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ABSTRACT
The four-component meningococcal serogroup B vaccine (4CMenB) contains antigens present in the 
majority of meningococci causing invasive meningococcal disease (IMD) and may potentially offer 
protection against strains belonging to non-B serogroups.

This study aimed to evaluate the ability of 4CMenB-induced antibodies to kill, in a human serum bactericidal 
assay (hSBA), non-B meningococci belonging to the main genotypes responsible for IMD in Italy.

Meningococci, collected between 2015 and 2017, was characterized for PorA, FetA and sequence type, 
and for clonal complex. Twenty non-B isolates, representative of the most frequent genotypes, were 
molecularly characterized for 4CMenB antigens and tested in hSBA with sera from 4CMenB-vaccinated 
infants and adolescents.

Among twenty isolates, eleven were serogroup C, five were Y, two W and two X. All isolates contained 
genes encoding for fHbp and NHBA antigens and four harbored the NadA full-length encoding gene. 
Positive hSBA titers were obtained against all serogroup W, X and Y isolates and against five serogroup 
C isolates.

These data show that the 4CMenB vaccine can induce bactericidal antibodies against genetically 
representative meningococcal W, Y and X strains from Italy. For serogroup C, different susceptibilities to 
killing were observed for strains with similar antigenic repertoires.
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Neisseria meningitidis serogroups A, B, C, W, Y and X account for 
the majority of invasive meningococcal disease (IMD) worldwide.1 

In Italy, as in other European countries,2 serogroups B and C are 
the most frequent.3 During recent years they predominated alter-
natingly: serogroup C in 2015–2016, accounting for 43% of cases, 
and serogroup B in 2017–2018 with the same percentage. Since 
the year 2000, serogroups W and Y have shown a slow but steady 
increase, following the epidemiological changes in these ser-
ogroups worldwide,2 resulting in 9% and 18% of cases in 2018, 
respectively. Serogroups A and X are rare, with a total of 18 and 7 
cases, respectively, from 2000 to 2019 (http://old.iss.it/mabi/, last 
access: 24 September 2020).

The Italian National Vaccination Plan 2017–20194 recom-
mends: i) the meningococcal conjugate serogroup C vaccine dur-
ing the second year of life; ii) the meningococcal quadrivalent 
conjugate vaccine for serogroups A, C, W, Y (MenACWY) from 
12 to 18 years of age; and iii) the four-component meningococcal 
serogroup B vaccine (4CMenB or Bexsero). The latter is licensed 
for vaccination starting from 2 months of age and offered to 
infants aged 3 and 5 months, with a booster at 12 months. 
Moreover, a two-component serogroup B vaccine (Trumenba),5 

based on two factor H-binding proteins (fHbp), has also been 
licensed in Italy for use from 10 years of age.6

The 4CMenB vaccine contains four antigens. Three are recom-
binant proteins, namely fHbp, Neisserial heparin binding antigen 

(NHBA) and Neisseria adhesin A (NadA). All three show a high 
level of conservation in the majority of IMD-causing meningo-
cocci. The fourth antigen is PorA, as the major component of the 
outer membrane vesicles (OMV).7 Since the antigens present in 
the 4CMenB vaccine are also harbored by meningococci belong-
ing to other serogroups, this vaccine could potentially offer 
a certain level of protection against non-B serogroup strains. 
This has been demonstrated in a study conducted on N. meningi-
tides W strains isolated in the UK, in which sera from 4CMenB- 
vaccinated infants and adolescents were able to induce comple-
ment bactericidal killing of all MenW strains tested, and in 
a similar study conducted on serogroup X strains, in which all 
African serogroup X isolates were killed by 4CMenB antisera.8,9 

Moreover, sera from infants and adolescents immunized with 
4CMenB were shown to exhibit bactericidal activity against 
a large panel of MenC, MenW and MenY clinical isolates from 
France, Germany, the UK and Brazil.10

The present study aimed to evaluate the ability of 4CMenB 
to induce antibodies in humans with bactericidal activity 
against a representative panel of non-B meningococcal strains 
responsible for IMD in Italy during the epidemiological years 
2015–2017.

All meningococci sent to the National Reference Laboratory 
(NRL) of Istituto Superiore di Sanità (ISS), within the frame-
work of the IMD National Surveillance System (NSS), were 
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characterized for serogroup by slide agglutination with com-
mercial antisera (Thermo Scientific, Waltham, Massachusetts, 
US) or by multiplex PCR.11 Chromosomal DNA was extracted 
using the QiAmp mini kit (Qiagen, Hilden, Germany) from an 
overnight culture. Whole genome sequencing (WGS) was per-
formed using the Illumina MiSeq platform on each non-B 
isolate as previously described.12 Based on genome sequence, 
the clonal complex (cc), sequence type (ST), PorA-VR1 and 
VR2 type, FetA type and MenB vaccine antigen variants (fHbp, 
NHBA, NadA) were defined using the PubMLST.org database 
(http://pubmlst.org/neisseria/).

Pooled sera derived from infants before vaccination (n = 181, 
NCT00657709) or infants who received a primary series of 
4CMenB at 2, 4 and 6 months of age plus a booster at 12 months 
of age (n = 94, NCT00847145), pooled sera derived from adoles-
cents before or after two doses of 4CMenB administered 2 months 
apart (n = 39, NCT00661713) and pooled sera derived from 
adolescents before or after one dose of MenACWY vaccine 
(Menveo) (n = 24, NCT01210885) were used for the study. The 
use of pooled sera was due to constraints in the amount of sera 
available and based on previous study by Budroni et al. in which 
correlation between pooled serum bactericidal titers and serore-
sponse rate was demonstrated even at low bactericidal titer.13 

hSBA assays were performed as described by Borrow et al. with 
minor modifications.14 Bacteria were subcultured overnight on 
Chocolate Agar, resuspended in Mueller Hinton Medium to an 
optical density (OD600) of 0.05 and grown until OD600 of 0.25 
before use in the assay. Bacteria were incubated with sera and 25% 
of human plasma for 1 hour, and plated overnight before colony 
counting. hSBA titers were determined as the highest dilution that 
resulted in at least a 50% reduction in colony-forming units 
(CFU) relative to the number of CFU present in the reaction 
incubated without serum. No decrease in CFU was observed in 
the presence of heat-inactivated complement or in the presence of 
active complement without serum, indicating that the decrease in 

colony numbers observed in the presence of serum, even at a low 
dilution (1:2), was attributable to the presence of antibodies able 
to mediate complement-dependent killing. Human plasma, 
obtained from volunteer donors under informed consent, was 
selected for use as complement source with a given strain only if it 
did not significantly reduce CFU counts compared to T0 when 
added to the assay at a final concentration of 50%.

For adolescent sera, the highest serum dilution tested was 
1:128 while for infant sera, the highest dilution corresponded 
to 1:64. Higher dilutions were not tested when a difference in 
titers of at least fourfold between the pre- and post-vaccination 
sera was achieved.

During the study period (epidemiological years 2015–2017) 
in Italy, 425 IMD cases were reported at NSS, with an average 
incidence of 0.34 cases/100,000 inhabitants. The capsular ser-
ogroup of meningococci was identified in 360 IMD cases: 143 
were C (MenC), 133 were B (MenB), 58 were Y (MenY), 21 were 
W (MenW) and 5 were X (MenX). The proportion of serogroup 
B vs non-B meningococci was 37% vs 63%. The numbers of non- 
B vs serogroup B IMD cases in each age group are shown in 
Figure 1. Serogroup B prevailed among infants <1 year old, non- 
B serogroup cases were the majority by the age of 5. The median 
age of non-B cases was 29 years. Meningitis plus septicemia were 
the most frequent clinical picture (36%, n = 82/227); the case 
fatality rate was 17% (n = 29/172) (http://old.iss.it/mabi/, last 
access: 24 September 2020). The total number of MenC, MenY, 
MenW and MenX isolates suitable for analysis by WGS was 97, 
44, 16 and 5, respectively. The most frequent clonal complexes 
for MenC were cc11 (n = 86, 89%) and cc334 (n = 8, 8%); for 
MenY, the majority belonged to cc23 (n = 41, 93%); for MenW, 
the clonal complexes recovered were cc11 (n = 14, 88%) and cc22 
(n = 2, 12%); for MenX, all belonged to cc181 (n = 5, 100%).

A representative subsample of 20 meningococci was selected 
based on their genotypes (PorA-VR1 and VR2, FetA, ST, cc). As 
shown in Table 1, they were distributed as follows: eleven MenC 

Figure 1. Number of invasive meningococcal diseases cases due to B and non-B serogroups by age group (years) in Italy, epidemiological years 2015–2017.
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(eight cc11 and three cc334), two MenW (one cc11 and one 
cc22), two MenX (cc181) and five MenY (all cc23).

Eleven different genotype profiles were detected among the 
four serogroups as follows: four for MenC, two for MenW, one 
for MenX and four for MenY (Figure 2).

Fourteen fHbp peptides, of which six belonging to variant 1 
(nine isolates, 45%), seven to variant 2 (ten isolates, 50%) and 
one to variant 3 (one isolate, 5%) were identified. The most 
frequent fHbp peptides were variant 2.22 (three isolates), var-
iant 2.25 (two isolates), variant 1.74 (two isolates), variant 1.13 
(two isolates) and variant 1.808 (two isolates).

Seven different NHBA peptides were identified, of which 
peptide 20 was the most frequent (six isolates). Regarding 
NadA, three isolates carried the gene encoding for variant 2/ 
3, peptide 121, and one isolate for variant 2/3, peptide 6 
(Table 1). The other isolates had mutations, such as frameshift 
mutations or IS insertions, that are known to abolish NadA 
expression. Finally, six different PorA-VR2 types were identi-
fied among the twenty isolates, of which the most frequent 
were 10–8 (five isolates) and 10–1 (four isolates).

No isolates expressed any of the 4CMenB vaccine antigenic 
variants (variant 1 fHbp peptide 1, NHBA peptide 2, NadA 
peptide 3.8, PorA-VR2 4).

For fHbp, the comparison between the vaccine antigen var-
iant (peptide 1) and the variants found in the isolates highlighted 
two groups: peptides 9, 13, 462, 74, 808, 393 had a percentage of 
identity with peptide 1 greater than 90%; peptides 16, 1297, 19, 
23, 22, 104, 25, 29 had identities ranging from 61.02% to 72.83%. 
For NHBA, all the variants presented a similarity with the 
vaccine antigen variant 2 higher than 80%; in particular peptides 
6, 7, 8, 359 had an identity of 88.17% to 88.26%; peptides 20, 29, 
96 had identities of 82.02% to 83.76%. For NadA, the two 
peptides identified, 6 and 121, showed an identity with the 
vaccine variant 3.8 of 99.01% and 98.74%, respectively.

The vaccine antigen variants were distributed diversely among 
different genotypes (Table 1). The NHBA peptides were identical 
in isolates belonging to the same genotype. The fHbp assortment 
was more variable, depending on the genotypes. The C:P1.5–1,10- 
8:F3-6:ST-11(cc11) isolates showed two different fHbp peptides: 
peptides 13 and 808 (variant 1), differing in seven amino acids. 
The MenC ST-1031(cc334) and ST-11760(cc11) isolates each 
expressed a different fHbp peptide. The C:P1.5,2:F3-3:ST-11 
(cc11) isolates shared the same combination of fHbp, NHBA 
and NadA peptides. The MenW cc11 and cc22 showed two 
different fHbp peptides. The X:P1.5–1,10-1:F1-31;ST-181(cc181) 
isolates expressed the same fHbp and NHBA peptides. Among the 
four MenY genotypes, four different fHbp and two different 
NHBA peptides were identified (Table 1).

All 20 isolates were tested in hSBA and results are summar-
ized in Table 1 and Figure 3. MenW (n = 2; IT_W1-2), MenY 
(n = 5; IT_Y1-5) and MenX (n = 2; IT_X1-2) isolates were killed 
by both pooled adolescent and infant post-immune sera with 
bactericidal titer ≥ 4. Bactericidal titers were very high, all being 
≥64 against all these strains. Killing by pre-immune adolescent 
and infant sera was observed against two (IT_Y1 and IT_Y4) and 
four strains (IT_W2, IT_Y2, IT_Y4 and IT_Y5), respectively. 
However, a fourfold rise in hSBA titers of post-immune sera vs 
pre-immune sera was measured against all strains.

Among the eleven tested MenC strains, five strains were 
killed with hSBA titers ≥ 4 by adolescent sera and two by infant 
sera with hSBA titers ≥ 2. A fourfold increase in hSBA titers of 
post-immune sera vs pre-immune sera was observed against 
two strains when using adolescent sera (IT_C7 and IT_C8) and 
one strain when using infant sera (IT_C8), while killing by pre- 
immune sera was not observed against any of the strains. As 
expected, sera from MenACWY-vaccinated adolescents, used 
as positive control, were able to induce bactericidal killing of all 
tested MenC, MenW and MenY strains, with only one strain 

Figure 2. Distribution of genotypes identified within the 162 isolates characterized for this study. Each slice corresponds to a genotype. The 11 genotypes, characterizing 
the 20 isolates selected for this study, are shown. Serogroups are differentiated by color: white for MenC; gray for MenY; green for MenW; light blue for MenX.
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(IT_Y4) killed by pre-immune sera and with a fourfold 
increase in hSBA titers of post-immune sera vs pre-immune 
sera against all strains (Table 1).

The MenW, MenX and MenY isolates, killed in hSBA by 
4CMenB post-immune sera, presented a wide variety of fHbp 
(seven different peptides, of which three variant 1 and four variant 
2 or 3) and NHBA (five peptides: 7, 8, 20, 96, 359); they carried 
a truncated nadA gene, with the exception of the MenW/cc11 
(IT_W1) isolate, harboring the NadA peptide 6, variant 2/3. The 
two MenC/cc334 isolates (IT_C7, IT_C8), showing a fourfold 
increase in hSBA titers of post-immune vs pre-immune sera, 
had two different fHbp peptides (variant 1.13 and variant 2.19), 
the same NHBA (peptide 6) and no NadA (Table 1).

Although the 4CMenB vaccine has been licensed for pre-
vention of MenB disease, the most prevalent serogroup causing 
IMD in Europe and nowadays also in Italy,3 variants of the 
vaccine antigens are also found among non-B meningococci, 
independently of the capsule. Therefore, antibodies raised by 
these antigens may induce complement-mediated killing 
against other meningococcal serogroups.

During the study period, 63% of reported IMD isolates 
belonged to non-B serogroups, mostly from people of 5 years old 
and up. However, the annual incidence of non-B disease in infants 
(<1 year) is noteworthy, accounting for 1 per 100,000 inhabitants 
(http://old.iss.it/mabi/last access: 24 September 2020). A cross- 
reactivity by 4CMenB sera against non-B meningococci among 
infants may contribute to the reduction of IMD cases in this age 
group.

4CMenB conferred cross-reactivity against all MenW, 
MenY and MenX isolates analyzed in this study. In particular, 
the results obtained on two MenX/cc181, isolated from refu-
gees who arrived in Italy from Bangladesh and Morocco,15 

confirm the ability of 4CMenB-induced antibodies to kill the 
MenX strains isolated in Africa, as described by Hong et al.9 

Since there is no vaccine available against MenX, the 4CMenB 
vaccine may represent a possible alternative. Moreover, con-
sidering that MenW, MenX and MenY IMD occur mostly 
among adolescents and young adults,12,15,16 vaccination with 
4CMenB may also be valuable for these age groups.

The two MenW strains analyzed in the study had different 
genetic profiles, and were both killed by anti-4CMenB antibodies 
with bactericidal titers ≥ 1:64. Interestingly, the MenW/cc11 
(IT_W1) isolate differed in 4CMenB antigen variants from all 
the MenW/UK isolates analyzed in a similar study.8 While for 
the strains in the UK study, bactericidal killing may have been 
mediated by anti-NHBA and NadA antibodies, for the IT_W1 
strain in the present study, bactericidal killing may have been 
mediated by antibodies directed against the three antigens, 
NHBA, NadA and fHbp. For the strain IT_W2 belonging to 
cc22, killing may have been mediated by NHBA antibodies. This 
is consistent with the findings of an ongoing study on 
a collection of MenW isolates from Europe and Brazil.10

The same observation applies to MenY isolates, for which, 
with the exclusion of IT_Y1 harboring fHbp variant 1, only 
NHBA antibodies may have played a role in killing.

Considering that antibodies directed against OMV could 
also contribute to killing,16 we cannot exclude that the killing 
in hSBA might be the result of a synergistic activity of anti-
bodies directed against the main antigens and antibodies direc-
ted against minor OMV antigens.

Overall, genotypic and serological data for MenX, MenW 
and MenY suggest that antibody killing activity is independent 
of the serogroup or clonal complex.

Antibody killing induced by 4CMenB against the 11 MenC 
strains was, instead, less evident compared to what was found 
for the other serogroups using both adolescent and infant sera.

Of note, although generally a titer of 4 is needed to consider 
a strain killed in hSBA, and a fourfold rise compared to baseline 
is considered to evaluate the effect of vaccination, in an experi-
mental setting, a bacteriostatic titer as well as an hSBA titer of 2 
or a twofold rise compared to baseline, may be indicative of 
functional activity probably corresponding to sub-bactericidal 
level of antibodies recognizing specific antigens.17,18

Interestingly, the three cc334 MenC strains showed different 
bactericidal results, despite their similar antigenic repertoire, 
probably due to the different synergistic effects of NHBA peptide 
6 that, even if is not bactericidal on its own, could act in synergy 
with diverse fHbp subvariants or OMV minor components.19

Figure 3. Percentage of non-MenB strains showing hSBA ≥2 with adolescent 4CMenB- (solid colored fill) and infant (dotted colored fill) 4CMenB immune sera.
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The rationale to perform a bactericidal assay in this study 
was driven by the evidence that all the methods developed so 
far to predict coverage by 4CMenB (such as MATS,20 gMATS21 

and BAST22) have been built on the basis of the correlation 
between antigenicity (measured by MATS as level of antigen 
expression and diversity) and susceptibility to bactericidal kill-
ing of a panel of meningococcal B strains. When the MATS 
analysis was extended to a high number of non-B strains, the 
correlation was not strong enough to define a positive bacter-
icidal threshold as predictor of coverage. Therefore, MATS (as 
well as gMATS and BAST) should not a priori be applied to 
predict coverage of isolates belonging to other serogroups. 
Moreover, the currently available predictor tools (MATS, 
gMATS or BAST) do not take into account the power of 
contribution to killing of antibodies acting synergistically.

A limitation of the study could be the representativeness of 
isolates analyzed with respect to all meningococci isolated in 
the study period. The number of analyzed isolates for each 
serogroup represents a proportion of 11–12.5% of all isolates, 
except for MenX, because of the low total number of cases for 
this serogroup (n = 5). Within each serogroup, the criteria of 
selection were based on the clonal complex followed by the 
genotypic profile.

In conclusion, this study suggests that the 4CMenB vaccine 
is able to induce cross-reactivity against meningococci belong-
ing to non-B serogroups and, in particular, against MenW, 
MenX and MenY, independently of their genotypes, but 
dependent on their antigenic repertoire. However, at least for 
MenC strains, a lower susceptibility to antibody killing was 
observed. Therefore, the ability of 4CMenB vaccine to induce 
cross-reactivity against MenC strains is more difficult to pre-
dict solely on the basis of the antigenic assortment.

Real-world evidence could provide further information on 
real effectiveness of 4CMenB against non-B serogroups.
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