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Abstract: Structural and functional connectivity (SC and FC) have received much attention over the
last decade, as they offer unique insight into the coordination of brain functioning. They are often
assessed independently with three imaging modalities: SC using diffusion-weighted imaging (DWI),
FC using functional magnetic resonance imaging (fMRI), and magnetoencephalography/electroence-
phalography (MEG/EEG). DWI provides information about white matter organization, allowing the
reconstruction of fiber bundles. fMRI uses blood-oxygenation level-dependent (BOLD) contrast to indi-
rectly map neuronal activation. MEG and EEG are direct measures of neuronal activity, as they are
sensitive to the synchronous inputs in pyramidal neurons. Seminal studies have targeted either the
electrophysiological substrate of BOLD or the anatomical basis of FC. However, multimodal compari-
sons have been scarcely performed, and the relation between SC, fMRI-FC, and MEG-FC is still
unclear. Here we present a systematic comparison of SC, resting state fMRI-FC, and MEG-FC between
cortical regions, by evaluating their similarities at three different scales: global network, node, and hub
distribution. We obtained strong similarities between the three modalities, especially for the following
pairwise combinations: SC and fMRI-FC; SC and MEG-FC at theta, alpha, beta and gamma bands; and
fMRI-FC and MEG-FC in alpha and beta. Furthermore, highest node similarity was found for regions
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of the default mode network and primary motor cortex, which also presented the highest hubness
score. Distance was partially responsible for these similarities since it biased all three connectivity
estimates, but not the unique contributor, since similarities remained after controlling for distance.
Hum Brain Mapp 37:20–34, 2016. VC 2015
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INTRODUCTION

Neuroimaging techniques such as magnetoencephalog-
raphy (MEG) or functional magnetic resonance imaging
(fMRI) provide noninvasive, in vivo observations of the
working brain. While MEG measures coherent neuronal
activity at the ms scale, which is mainly generated by
postsynaptic currents in apical dendrites [H€am€al€ainen
et al., 1993; Lopes da Silva, 2010], blood-oxygen level-
dependent (BOLD) fMRI signals result from the dynamic
variations in the ratio of oxy- and deoxyhemoglobin
[Ogawa et al., 1992] and fluctuates at a slower temporal
scale (�3s). Although both modalities measure brain activ-
ity, they reflect distinct neuronal processes. For instance,
incoherent activity or inhibitory spiking, which might be
invisible to MEG also induce metabolic changes [Singh,
2012], which in some cases, might even mask coherent
activity related metabolism. Despite these differences,
MEG and fMRI measures are interrelated. In fact, inde-
pendent activation studies using MEG or fMRI have
obtained converging results in the mapping of cognitive
processes [Dale et al., 2000]. Moreover, simultaneous set-
ups recording electrical neurophysiological activity and
BOLD fMRI in primates or humans undergoing neurosur-
gical procedures have established causality between neu-
ronal firing and BOLD fMRI changes [Logothetis, 2003;
Mukamel et al., 2005; Singh, 2012]. With simultaneous
EEG-fMRI in humans, Laufs et al. [2003] revealed correla-
tions between EEG power and BOLD activity in alpha
band (8–12 Hz) and low-beta (17–23 Hz). Using separate
MEG and fMRI recordings, Zumer et al. [2010] also
observed a correlation between MEG and fMRI signals.

A very important concept in modern neuroscience,
which has also been studied with both fMRI and MEG, is
that of functional connectivity (FC). It is normally defined
as the existence of a statistical relationship between two

(or among many) simultaneously recorded signals of brain
activity. FC is considered the most plausible mechanism
for neuronal transfer of information [Singer and Gray,
1995], and has been widely studied with electrophysiologi-
cal techniques. However, FC can also be assessed from the
correlation between BOLD time series (fMRI-FC), which
has recently unveiled large-scale functional networks that
are working coordinately even in the absence of an
attentional-demanding task [Fox et al., 2006]. Of high rele-
vance is the default mode network (DMN), which consists
of a set of regions that deactivate when subjects become
involved in an attention-demanding task [Greicius et al.,
2003; Raichle and Snyder, 2007]. Interestingly, although
their origin is unclear, these networks have been replicated
using MEG-FC [Brookes et al., 2011b; de Pasquale et al.,
2010; Hipp et al., 2012; Luckhoo et al., 2012], thus proving
that these fMRI networks have a neurophysiological basis,
especially in alpha and beta bands.

Aside from these so-called resting state networks,
whole-brain FC networks can also be computed by parti-
tioning the brain grey matter in a set of regions related to
specific anatomical [Fischl et al., 2004; Tzourio-Mazoyer
et al., 2002], functional [Power et al., 2011; Shen et al.,
2013; Varoquaux and Craddock, 2013; Yeo et al., 2011] or
random atlases [Hagmann et al., 2008], and estimating the
degree of FC between each pair of regions (or nodes).
Such whole-brain networks are useful in the study of brain
organization using graph theory analysis [Bullmore and
Sporns, 2009; Papo et al., 2014]. Nevertheless, the degree
of similarity between fMRI and MEG-FC in such whole-
brain networks has been scarcely studied. Only very
recently, Tewarie et al. [2014] examined the overlap
between fMRI-FC and MEG-FC and found that it was
highest in the alpha and beta bands. These authors repro-
duced both MEG and fMRI-FC using a structural connec-
tivity template, thus suggesting that both FC have a
common anatomical basis. In their analysis, they focused
on subject average connectivity from different samples,
thereby neglecting subject-specific variability.

It is commonly accepted that FC requires a physical
path of white matter fibers that enables information trans-
fer. For instance, the corpus callosum is essential for inter-
hemispheric FC [Johnston et al., 2008; Quigley et al., 2003].
Structural connectivity (SC), which quantifies the strength
or integrity of these paths, can be non-invasively meas-
ured using DWI. The correspondence between SC and
fMRI-FC has been studied over the last few years,

Abbreviations

BOLD blood-oxygenation level-dependent
CSF cerebrospinal fluid
DMN default mode network
DWI diffusion-weighted imaging
EEG electroencephalography
FDR false discovery rate
FC functional connectivity
fMRI functional magnetic resonance imaging
MEG magnetoencephalography
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especially in large-scale resting state networks. Strong pos-
itive correlations are usually found between both SC and
fMRI-FC, especially in the DMN [Greicius et al., 2009;
Khalsa et al., 2014; van den Heuvel et al., 2009]. However,
the dependence between SC and FC is not always clear.
For example, Hermundstad et al. [2013] found that the
strength of fMRI-FC is explained by the density and length
of fibers composing the SC network, and strong SC values
relate to strong fMRI-FC, but fMRI-FC can be also found
in the absence of reconstructed fibers [Honey et al., 2009;
Skudlarski et al., 2008]. Deco et al. [2011] reviewed compu-
tational models that predicted large-scale network dynam-
ics relying on the SC. More recently, Go~ni et al. [2014]
observed that SC-derived measures of information theory
predict the strength of fMRI-FC better than computational
models or the strength of the connection, and could
account for unconnected regions. Altogether, this leads to
the idea that FC is constrained by structure in a nontrivial
way, and therefore, its estimation can be informed by SC
[Hinne et al., 2014; Pineda-Pardo et al., 2014], which leads
to a more accurate description of information transfer
within the brain.

Depending on the distance between the nodes involved,
two types of FC have been discriminated in invasive elec-
trophysiological recordings, namely short-range [Gray
et al., 1989] and long-range connectivity [Roelfsema et al.,
1997]. In noninvasive recordings, distance constitutes a
major confound in the study of brain connectivity. Nonin-
vasive brain mapping techniques are biased by distance
because of source leakage (e.g. MEG [Brookes et al., 2012]),
head motion during scanning (e.g. MEG and fMRI) [Van
Dijk et al., 2012] and uncertainty in the tracking of long
fibers (e.g. SC) [Jbabdi and Johansen-Berg, 2011]. Many
studies have addressed the contribution of distance in FC
and SC, and although a strong inverse relation has been
defined between connectivity and interregional distance
[Alexander-Bloch et al., 2013; Honey et al., 2009], coupling
strength is not solely explained on this variable [V�ertes
et al., 2012]. We believe that intermodality similarities
should explain different organization properties at the
short- and the long-range networks. Whereas short-range
similarities could be attributed to the hierarchical and
modular organization, long-range similarities could be
attributed to an integrative topology, which should be
commonly explained with the different techniques.

Although much work has been done in the description
of SC and FC networks with different imaging modalities,
to the best of our knowledge no study has thoroughly
evaluated the similarity of SC, fMRI-FC, and MEG-FC net-
works. In this work, we aim at identifying commonalities
and differences at the individual level between the three
modalities of brain connectivity described before: SC,
fMRI-FC, and MEG-FC. For that purpose, we parcellated
the brain of nine healthy subjects in sixty-six cortical
regions. Then SC, MEG-FC, and fMRI-FC were estimated
between each pair of regions (or nodes) and subsequently,

the resulting connectivity patterns (networks) were com-
pared at different scales. Thus, similarity between net-
works was first studied globally using the Hamming
distance. Then, connectivity values were ranked, and inter-
modality similarity was computed locally for all nodes
using a minimum ratio metric. Thirdly, the hubness of
each node (i.e. its relevance for the network) was com-
pared intermodality, to study whether the functional cen-
trality of a node is sustained by a structural centrality, and
the possible neurophysiological correspondence of the well
described SC and fMRI-FC hubs. Finally, we examined to
which extent intermodality similarities are biased by dis-
tance. For that purpose, we calculated the previous simi-
larity measures for short- and long-range connections
separately, by establishing a distance threshold, and iden-
tified the contribution of short- and long-range connections
to the highest connectivity values.

MATERIALS AND METHODS

Subjects

The sample comprised nine young subjects (five right-
handed; four males; mean age: 28.4, S.D.: 2.5), who pre-
sented no history of psychiatric or neurological illness.
Prior to their enrolment in the study, informed written
consent was obtained from all of them, in accordance with
the regulations of Fundaci�on CIEN-Fundaci�on Reina Sof�ıa
and Centre for Biomedical Technology (Madrid).

MEG Acquisition

Five-minute MEG resting-state recordings were acquired
at the Center for Biomedical Technology (Madrid, Spain)
using an Elekta Vectorview system with 306 sensors (102
magnetometers and 204 planar gradiometers), inside a mag-
netically shielded room (Vacuumschmelze GmbH, Hanau,
Germany). During the measurements, subjects sat with their
eyes closed and were instructed to remain calm and move
as little as possible. A Fastrak Polhemus system digitized
each subject’s head and four coils were attached to the fore-
head and mastoids, so that the head position with respect to
the MEG helmet was determined. Activity in electrooculo-
gram channels was also recorded to keep track of ocular
artefacts. Signals were sampled at 1000 Hz with an online
filter of bandwidth 0.1-300 Hz. Maxfilter software (version
2.2., Elekta Neuromag) was used to remove external noise
with the temporal extension of the signal space separation
(tsss) method [Taulu and Simola, 2006].

MRI Acquisition

Each participant was scanned on a 3T General Electric
MR scanner (General Electric Healthcare, Farfield, CT),
using a whole-body radiofrequency (RF) coil for signal
excitation and quadrature 8-channel brain coil for
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reception. The acquisition protocol consisted of: (1) high
resolution 3D T1-weighted SPGR with TR/TE/flip angle
of 9.1ms/4.1ms/108, FoV 5 256 mm, matrix 5 256 3 256,

slice thickness of 1 mm, voxel size 5 1 3 1 3 1 mm3; (2)
six minutes resting-state fMRI scan with Gradient-Echo
echo-planar sequence with TR/TE of 1625/27.6 ms,
NEX51, FoV5230 mm, matrix 5 96 3 96, slice
thickness 5 2.4 mm, voxel size 5 2.4 3 2.4 3 2.4 mm3; (3)
diffusion weighted images (DWI) in 45 non-collinear
encoding directions and a b value of 1000 s/mm2 with
single-shot spin echo echo-planar sequence with TR/TE of
12700/88.3 ms, NEX52, FoV 5 230 mm, matrix 5 96 3 96,
slice thickness 5 2.4 mm, voxel size 5 2.4 3 2.4 3 2.4 mm3,
and two additional images with no diffusion sensitization
b 5 0 s/mm2 (b0); and (4) two sets of two gradient echo
images (fMRI and DWI spatial resolution) with different
echo times, 6.5 and 8.5 ms, TR 5 600 ms and flip
angle 5 458. In addition during the fMRI acquisition, sub-
jects’ cardiac pulse signals were recorded using a pulse-
oximeter placed on the left index finger. Respiration was
measured with a pneumatic belt placed around the sub-
ject’s abdomen.

Regions of Interest

Sixty-six cortical regions of interest (ROIs) were used to
compute connectivity in all three modalities (MEG, fMRI,
and DWI). These ROIs were defined in the individual’s T1
volume, using Freesurfer software (version 5.1.0) and its
cortical parcellation [Desikan et al., 2006] (see supplemen-
tary Figure 1 and Supporting Information Table I for a
description of the cortical regions and abbreviations). For
MEG, a 4 3 4 homogenous transformation matrix from T1
space to MEG coordinate system was obtained by man-
ually matching the headshape digitalized in the MEG sys-
tem and the skin extracted from the T1 volume.

MEG Functional Connectivity

MEG source reconstruction

First, ocular, jump and muscular artefacts were identi-
fied and located in the 5-minute resting state recordings,
using the FieldTrip toolbox [Oostenveld et al., 2011]. Arti-
facted samples (with 1 second padding to avoid contami-
nation to segments surrounding artifacts) were not used

Figure 1.

Global network similarity. Hamming distances between connectivity

matrices are plotted for each pair of modalities and frequency

band as a function of pr (the proportion of non-zero connec-

tions in the connectivity matrices). Distances are z-scored with

a surrogate dataset, and positive values of higher amplitudes

indicate stronger similarities. Central line and green shading indi-

cate the subject average and the standard deviation over sub-

jects, respectively. Filled black circles mark significantly small

distances, when compared with the surrogate dataset (false dis-

covery rate, q 5 0.01). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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for the source and connectivity analysis. However, all five-
minute resting state data were used for bandpass filtering
to avoid edge artifacts. Data were filtered into five fre-
quency bands of interest: delta (2–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–45 Hz)
with finite impulse response (FIR) filters of order 1000.

Source reconstruction was performed with linearly con-
strained minimum variance beamformer [Van Veen et al.,
1997] separately for each frequency band. For each subject
and frequency band, the covariance matrix over all nonar-
tifacted time points was used to compute the spatial fil-
ter’s coefficients, which were then applied to the MEG
sensor data, thereby obtaining both a time series and a
source location. To avoid mixing MEG sensors with differ-
ent sensitivities or resorting to scaling, only magneto-
meters were used for this source reconstruction step. We
must note, however, that gradiometer information is indi-
rectly present as both magnetometers and gradiometers
were used in the tsss filtering.

Functional connectivity

Before computing the FC values, a leakage correction was
performed in the time domain to control for volume con-
duction, as suggested in [Brookes et al., 2012; Maldjian
et al., 2014]. Then, the amplitude of the source time series
was extracted with a Hilbert transform, and smoothed with
a boxcar filter of 1 second width. Correlation between these
amplitudes constituted the MEG-FC estimate. For each ROI,
a representative time series was chosen as the time series
that presented the highest average correlation with the other
sources of the ROI, yielding a 66 3 66 connectivity matrix.

fMRI Functional Connectivity

We employed FSL to pre-process the fMRI time-series.
Slice timing correction tool was used to correct the differ-
ent timing of the slice’s voxels. MCFLIRT tool was used to
realign the fMRI scans, using as reference the fMRI vol-
ume in the middle of the series. Then BET [Smith, 2002]
was employed to create a brain mask on the average fMRI
volume, and this mask was applied across volumes. We
built an inhomogeneity fieldmap using the acquired gradi-
ent echo images; and using FUGUE-FSL, fMRI images
were unwarped to correct the EPI artifacts due to the mag-
netic field inhomogeneities. We applied a Gaussian
smoothing of 5 mm full-width half-maximum to the fMRI
volumes and finally a high-pass filter of 0.01 Hz. Binary
white matter (WM) and cerebrospinal fluid (CSF) masks
were created by applying a 0.8 threshold to the probability
maps extracted from FAST-FSL. WM and CSF regressors
were obtained by averaging the fMRI time-series across
the masks. Global signal regressor was estimated by aver-
aging all fMRI time series within the brain mask. In addi-
tion to these regressors, we used RETROICOR [Glover
et al., 2000] to model the cardiac and respiratory contribu-
tions to the fMRI noise. Physiological signals were

sampled at each of the fMRI volumes. Pulse-oximeter
waveforms were used to compute the cardiac phase of
each fMRI sample. Together with the cardiac phase, the
respiratory phase was estimated following the method
described in [Glover et al., 2000]. The cardiac and respira-
tory noise signals were modeled as sine and cosine basis
functions of a Fourier series of order two, ending with
eight regressors.

Time-series were averaged across voxels in each of the
66 regions. All 11 regressors (WM, CSF, global, and RET-
ROICOR), together with the six residuals of the fMRI
series realignment were regressed out from the 66 regional
time-series, using linear least squares. These residuals of
this regression were band-pass filtered [0.01–0.09 Hz]
using an infinite impulse response Butterworth filter of
order 10. Functional connectivity metric was estimated
with the Pearson correlation coefficients between the 66
ROI time-series.

Structural Connectivity

DWI images were pre-processed using FMRIB’s Diffu-
sion Toolbox (FDT). Correction for motion and geometrical
distortion due to eddy currents was performed with the
eddycorrect tool in FDT, taking as reference image the aver-
age of the three b0 volumes, which were previously real-
igned using a linear affine transformation. Rotation
matrices from the motion correction were also applied to
the diffusion gradient directions. Non-brain tissue from
the average b0 image was removed using FMRIB’s Brain
Extraction Toolbox (BET) [Smith, 2002]. The obtained brain
mask was applied to the rest of the DWI images. We built
the inhomogeneity fieldmap using the two gradient echo
images with different echo times. By means of the
FUGUE-FSL, we used the fieldmap image to unwarp the
DWI images to correct (in part) the geometric distortion
and signal loss because of the magnetic field inhomogene-
ities. Estimation of the local probability distribution of
fibre direction at each voxel was estimated using bedpostx
[Behrens et al., 2007]. Fibre populations for each seed vol-
ume were estimated with Probtrackx 2.0 [Behrens et al.,
2007]. 66 seed volumes were defined, i.e. one per ROI. For
each voxel in the seed volume, 5000 streamlines were initi-
ated. The structural connectivity between two regions (i,j)
was computed as the sum of the streamlines seeded in
one region i that ended in region j. Since the connectivity
from i to j, is not necessarily the same than that from j to
i, we defined a unique connectivity between i and j, i.e.
SCij, as the average of both estimates.

Comparison Between Modalities

To have a comprehensive picture of the similarities
between the networks in each modality, MEG-FC, fMRI-
FC and SC networks were compared at different scales:
from the local level, by analyzing the features of each
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single node, to the global level, by estimating the distances
between the whole networks. This was performed sepa-
rately for each pair of modalities and each MEG frequency
band (MEG-FC for delta, theta, alpha, beta and gamma
bands, broadband fMRI-FC and SC). In the following, net-
works are defined as graphs, consisting in N 5 66 nodes
(or regions) connected with edges whose weights are
defined by functional or structural connectivity values.

Global network similarity

To first evaluate the linear dependence between SC,
fMRI-FC and MEG-FC connectivity values, Spearman’s
correlation coefficients q were computed between all pairs
of modalities, using all 66*65/252145 links. This was per-
formed both for individual subjects and for the subject-
average connectivity matrix. Additionally, to account for
the effect of distance between ROIs, correlations were cal-
culated using the Euclidean distance between ROI centers
as a covariate. ROI centers were computed by averaging
the coordinates of all voxels belonging to the ROI.

To further assess whole-network similarity, binary con-
nectivity matrices were obtained by applying a fixed den-
sity threshold to the weighted data so that their values
were set to zero for a fraction (1-pr) of their links with
lower values, and to 1 for the remaining links, with pr

ranging between 0.05 and 0.75 in steps of 0.05. Then, the
Hamming distance between these binary matrices of each
modality was computed, yielding a distance metric d(k,l,pr)
for each pair of modalities k and l and pr value. Hamming
distance is defined as the number of links that differed
between two binary matrices, i.e., in our case, d(k,l,pr)50 if
the pr strongest links in modality k are exactly the same as
those in modality l, whereas it attains its highest possible
value if there are no matches between them.

To assess the statistical significance of these distances,
2000 surrogates were constructed from each original con-
nectivity matrix. For fMRI-FC and MEG-FC matrices, surro-
gate matrices were obtained with the Hirschberger-Qi-
Steuer algorithm [Hirschberger et al., 2007], as implemented
in [Zalesky et al., 2012]. These surrogate networks maintain
three properties of the original FC matrices: the mean and
variance of the off-diagonal elements and the mean of the
diagonal elements. Surrogate matrices for SC were obtained
with the Maslov-Sneppen randomization [Maslov and
Sneppen, 2002] which preserves the original node degree.
Hamming distances were then computed for these surro-
gate networks, yielding a set of surrogate distances
drand(k,l,pr,s), s 5 1,2,. . .,2000 for each value of the (k,l,pr) tri-
plet. Then, the original distance metrics were z-scored:

Zd k; l; prð Þ5-
d k; l; prð Þ2means drand k; l; pr; sð Þð Þ

stds drand k; l; pr; sð Þð Þ (1)

were means and stds represent, respectively, the mean and
standard deviation of the distances for the surrogate net-
works. The smallest the distance between the original net-

works when compared to the distance between surrogate
networks, the higher Zd. This analysis was performed for
each subject separately, and also for the subject average, in
order to estimate a p-value of the distance for each (k,l,pr)
combination. The p-value is defined non-parametrically as
the proportion of surrogates that yielded lower distances
than the original dataset. p-values were then corrected for
multiple comparisons with false discovery rate (FDR)
(q 5 0.01) [Benjamini and Yekutieli, 2001].

Node similarity

Connectivity values between each pair of modalities k

and l were compared using a similarity metric. First, con-
nectivity values, which are the links connecting two ROIs i
and j, were replaced by their rank values, r(k,i,j), within
the connectivity matrix of each modality. Then, the simi-
larity of each link (i,j) between the pair of modalities (k,l)
was assessed with the minimum ratio [Goshtasby, 2012]:

s k; l; i; jð Þ5min
r k; i; jð Þ
r l; i; jð Þ ;

r l; i; jð Þ
r k; i; jð Þ

� �
(2)

The closer this ratio gets to 1, the more similar the link
(i,j) is between modalities k and l. Then, the values of
s(k,l,i,j) were averaged per each node, yielding an average
similarity measure per node i and modality pair (k,l). As
in “Global network similarity”, statistical significance in
the similarity of the node was assessed using surrogate
networks, and the corresponding p-values were corrected
for multiple comparisons using the FDR algorithm.

Hubness similarity

The hubness of each node of the networks was esti-
mated using a rank average of network centrality meas-
ures [Betzel et al., 2014a]. Briefly, for all connectivity
matrices, two centrality measures were calculated: node
strength (Si), and eigenvector centrality (eci), as imple-
mented in the Brain Connectivity toolbox [Rubinov and
Sporns, 2010] (see Supplementary material for further
details on the estimation of these measures). Then, each of
these measures was rank-transformed, so that integer
numbers from 1 to 66 were assigned to each node (ROI).
Node hubness was then calculated as the average of these
two rank-transformed measures.

Distance contribution

To evaluate whether similarities between connectivity
matrices from different modalities are specific of short- or
long-range interactions, the analyses described in sections
“Global network similarity” and ” Node similarity” were
repeated separately for short and long distance connec-
tions. Links connecting regions whose centroids were sep-
arated by 4 cm or less (Euclidean distance) were classified
as short range ones and the remaining ones were classified
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as long-range. In addition, to test frequency band specific-
ity for the short- and long-range connectivity, as suggested
by [Buzsaki, 2006], we represented the probability density
of links versus Euclidean distance for different network
densities (pr 5 0.05, 0.1, 0.2, 0.3).

RESULTS

Global Network Similarity

Connectivity values were positively correlated (Spearman
rank-order correlation q) between modalities (Table I). The
highest correlations were found for DWI-MEG in theta,
alpha and beta (q 50.33–0.45), and moderate correlation for
fMRI-DWI (q 50.28). Correlations for fMRI-MEG were how-
ever much smaller for all frequency bands (q 50.07–0.16).
As distance may bias connectivity values, an analog correla-
tion analysis was performed including the inverse distance
between nodes (or ROI centroids). As expected, correlation
values decreased considerably for all modality pairs,
although the frequency bands with the highest correlation
remained unchanged. Highest correlation values were found
for DWI-MEG in theta, alpha and beta (q 50.1720.24).

The Hamming distance between binary connectivity
matrices was significantly small (q 5 0.01, FDR corrected)
for all pairs of modalities for at least three pr values, as
shown in Figure 1. The highest Zd values, which indicate
the most similar modalities, corresponded to the pair
fMRI-DWI at the lowest pr values (0.05–0.20) and the beta
MEG-DWI at intermediate pr values (0.10-0.40). Consider-
ably small distances (Zd > 3) were also obtained for theta,
alpha and gamma MEG-DWI and beta MEG-fMRI. For
theta, alpha and gamma MEG-fMRI, Hamming distances
were also significantly small, but exhibited smaller Zd val-
ues than the previously commented modality pairs. In
contrast, the largest distances, corresponding to the most
different modalities, were obtained between delta MEG
with DWI and fMRI. Additionally, analogous distances
were computed by varying pr separately in all modalities.

The results are shown in Supporting Information Figure
S2, and are in line with the previously described results
which were obtained by comparing networks of the same
density. In fact, strongest similarities were found for DWI-
fMRI, especially at low densities, and DWI- MEG theta,
alpha and beta at intermediate densities. The fMRI- MEG
comparison also reached high Zd values for alpha and
beta at low fMRI densities (pr< 0.15) and intermediate
MEG densities (pr 5 0.10–0.3).

Node Similarity

Similarity of each node across modalities was further
quantified using the minimum ratio metric introduced in
Eq. (2). The results for this index indicated a similar orga-
nization of the functional/structural networks in all three
modalities. To evaluate the role of the different regions,
average similarity per ROI (or node) was computed (Fig.
2). Although significant values were obtained in all com-
parisons (FDR corrected, q 5 0.05), similarity values dif-
fered between pairs of modalities. The highest values
(>0.6) were obtained for MEG-DWI in theta to gamma.
The highest similarities were found in the precuneus, the
superior and inferior parietal, posterior cingulate and
superior frontal ROIs. Similarity values were generally
lower for DWI-fMRI and MEG-fMRI, and the 0.6 threshold
was not exceeded for any ROI. For the former case (DWI-
fMRI), posterior and anterior cingulate, cuneus, superior
temporal and lateral orbitofrontal presented the highest
similarities. For the latter, the highest similarities were
reached in the beta band, although for all frequency
bands, some ROIs achieved significant similarities. Highest
values were found in posterior and anterior cingulate,
cuneus, several temporal ROIs and in the paracentral
gyrus. Nodal similarity values can be found overlaid in
the brain surface in Supporting Information Figure S3.

TABLE I. Spearman’s q correlation coefficient between connectivity values for each pair of modalities

fMRI DWI

DWI
MEG
delta

MEG
theta

MEG
alpha

MEG
beta

MEG
gamma

MEG
delta

MEG
theta

MEG
alpha

MEG
beta

MEG
gamma

Raw links Individual
subjects

mean 0.20 0.04 0.04 0.06 0.07 0.04 0.04 0.16 0.17 0.25 0.12
SE 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Subject
average

0.28 0.07 0.07 0.16 0.16 0.13 0.14 0.36 0.39 0.45 0.33

Distance
covariate

Individual
subjects

mean 0.10 0.02 0.01 0.01 0.00 0.00 0.00 0.10 0.05 0.12 0.03
SE 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Subject
average

0.14 0.01 20.03 0.02 0.02 0.00 0.03 0.23 0.17 0.24 0.12

Correlations were computed for individual subjects (reported as mean and standard error (SE)), and for the average connectivity matrix.
In the three bottom rows, the inverse distance between ROI centers was included as an additional variable for the computation of q.
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Hubness Similarity

Hubness was computed for each connectivity matrix,
yielding a hubness rank for each node or ROI. Then, these
ranks were correlated between each pair of modalities to
test for similarities between them. As shown in Table II,
correlations were significant for five combinations: DWI-
fMRI, beta- and gamma- MEG-DWI, and beta- and
gamma-MEG-fMRI. Among them, DWI-fMRI and beta-
MEG-DWI showed the strongest correlations (q 5 0.38 and
0.42 respectively). Further examination of the scatter plots
of the hubness provided information on the role of specific
ROIs (Fig. 3). In general, the highest hubness values were
found in parietal ROIs, while temporal ROIs presented the
lowest values. In particular, bilateral precuneus, inferior
parietal, precentral and supramarginal regions were
among the 33% ROIs with highest hubness for these four
modalities (DWI, fMRI, beta-MEG, gamma-MEG). Con-

versely, weakest hubness were obtained in lateral orbito-
frontal, parahippocampal, pars orbitalis, rostral anterior
cingulate, frontal pole, entorhinal, transverse temporal and
temporal pole ROIs.

Distance Contribution

To examine the relation between distance and SC and
FC values, we represented in Figure 4 the probability den-
sity of the Euclidean distance of a fraction pr of the strong-
est links (0.05, 0.1, 0.2, 0.3) in each network separately (or
Supporting Information Fig. S8 for cumulative probababil-
ity). For low pr, connectivity values were shifted towards
small distances, so that lower distances related to higher
SC and FC. This trend was more pronounced for SC and
for MEG-FC from theta to gamma, although it was also
present in fMRI-FC and delta MEG-FC.

Figure 2.

Node similarity. The average node similarity hsðk:l; i; jÞej¼1;...;Ni
for each pair of modalities, node and frequency band is displayed

in a circular plot. Thirty-three nodes (or regions of interest) per

hemisphere are spread in bars over 180�. The bar length indicates

the value of the node similarity. ROI labels and scale are shown in

the bottom circle, and colors illustrate whether nodes belong to

cingulate, parietal, occipital, temporal, or frontal lobe. Error bars

represent standard deviation over subjects, and stars highlight sig-

nificant similarities (false discovery rate, q 5 0.05). The ordering

of the ROIs can be found in the lower disk. Correspondence

between codes and full-length names can be found in Supporting

Information Table S1. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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To inspect the contribution of short- and long-range con-
nections to the similarities between modalities, the previous
analyses were carried out for short and long-range connec-
tions separately. Firstly, at the global network level, similar-
ities were not significant for short range connections
(Supporting Information Fig. S4), in all comparisons, except
for DWI-fMRI. In addition, there are some contributions of
the strongest connections to the similarities between MEG-
fMRI in delta to theta bands. Long-range connections, how-
ever, were significantly similar between modalities and pro-
duced results akin, but with lower significance, to those
obtained for the whole network (Supporting Information
Fig. S5). This indicates that the global scale similarities
between modalities evidenced with thresholded networks
are mainly because of long-range connections between the
nodes. Secondly, at the level of individual nodes, significant
similarities were obtained both for short- and long-range
connections, as shown in Supporting Information Figures S6
and S7. For short-range connections, the highest similarities
were found in occipital ROIs for MEG-fMRI and parietal
ROIs for MEG-DWI. For long-range connections, node simi-
larities resembled the ones obtained with the whole network,
and the highest values were obtained for MEG-DWI in theta,
alpha, beta and gamma in parietal, frontal and cingulate
ROIS and for MEG-fMRI in cingulate and temporal ROIs.

DISCUSSION

In this work, we studied the commonalities between SC
and resting-state FC networks extracted with three different
imaging modalities: DWI, MEG, and fMRI. For each subject

and modality, we computed connectivity matrices between
66 cortical ROIs by using standard analysis techniques:
probabilistic tractography for DWI, correlations between
BOLD signals for fMRI and envelope correlation for MEG.
MEG-FC was computed separately for delta, alpha, beta
and gamma frequency bands. Then, we analyzed the simi-
larities between the corresponding structural and functional
networks at three different levels. First, we estimated the
distance between the global networks of all modalities, and
found that they were significantly similar, especially DWI-
fMRI and DWI and alpha-, beta- and gamma-MEG. Second,
we added spatial resolution by estimating similarities at the
regional level, and found that it was highest for the previ-
ous pairs of modalities, and especially in parietal, cingulate
and frontal ROIs. Third, we explored similarities in the
hubness of each ROI, by correlating a hubness aggregated
measure. We found significant correlations for all pairwise
combinations between DWI, fMRI, and beta and gamma
MEG networks. In particular, we found highest hubness in
parietal ROIs and lowest values in temporal ROIs. Overall,
this indicates that SC, fMRI-FC and MEG-FC networks are
related, but it does not imply that they represent the same
phenomena or that they can be used interchangeably.
Instead, they offer complementary information and provide
different insights into brain functioning.

Similarities Between Structural and Functional

MRI

Previous studies had already observed that fMRI-FC is
shaped by SC [Greicius et al., 2009]. In fact, large-scale

TABLE II. Correlation between node hubness, strength, and eigenvector centrality for each pair of modalities

fMRI DWI

DWI
MEG
delta

MEG
theta

MEG
alpha

MEG
beta

MEG
gamma

MEG
delta

MEG
theta

MEG
alpha

MEG
beta

MEG
gamma

Hubness rank
Individual

subjects
Mean 20.14 0.12 0.03 0.07 0.02 20.07 20.04 0.08 0.11 0.23 0.15
SE 0.13 0.18 0.24 0.17 0.14 0.17 0.12 0.18 0.20 0.12 0.15

Subject
average

q 0.38 0.03 0.27 0.21 0.29 0.32 20.32 0.05 0.01 0.42 0.31
p-value 0.0014* 0.79 0.027* 0.091 0.019* 0.0078* 0.0089* 0.72 0.96 0.0005* 0.010*

Strength
Individual

subjects
Mean 20.14 0.12 0.03 0.06 0.02 20.07 20.03 0.09 0.12 0.23 0.15
SE 0.13 0.18 0.24 0.17 0.13 0.16 0.11 0.18 0.19 0.12 0.14

Subject
average

q 0.46 0.02 0.27 0.20 0.28 0.32 20.06 0.18 0.12 0.34 0.30
p-value 0.0001* 0.86 0.031 0.12 0.021* 0.0081* 0.60 0.15 0.32 0.0052* 0.016*

Eigenvector centrality
Individual

subjects
Mean 20.13 0.12 0.03 0.07 0.03 20.07 20.05 0.07 0.09 0.24 0.15
SE 0.14 0.18 0.24 0.17 0.14 0.17 0.13 0.19 0.21 0.13 0.16

Subject average q 0.27 0.04 0.28 0.22 0.29 0.33 20.51 20.11 20.14 0.40 0.27
p-value 0.026* 0.74 0.025 0.071 0.018* 0.0080* <0.0001* 0.36 0.28 0.0010* 0.030*

*Denote significant p-values after FDR correction, q 5 0.05
For each subject and measure, the Spearman correlation was calculated, and mean and standard error (SE) over subjects are displayed.
The same calculations were performed for the average connectivity matrix, and Spearman correlation coefficients are indicated along
with their p-values.
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Figure 3.

Hubness correlation. Scatterplots of hubness rank are plotted for

DWI-SC, fMRI-FC and beta and gamma MEG-FC. Vertical (hori-

zontal) axis correspond to the first (second) modality in the fig-

ure title. Each ROI is plotted as a dot, accompanied by its code.

Correspondence between codes and full-length names can be

found in Supporting Information Table S1. Dots color illustrate

whether nodes belong to cingulate, parietal, occipital, temporal,

or frontal lobe. Correlation between hubness rank and its cor-

responding p-value are indicated on the top of each scatterplot.

The dashed line corresponds to the identity line y 5 x. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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resting-state fMRI networks are supported by structural
connections that can be identified using DWI [van den
Heuvel et al., 2009]. If these structural connections are
weakened or deleted, the resulting functional connectome
is strongly altered [Johnston et al., 2008; Quigley et al.,
2003]. Our findings contribute to the description of this
synergy by suggesting that, when characterizing whole-
brain connectivity, the strongest connections are the largest
contributors to similarities between fMRI-FC and SC. In
fact, the distance between both networks decreased with
increasing network sparsity. Similar results were identified
by Honey et al. [2009], who suggested that strong SC
drives strong fMRI-FC.

At the node level, we found the strongest similarities
between SC and fMRI-FC networks for the posterior and
anterior cingulate and the precuneus, which are core
nodes of the DMN [Greicius et al., 2003]. This is in line
with previous studies, which found high correlations
between SC and fMRI-FC within the DMN [Hagmann
et al., 2008; Honey et al., 2009; Khalsa et al., 2014] and
highlighted the prominent role of DMN regions in the
agreement between SC and fMRI-FC [Horn et al., 2013;
Skudlarski et al., 2008].

Furthermore, the hubness of each node was also similar
between SC and fMRI-FC, and regions with the highest
hubness generally also presented great similarity meas-

ured with the minimum ratio. Skudlarski et al. [2008] first
identified this trend, finding that there was greater agree-
ment between SC and fMRI-FC for regions showing strong
overall connectivity. Achard et al. [2006] previously identi-
fied hubs for fMRI-FC. They classified brain regions as
either heteromodal/unimodal association cortex, primary
cortex, limbic cortex, and paralimbic cortex [Mesulam,
2010] and located hubs in heteromodal association and pri-
mary cortices, whereas limbic and paralimbic regions were
generally more peripheral. We also found that paralimbic
regions had lower hubness, both for SC and for fMRI,
with exception of the isthmus of the cingulate, which
showed a large hubness in fMRI-FC. In both modalities,
regions from the parietal and the prefrontal association
cortices presented a high hubness. These regions, includ-
ing medial orbitofrontal gyrus, superior frontal, inferior
parietal and precuneus, that form part of the DMN, are
thought to belong to the brain network core [Hagmann
et al., 2008].

MEG Spectral Similarities

Here too, recent publications have demonstrated that
FC-MEG/EEG are to some extent related to the underlying
structural connections [Cabral et al., 2014; Chu et al., 2014,
Tewarie et al., 2014]. In the present work, we found strong
similarities between MEG-FC and SC for all frequency
bands at all the considered levels: whole network, node,
and hubness. Highest similarities were found in the beta
band, although strong associations were also present in
theta, alpha, and gamma. In a bimodal EEG/DWI study,
Chu et al. [2014] found agreement between global FC and
SC, particularly in fast frequency bands, albeit these
authors did not provide any spatial information. In turn,
Cabral et al. [2014] observed that MEG-FC and simulated
MEG-FC from SC were strongly correlated in theta, alpha
and beta bands. Overall, all these results suggest that
MEG-FC in these frequency bands is a good representation
of the underlying SC.

At the node scale, we found that many regions pre-
sented similar patterns of connectivity between SC and
MEG-FC in theta, alpha, beta and gamma frequency
bands. Invariably in all frequency bands, inferior parietal,
precuneus, posterior and isthmus cingulate showed the
strongest intermodal agreement. This indicates that the
similarity between SC and MEG-FC from regions of the
DMN to the rest of the brain is higher than from other
regions to the rest of the brain. This was however not the
case for the anterior part of the DMN (anterior cingulate),
although some frontal regions presented high similarity
between SC and MEG-FC, (i.e. superior frontal, rostral
medial frontal, precentral, paracentral). This could derive
from the fact that the frontal regions have lower signal-to-
noise ratio in MEG, or from the atlas choice, which could
influence network topology [Zalesky et al., 2010].

Figure 4.

Distance density of the strongest connections. For each modality sepa-

rately, the fraction pr of the strongest links is selected and the proba-

bility density of these links is estimated. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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In line with previous studies [Brookes et al., 2011b; de
Pasquale et al., 2010; Hipp et al., 2012], similarities
between MEG and fMRI were evident in the theta, alpha,
beta, and gamma bands. On the contrary, delta presented
smaller similarities. Similarities were therefore higher for
the faster frequency bands (>8 Hz), although we note that
the amplitudes of these faster rhythms oscillate at a slower
rate (�1 Hz). Moreover, cingulate, occipital, and temporal
regions stuck out as the ones where the FC of both neuroi-
maging modalities were most similar, especially in the
beta band. This partially agrees with a previous study
[Tewarie et al., 2014], which reported highest overlap
between fMRI-FC and MEG-FC both for parietal and occi-
pital regions in alpha and beta bands. In our work, occipi-
tal regions presented rather moderate similarities when
considering whole-brain networks, although high values
were found when restricting the analysis to short-range
connections.

Role of Distance

Previous studies highlighted that distance influences
connectivity values [Achard et al., 2006; Honey et al.,
2009], although their variability cannot be explained by
distance alone, as shown by the existence of strong long
distance connections [V�ertes et al., 2012]. In our work, for
all three modalities analyzed, high SC and FC values were
shifted towards small distances, indicating high structural
and functional coupling between close regions. This effect
was stronger for SC and for MEG-FC from theta to
gamma. In fact, we found (Table I) that the high correla-
tion between SC and MEG-FC decreased when including
distance in the correlation model. This result indicates that
SC and MEG-FC are clearly biased by distance, yet simi-
larities between connectivity values in these two modal-
ities do not result exclusively from it, since correlations
remained strong even after correcting by the effect of
distance.

We further explored the role of distance in the topology
of brain connectivity networks by analyzing whether this
parameter influenced the similarities between connectivity
networks from different modalities at both the local and
the global scale. Thus, we repeated the similarity analysis
for short- and long-range connections separately. When
considering long-range connections, the z-scored Ham-
ming distance Zd between SC and MEG-FC increased to a
nonsignificant level for delta, but remained small for theta,
alpha, beta and gamma bands. When comparing fMRI-FC
and MEG-FC, long-range connections were only similar
for beta and gamma bands. However, for short-range con-
nections, we did not find any significant similarity at the
global level between MEG-FC and either SC or fMRI-FC
for any frequency band. This could be due to the fact that,
despite using a MEG FC measure that is insensitive to
source leakage, short-range FC could not be accurately
estimated with MEG. This could seem surprising, since

slower brain oscillations are usually associated with global
processing while fast oscillations in beta and gamma
bands are usually found to be limited to more restricted
areas [Knyazev, 2012; Lopes da Silva, 2013]. Contrarily, Zd

between SC and fMRI-FC was significantly big for both
short- and long-range connections.

At the node level, when one only considers long-range
connections most of the findings for the similarity between
fMRI-FC and SC were preserved, including those for the
DMN. Similarities between SC and MEG-FC were pre-
served for long-range connections for theta to gamma. For
short-range connections, however, the similarity profiles
were strikingly modified. While similarities decreased in
cingulate, temporal, and frontal regions, strong similarities
emerged in occipital regions. These significant similarities
in occipital regions for short-range connections were also
present when comparing fMRI-FC and MEG-FC for theta,
alpha, and beta bands. Strong similarities in occipital
regions were also found between SC and fMRI-FC, possi-
bly indicating that these regions are forming a modular
short-range subnetwork

Limitations and Future Directions

We believe that the results presented in this study are of
interest as they unveil for the first time the pattern of com-
monalities, at both the local and the global scale, between
brain connectivity networks from DWI, fMRI, and MEG.
Yet we also acknowledge that the study presents some
limitations, which have to be taken into account. Firstly,
the computation of the whole-brain connectivity matrices
required the parcellation of the brain into anatomical
regions, which we have carried out with the commonly
used Desikan-Killiany atlas in Freesurfer. However, it is
known the definition of the ROIs influences greatly net-
work topographies [Zalesky et al., 2010]. In multimodal
approaches a consensus between modalities specific limita-
tions must be achieved in the selection of a specific parcel-
lation scheme. We decided to use the Desikan-Killiany
atlas to be consistent with previous multimodal literature
[Hagmann et al., 2008; Honey et al., 2009]. Although this
atlas is low-resolution (66 regions), recently, a method to
boost the resolution of this atlas, while preserving anatom-
ical specificity was proposed [Cammoun et al., 2012]. This
solution also equalizes regional volumes, avoiding bias
related to differences in volume across regions. However,
we decided to maintain the low-resolution atlas (66
regions), as we considered that MEG source reconstruction
would not be sensitive enough to solve higher resolutions.
Future work will aim to evaluate how multimodal similar-
ities in connectivity are constrained by differences in vol-
ume between nodes. Data-driven parcellations [Varoquaux
and Craddock, 2013] represent a valuable alternative that
should also be evaluated to explore the atlas’ influence on
the network similarities.
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Secondly, the MEG-FC computation requires some
assumptions, to solve the ill-posed inverse problem and to
estimate FC between ROIs. We employed beamforming
because it has been successfully applied and recom-
mended for the analysis of resting-state MEG-FC in several
previous studies [Brookes et al., 2011a,b; Hillebrand et al.,
2005, 2012; Hipp et al., 2012; Schoffelen and Gross, 2009],
despite the method itself assumes that source activations
are uncorrelated. Besides, we selected amplitude correla-
tion as the connectivity metric to assess FC, which has
been found to reproduce decently fMRI resting state net-
works [Brookes et al., 2011a,b; Maldjian et al., 2014], and
included recent recommendations for leakage correction
[Brookes et al., 2012; Maldjian et al., 2014]. Thirdly, it has
been recently argued that fMRI time-series lasting about
thirty minutes are required to achieve stability in resting-
state FC [Laumann et al., 2015]. However, this is not practi-
cal in most of the MR protocols, and although traditionally,
most of the research on this field has been carried out using
acquisitions lengths similar to the one employed in this
study, the benefits of employing longer exams are now evi-
dent [Birn et al., 2013; Laumann et al., 2015]. The same con-
cern might be applied to the MEG data; however, to date
we are not aware of any publication studying how resting-
state MEG acquisition lengths relate to MEG-FC reliability.
Further analyses must aim at studying the effect of acquisi-
tion lengths in the observed between modality similarities.

We must also point out that this study focuses on two
topological scales, namely microscale (node similarity and
hubness) and macroscale (distances between networks).
However there is another scale, the mesoscale, which
refers to the modular architecture of a network. It has
been proved that the modular architecture in SC networks
explains fMRI-FC [Betzel et al., 2014b], and therefore, we
consider that our multimodal study could benefit from
this mesoscale perspective. However, for the sake of repre-
sentability, this was left out of this particular work.

Significant correlations between SC and fMRI-FC had
been reported before: using the same parcellation scheme
as in here: Honey et al. [2009] found indeed stronger cor-
relations between SC and fMRI-FC that reached a correla-
tion coefficient of 0.66. Honey et al. employed
deterministic tractography, which generates sparser con-
nectomes than probabilistic tractography. This may lead,
when discarding zero structural connections, to higher cor-
relations, and may explain our results. Finally, a small
sample of subjects was available for this study. Future
studies with larger sample sizes should be carried out to
validate the present results. In particular, the Human Con-
nectome Project plans to release a large dataset of multi-
modal data1 [Van Essen et al., 2012], which will provide a
unique opportunity to test our results on the similarity
between SC and resting-state fMRI-FC and MEG-FC, as

well as to analyze whether these similarities change with
different cognitive tasks . It would be interesting as well to
test whether SC influences the test-retest reliability of
fMRI-FC and MEG-FC estimates.

CONCLUSIONS

Recently, the number of multimodal neuroimaging stud-
ies has notably increased. However descriptive studies,
indicating how single modal connectivity complements
information on other modalities, or to what extent they are
reflecting the same neuronal event are lacking. Here, we
performed a thorough description on multimodal connec-
tivity and we obtained several key findings. First, SC,
fMRI-FC, and theta to gamma MEG-FC were similar, espe-
cially for regions of the DMN. Second, regions with high-
est similarity exhibited generally also highest hubness.
Finally, distance biased SC and FC. This bias generated
some spurious resemblance between modalities, but did
not account for it. Altogether, this study, which combines
for the first time connectivity with DWI, MEG, and fMRI
in the same sample of subjects, highlights that these
modalities are complementary, and thus it provides a use-
ful ground for the design of multimodal imaging studies.
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