 5.0 with 200 mM NaCl,
10 % (v/v) glycerol and 0.05 % 2-mercaptoethanol, was con-
centrated to a protein concentration of 3 mg/mL. 0.5 mL of
a 200 mM HIV protease inhibitor (compound 7)[27] solution
in DMSO was added to 80 mL of the concentrated HIV-1 pro-
tease solution. Because it turned out that the inhibitor was
poorly soluble in the resulting protein solution, an addition-
al 2 mL of a 50 mM Inhibitor solution in PEG400 was added
to the last 20 mL of the protein solution. 0.1 mL of this latter
protein solution was mixed with 0.1 mL reservoir solution of
0.1 M NaCitrate pH 3.5 and 3 M NaCl and equilibrated at
20 8C in a sitting drop setup. Small, bar-like crystals ap-
peared after 1–3 days. For data collection, 20 % glycerol
plus inhibitor was added to a crystal and the crystal was
flash-frozen in liquid nitrogen. Data were collected on
beam-line ID-29 at the European synchrotron radiation fa-
cility (ESRF) in Grenoble. Data processing was done with

XDS[28] and scaling with the CCP4 program scala,[29,30] as im-
plemented in the Global Phasing autoProc procedure.[31]

The crystal diffracted to 2.28 � with an overall Rmerge of
10.1 %. The space group was the same as of other HIV pro-
tease crystal structures. The crystal structure was solved by
molecular replacement using the structure of HIV-1 protease
(PDB ID: 5hpv)[32] as a model. Model building was done
with coot[33] and the structure was refined with Refmac.[34]

Data collection and refinement statistics are listed in
Table 4. We found a peptide fragment fitted by Perryman
et al. (PDB ID: 4e43)[23] in the active site of their 1.54 �
structure of “apo”HIV protease. In our case, the peptide ap-
peared to be in a large part cleaved by the protease and
only the P1-P4 residues were fitted. Weaker density indicat-
ed that partially also intact peptide was bound. Similarly to
the 4e43 structure, an acetate ion and glycerol molecule
were found bound in the exosite.
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Table 4. Crystallographic data collection and refinement statistics.
The highest resolution bin is given in brackets.

Data collection Refinement

Space group P21212 Protein
atoms

1555

Cell dimen-
sions:

Acetate
ions

1

a,b,c (�) 58.24, 86.50,
45.92

Glycerol molecules 3

a,b,g (8) 90.00, 90.00,
90.00

DMSO molecules 3

Resolution (�) 86.50, �2.28
(2.41–2.28)

Water molecules 290

hIi/shIi 14.7 (4.2) Other
atoms

32

Observed
reflections

70332
(10394)

Resolution
(�)

48.31–2.28
(2.34–2.28)

Rmerge 0.101
(0.479)

Rwork (%) 16.0 (22.7)

Rmeas 0.121
(0.597)

Rfree (%) 24.4 (40.0)

Completeness
(%)

99.9 (99.8) Average B-
factors (�2):

Redundancy 6.4 (6.6) Protein 20.93
Water 40.26
Other 48.28
rmsd bond lengths (�) 0.015
rmsd bond angles (8) 1.75
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