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Abstract
Background: Machine learning models are more accurate than standard tools for predicting neurological outcomes in patients resuscitated after

cardiac arrest. However, their accuracy in patients with Coronavirus Disease 2019 (COVID-19) is unknown. Therefore, we compared their perfor-

mance in a cohort of cardiac arrest patients with COVID-19.

Methods: We conducted a retrospective analysis of resuscitation survivors in the Get With The Guidelines�-Resuscitation (GWTG-R) COVID-19

registry between February 2020 and May 2021. The primary outcome was a favorable neurological outcome, indicated by a discharge Cerebral Per-

formance Category score � 2. Pre- and peri-arrest variables were used as predictors. We applied our published logistic regression, neural network,

and gradient boosted machine models developed in patients without COVID-19 to the COVID-19 cohort. We also updated the neural network model

using transfer learning. Performance was compared between models and the Cardiac Arrest Survival Post-Resuscitation In-Hospital (CASPRI)

score.

Results: Among the 4,125 patients with COVID-19 included in the analysis, 484 (12 %) patients survived with favorable neurological outcomes. The

gradient boosted machine, trained on non-COVID-19 patients was the best performing model for predicting neurological outcomes in COVID-19

patients, significantly better than the CASPRI score (c-statistic: 0.75 vs 0.67, P < 0.001). While calibration improved for the neural network with trans-

fer learning, it did not surpass the gradient boosted machine in terms of discrimination.

Conclusion: Our gradient boosted machine model developed in non-COVID patients had high discrimination and adequate calibration in COVID-19

resuscitation survivors and may provide clinicians with important information for these patients.

Keywords: Cardiac arrest, Prediction, Neurological outcomes, Machine learning
Introduction

Accurate prognostication of neurological status in survivors of in-

hospital cardiac arrest (IHCA) is essential for patient families, as it

informs decision-making regarding goals of care and could be valu-

able for risk standardization and quality improvement initiatives.1–3

However, prognostication of neurological status is challenging for

resuscitation survivors because these patients are often intubated,

sedated, and in a state of induced hypothermia. Therefore, research-

ers have developed tools, such as the Cardiac Arrest Survival Post-

Resuscitation In-Hospital (CASPRI) score, to predict the likelihood of

favorable neurological outcomes at discharge using pre- and peri-

arrest variables.4
In prior work using a cohort derived from the Get With the Guide-

lines Resuscitation (GWTG-R) registry from 2009 to 2017, we

demonstrated that an extreme gradient boosted (XGBoost) machine

learning model predicted favorable neurological status at discharge

significantly better than the CASPRI score.5 The XGBoost model

also outperformed all other machine learning models, such as the

logistic regression (LR) and the multi-layer perceptron (MLP) neural

network, in terms of discrimination, calibration, and accuracy mea-

sures. However, the number of Coronavirus Disease 2019

(COVID-19) cases remains high across the United States, and neu-

rological prognostication in resuscitated patients with COVID-19

involves additional challenges. Recent studies have reported low

survival rates among COVID-19 patients who experience cardiac
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arrests.6–10 Resuscitation survivors also have a poor likelihood of

being discharged without neurological deficits.6,7,11 Additionally, the

increased risk of exposure for care personnel, the requirement of

personal protective equipment, and the shortage of staff and sup-

plies impact resuscitation practice and assessment of neurological

status.12,13 With these factors, it is unknown how previously pub-

lished models that predict neurological outcome perform among

COVID-19 resuscitation survivors.

Therefore, the aim of this study was to validate the performance

of CASPRI and our prior machine learning models for predicting

favorable neurological outcomes in a cohort of resuscitation sur-

vivors with COVID-19. We hypothesized that our machine learning

models derived from resuscitated patients without COVID-19 would

predict favorable neurological status at discharge in resuscitated

COVID-19 patients more accurately than CASPRI. We further

hypothesized that we could utilize transfer learning, a machine learn-

ing framework that updates a previously developed model in a new

dataset, to improve the performance of our MLP neural network

model in predicting favorable neurological outcomes in COVID-19

patients.

Methods

Data sources and study population

We accessed the GWTG-R COVID-19 registry to build our COVID-

19 study population. Hospitals participating in the registry submit

clinical information regarding the medical history, care, and out-

comes of consecutive patients hospitalized for in-hospital cardiac

arrest using an online, interactive case report form and Patient Man-

agement ToolTM (IQVIA, Parsippany, New Jersey). We identified

11,173 in-hospital cardiac arrests within the GWTG-R COVID-19

registry (see Supplementary Fig. 1) corresponding to patients with

confirmed or suspected COVID-19 between February 2020 and

May 2021. We utilized the same exclusion criteria as our recent

study,5 eliminating subsequent cardiac arrests for an individual

patient (n = 2,078), removing arrests outside of general medicine

or intensive care unit (ICU) settings (n = 1,122), patients without

recorded return of spontaneous circulation (n = 3,600), missing dis-

charge survival status (n = 134), or missing Cerebral Performance

Category (CPC) assessment on discharge (n = 114). The institu-

tional review board at the University of Wisconsin-Madison reviewed

and approved the study with a waiver of informed consent (IRB#

2020-0588).

Primary outcome and predictors

The primary outcome of interest was a favorable neurological out-

come at the time of patient discharge, defined as a CPC score

of � 2, per the outcome definition of the CASPRI score and our pre-

viously developed machine learning models.4,5 We retained the

same set of predictors as our models and CASPRI, which include

pre- and peri-arrest variables related to patient and arrest character-

istics, neurologic status prior to arrest, pre-existing conditions, and

interventions in place prior to arrest.

Model development

Our prior study demonstrated that the LR, XGBoost, and MLP mod-

els were top-performing in terms of discrimination, calibration, and

accuracy metrics.5 We thus retrained these models using the entire

cohort of 117,383 patients without COVID-19 (combined training and
testing data from our published study). Missing values were

addressed depending on the algorithm. Data for the LR and MLP

models were imputed using predictions from decision trees created

from the non-COVID-19 derivation dataset. Briefly, we created clas-

sification (for categorical features) or regression (for numeric vari-

ables) decision trees from complete non-missing observations

within the non-COVID-19 derivation dataset. These trees were then

used to predict impute values for missing data in the COVID-19 data-

set. The XGBoost was trained with missing values, as the algorithm

can natively handle missing data.

We further created a new machine learning model using transfer

learning to specialize our retrained MLP model to adapt to patients in

our COVID-19 cohort. Briefly, transfer learning is a machine learning

technique wherein the weights of all layers of a neural network

except for the last are frozen, and then additional layers with train-

able weights are added. Thus, the foundational layers are trained

to recognize broad patterns for predicting the initial outcome, while

the final layers are trained to predict a different outcome or the same

outcome in a different patient population.14 In our study, we added a

trainable dense layer to our original MLP architecture. Thus, the ini-

tial layers of this new model, called MLP-Transfer, were already

trained to detect global features to predict neurological outcomes

in a general non-COVID-19 population of resuscitation survivors,

while the new final dense layer is explicitly trained to predict neuro-

logical outcomes in COVID-19 survivors of resuscitation. We

employed a nested cross-validation approach to train MLP-

Transfer (see Supplementary Fig. 2). Briefly, we divided the

COVID-19 population into five folds. Data from four folds were used

to train the MLP-Transfer model with an 80%–20% derivation-

validation split for hyperparameter optimization, while the fifth fold

formed the independent test set. This strategy was iterated five

times, after which prediction probabilities for all observations were

concatenated to assess model performance. This strategy enabled

direct comparison between our models in this study for the same

number of test observations. We utilized the caret package in R Ver-

sion 3.6.0 (R Project for Statistical Computing) for training the LR

and XGB models and the keras and keras_tuner packages in Python

2.7 for training and optimizing hyperparameters for the MLP and

MLP-Transfer models.

Model performance

Our primary metric to assess model performance was the discrim-

ination of COVID-19 resuscitation survivors with favorable neuro-

logical outcomes at discharge, as indicated by the area under the

receiver operating characteristic curve (AUC). We compared model

AUCs to each other and to CASPRI using DeLong’s method.15

Model calibration was assessed by calculating unreliability index

(U), indicating divergence between log-likelihood of the uncalibrated

and calibrated response variable, and by testing for H0: inter-

cept = 0, slope = 1.16 We further calculated sensitivity, specificity,

negative and positive predictive values for the best-performing

machine learning models and the CASPRI score. A cutoff of

P < 0.05 was used to indicate statistical significance. Finally, we

estimated variable importance using a permutation-based method

that equates feature importance for predicting favorable neurologi-

cal outcome with loss function changes when the feature is per-

muted. We also report performance in accordance with the

Transparent Reporting of multivariable prediction model for Individ-

ual Prognosis or Diagnosis (TRIPOD) guidelines (checklist in Sup-

plementary Table 1).
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Results

Patient characteristics

Among the 4,125 patients that met our inclusion criteria from 241

hospitals, 484 (12 %) patients survived with favorable neurological

outcomes, indicated by a CPC score � 2 at discharge. Comparisons

of patient and arrest characteristics between COVID-19 resuscitated

patients with and without survival with a favorable neurological out-

come are shown in Table 1. COVID-19 patients with favorable neu-

rological outcomes were younger (mean age: 60 vs 65 years,

P < 0.001), had a shorter duration of arrest (median time: 5 vs 8 min-

utes, P < 0.001), had higher use of AED (51 % vs 43 %, P = 0.002),

and lower CPC score prior to arrest (CPC Score 1: 72 % vs 58 %,

CPC Score 2: 18 % vs 15 %, P < 0.001) compared to those without

favorable neurological outcome. The median length of stay for

patients in our cohort was 13 days (IQR: 6–23 days). Table 2 com-

pares the rate of pre-existing conditions and pre-arrest interventions

between COVID-19 resuscitation survivors with and without our pri-

mary outcome. Patients with favorable neurological outcomes at dis-

charge were less likely to have pre-arrest hypotension (23 % vs
Table 1 – Clinical and Arrest Characteristics of Resuscitat
Neurological Outcome at Discharge.

Variable type Variable Patients with favo

neurological outc

Demographics Age, mean (sd) 60.7 (13.7)

Female sex, n (%) 187 (38.6%)

Race, n (%)

Black 127 (26.2%)

White 279 (57.7%)

Other 78 (16.1%)

Missing 0 (0%)

Characteristics of

Arrest, n (%)

Initial Cardiac Arrest Rhythm

Asystole 100 (20.7%)

Pulseless Electrical Activity 274 (56.6%)

VT/VF T2FS<2min 32 (6.6%)

VT/VF T2FS 2-3 23 (4.8%)

VT/VF T2FS 3-4 3 (0.6%)

VT/VF T2FS 4-5 1 (0.2%)

VT/VF T2FS >5min 6 (1.2%)

Unknown 45 (9.3%)

Duration of Resuscitation,

minutes, median (IQR)

5 (3–10)

Hospital Location

Telemetry 100 (20.7%)

Intensive Care Unit 315 (65.1%)

Inpatient 69 (14.2%)

Time and Day of Arrest

Night 132 (27.3%)

Weekend 143 (29.5%)

Use of AED

Yes 202 (41.7%)

No 245 (50.6%)

Not used-by-facility/NA 37 (7.7%)

CPC Score prior to arrest

CPC: Cerebral Performance Score.

VT: Ventricular Tachycardia.

VF: Ventricular Fibrillation.

T2FS: Time to First Shock.

IQR: Interquartile Range.

AED: Automated External Defibrillator.
36 %, P < 0.001) or renal insufficiency (62 % vs 72 %, P < 0.001)

and were less likely to be placed on mechanical ventilation (57 %

vs 71 %, P < 0.001), have intra-arterial catheters (11 % vs 16 %,

P = 0.004), or be administered vasoactive agents (24 % vs 41 %,

P < 0.001) compared patients who died or survived with neurological

deficits.

Supplementary Table 2 assesses the differences between the

non-COVID-19 derivation cohorts (used to derive the LR, XGB,

and MLP models) and the COVID-19 validation cohorts that met

our inclusion criteria. We note skewness in a few aspects: our

COVID-19 cohort was less likely to be female (36 % vs 43 %,

P < 0.001), more likely to be Black (28 % vs 22 %, P < 0.001), expe-

rienced a shorter duration of arrests (8 min vs 10 min, P < 0.001),

more likely to be in an intensive care setting (70 % vs 60 %,

P < 0.001), and more likely to have an AED used during arrest

(45 % vs 23 %, P < 0.001), compared to our derivation non-

COVID-19 cohort. In addition, there were also significant differences

observed in initial rhythm, with 60 % of COVID-19 patients experi-

encing a pulseless electrical activity arrest compared to 45 % in

the non-COVID-19 patient cohort (P < 0.001). Patients in our
ed Patients with COVID-19 with and without Favorable

rable

ome (n = 484)

Patients without favorable

neurological outcome (n = 3641)

P-

value

65.4 (13.1) <0.001

1311 (36.0%) 0.28

1013 (27.8%) 0.336

1958 (53.8%)

646 (17.7%)

24 (0.7%)

828 (22.7%) 0.004

2214 (60.8%)

181 (5.0%)

72 (2.0%)

11 (0.3%)

9 (0.2%)

43 (1.2%)

283 (7.8%)

8 (4–16) <0.001

560 (15.4%) 0.009

2579 (70.8%)

502 (13.8%)

1096 (30.1%) 0.226

1158 (31.8%) 0.341

1668 (45.8%) 0.002

1551 (42.6%)

422 (11.6%)

<0.001



Table 2 – Pre-Existing Conditions and Pre-Arrest Interventions for COVID-19 Resuscitated Patients With and
Without Favorable Neurological Outcome at Discharge.

Variable type Variable Patients with favorable

neurological outcome (n = 484)

Patients without favorable

neurological outcome (n = 3641)

P-

value

Pre-Existing Conditions, n

(%)

Acute CNS Non-Stroke

Event

63 (13.0%) 538 (14.8%) 0.336

Acute Stroke 17 (3.5%) 123 (3.4%) 0.984

Baseline Depression in

CNS function

27 (5.6%) 293 (8.0%) 0.0692

HF this admission 42 (8.7%) 321 (8.8%) 0.987

HF prior admission 88 (18.2%) 677 (18.6%) 0.875

Diabetes Mellitus 217 (44.8%) 1737 (47.7%) 0.254

Hepatic Insufficiency 36 (7.4) 354 (9.7) 0.126

Hypotension 113 (23.3%) 1319 (36.2%) <0.001

Major Trauma 17 (3.5%) 113 (3.1%) 0.730

Malignancy 25 (5.2%) 240 (6.6%) 0.270

Metabolic or Electrolyte

Abnormality

140 (28.9%) 1296 (35.6%) 0.004

Myocardial Infarction This

Admission

43 (8.9%) 283 (7.8%) 0.446

Myocardial Infarction Prior

to This Admissions

47 (9.7%) 405 (11.1%) 0.391

Pneumonia 238 (49.2%) 2108 (57.9%) <0.001

Renal Insufficiency 162 (33.5%) 1613 (44.3%) <0.001

Respiratory Insufficiency 302 (62.4%) 2613 (71.8%) <0.001

Interventions in Place

Prior to Arrest, n (%)

Assisted or Mechanical

Ventilation

275 (56.8%) 2568 (70.5%) <0.001

Intra-arterial Catheter 54 (11.2%) 594 (16.3%) 0.004

ECG Monitor 425 (87.8%) 3245 (89.1%) 0.430

Pulse Oximeter 407 (84.1%) 3110 (85.4%) 0.481

Vasoactive Agent 115 (23.8%) 1489 (40.9%) <0.001

Dialysis 18 (3.7%) 195 (5.4%) 0.156

Implantable Cardiac

Defibrillator

7 (1.4%) 45 (1.2%) 0.863

CNS: Central Nervous System.

HF: Heart Failure.

ECG: Electrocardiogram.
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COVID-19 validation dataset were also more likely to have been

placed on a variety of pre-arrest interventions (see Supplementary

Table 2) and have higher incidence of pre-existing conditions such

as hypotension (35 % vs 26 %, P < 0.001), metabolic abnormalities

(35 % vs 19 %, P < 0.001), pneumonia (57 % vs 15 %, P < 0.001),

renal (43 % vs 37 %) and respiratory (71 % vs 44 %, P < 0.001) insuf-

ficiency, and diabetes (47 % vs 33 %, P < 0.001), than patients in our

non-COVID-19 derivation cohort.

Model performance

Table 3 describes the final AUCs for all the models used in this study.

All our prior models (LR, XGBoost, and MLP) derived using non-

COVID-19 resuscitation survivors outperformed CASPRI in terms

of discrimination for COVID-19 resuscitation survivors with a favor-

able neurological outcome. The XGBoost model outperformed the

LR model (AUC 0.75 vs 0.73, P < 0.001), but was similar to the

MLP (AUC 0.75 vs 0.74, P = 0.724) in discriminating patients with

the outcome from the patients without. Notably, there was no signif-

icant improvement in discrimination after transfer learning in compar-

ison to the original MLP model (AUC: 0.74 vs 0.74, P = 0.779) and

the XGBoost model (AUC 0.74 vs 0.75, P = 0.940).

Fig. 1 depicts the calibration curves indicating agreement

between predicted and actual probabilities of the outcome. A perfect

model calibration line will have a slope of 1 and an intercept of 0, indi-
cating complete agreement (dashed line), and will be associated with

a low unreliability index.16 We note that, at the thresholds specified

by Chan et al.,4 the CASPRI model does not match the true preva-

lence of favorable neurological outcomes in the cohort of COVID-

19 patients who survived resuscitation. Among our prior models,

the LR and XGBoost show good calibration (LR model U 0.01, inter-

cept �0.52, slope 0.81, P < 0.001; XGboost model U 0.01, intercept

�0.49, slope 0.87, P < 0.001) while the MLP model performed the

worst (U 0.17, intercept �0.69 slope 0.37, P < 0.001). However,

transfer learning improved the calibration of the neural network

model to outperform all models (U 0.00, intercept = -0.24, slope

0.89, P = 0.073).

Supplementary Table 3 compares the sensitivity, specificity,

positive, and negative predictive values for CASPRI, XGBoost, and

MLP-Transfer models. Overall, the accuracy metrics were very sim-

ilar between the XGBoost and the MLP-Transfer models. At a sensi-

tivity of 81 %, the XGBoost model had higher specificity (52 % vs

40 %), higher positive predictive value (18 % vs 15 %), and a slightly

higher negative predictive value (95 %, 94 %) in detecting patients

with favorable neurological outcomes, in comparison to CASPRI.

Further, at a similar specificity (69 % for CASPRI and 68 % for the

XGBoost), the XGBoost had a higher sensitivity (69 % vs 55 %),

higher positive predictive value (22 % vs 19 %), and higher negative

predictive value (94 % vs 92 %) than the CASPRI model. With a 5 %



Table 3 – Comparison of Model Performances for Predicting Favorable Neurological Outcome at Discharge in
Resuscitation Survivors with COVID.

Model AUC, 95%CI P-value*

CASPRI 0.67 (0.65–0.70) –

LR 0.73 (0.71–0.75) <0.001

MLP 0.74 (0.72–0.77) <0.001

MLP with transfer learning 0.74 (0.72–0.76) <0.001

XGBoost 0.75 (0.73–0.77) <0.001

AUC: Area Under the receiver operating characteristic Curve.

CI: Confidence Interval.

CASPRI: Cardiac Arrest Survival Post-Resuscitation In-hospital score.

LR: Logistic Regression.

MLP: Multi-Layer Perceptron.

XGBoost: eXtreme Gradient Boosted machine.

*In comparison with CASPRI.

Fig. 1 – Calibration plots for CASPRI score (depicted on a reverse score scale) and the machine learning models

demonstrating alignment between predicted probability of non-favorable neurological outcome at discharge against

true outcome rate in COVID-19 resuscitation survivors.
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or lower likelihood of surviving to discharge with favorable neurolog-

ical outcomes (at XGBoost thresholds of � 12 and Inverted CASPRI

score � 27), the XGBoost model had a higher sensitivity than

CASPRI (24 % [95 %CI: 20 %-28 %] vs 19 % [95 %CI: 15 %–22 %]).

Fig. 2 depicts the variables most important for predicting the

favorable neurological outcomes in the non-COVID-19 cohort for

the XGBoost model and in the COVID-19 cohort for the MLP-

Transfer model. Variables that were important for predicting out-

comes in non-COVID 19 patients include admission CPC score,

duration of resuscitation, initial cardiac rhythm, and age, consistent

with our previous study.5 These variables were similarly important

for predicting neurological outcomes in the COVID-19 population.

However, mechanical ventilation and pneumonia were also noted

to be among the most important variables used by the MLP-

Transfer model. Supplementary Table 4 compares the discrimina-
tion and calibration performance of all machine learning models in

the COVID-19 and the non-COVID-19 validation cohort from our

prior study.5 Missing value percentages for all predictors are shown

in Supplementary Table 5.

Discussion

In this study, we compared the performance of existing models

developed in patients without COVID-19 to predict favorable neuro-

logical outcomes in a population of more than 4,000 COVID-19 in-

hospital cardiac arrest survivors from 241 hospitals from the

GWTG-Resuscitation COVID-19 registry. Among our prior models,

the gradient boosted machine outperformed CASPRI, a parsimo-

nious score developed for easy scoring. The gradient boosted



Fig. 2 – Importance of variables from the XGBoost model for predicting favorable neurological outcomes in non-

COVID patients and the MLP transfer learning model for predicting favorable neurologic outcomes in COVID

patients. Variable importance was calculated through permutation methods that measure dropout loss.
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machine also outperformed other machine learning-based models in

terms of discrimination, although all models overestimated the likeli-

hood of survival with a favorable neurologic outcome in a substantial

proportion of patients. We also demonstrated that transfer learning

methods that adapted our neural network model to the COVID-19

population did not improve discrimination but did improve calibration

performance. These results suggest that models developed in non-

COVID-19 patients can discriminate well between those with and

without favorable neurologic outcomes, but their predicted probabili-

ties will be overly optimistic for many patients unless transfer learning

is used.

Assessment of neurological status in survivors of cardiac arrest is

difficult as these patients are often intubated, which is often distress-

ing to families entrusted with goals-of-care decision making. These

challenges are amplified in patients with COVID-19. First, rates of

both overall post-arrest survival and survival to discharge without

neurological deficits are low in COVID-19 patients who experience

cardiac arrests.6–11 In fact, in our study, we found that only 12 %

of COVID-19 patients who survived their initial resuscitation were

discharged alive with a favorable neurologic status, compared to

24 % of non-COVID-19 patients in our prior study. Second,

prognostication in survivors is further complicated when clinical con-

tact is recommended to be kept to a minimum, impeding proper

physical and neurological assessment.12,13 Therefore, the assess-

ment of published models and tools specifically in COVID-19 patients

is critical to improving prognostication after an in-hospital cardiac

arrest.

Prior studies have utilized the large-scale, multicenter, national

GWTG-R registry to develop scores such as the CASRPI and the

Good Outcome Following Attempted Resuscitation (GO-FAR)

scores for neurological prognostication.4,17 In a recent study, we

demonstrated that significant gains can be obtained using machine

learning methods.5 However, all our models were developed and
validated in patients without COVID-19. This study is the first to test

the performance of models that predict neurological outcomes in

resuscitated patients specifically in a large, multicenter cohort of

COVID-19 IHCA survivors. The gradient-boosted model remained

the best-performing model for discriminating patients with favorable

neurological outcomes from those without. Thus, our model could

potentially be utilized for assessing neurological outcomes for risk

adjustment and quality-based initiatives in the current pandemic

when hospital surges are common and clinical contact is low. How-

ever, the model was overly optimistic for predicting favorable out-

comes for some patients, as illustrated by its calibration curve.

In our previous study, the machine learning models had marginal

improvements in discrimination over the logistic regression when

tested on non-COVID 19 patients (c-statistic 0.81 vs 0.79,

P < 0.001). However, in this study, we note the superior performance

of the gradient-boosted model over the logistic regression model in

COVID-19 patients, suggesting that these models may be more gen-

eralizable than standard regression methods in this clinical situation.

Further, our prior neural network demonstrated similar discrimination

but worse calibration than the gradient-boosted method for this

study. Calibration improved considerably when the neural network

was trained to adapt to COVID-19 patients using transfer learning.

Model calibration may be of high importance for cardiac arrest prog-

nostication, especially if clinical decisions are tied to specific likeli-

hoods (e.g., <5% predicted probability of a favorable outcome).

Our models can be deployed within a hospital setting with varying

technical resource requirements. Regression-based predictions are

simple aggregations of multiplicative products between coefficients

and feature values and are directly implementable in some EHR sys-

tems. Deploying the more accurate gradient-boosted machine

behind an electronic health record interface requires embedding

the model within a predictive model markup language (PMML) sys-

tem or other similar infrastructure. Deployment of the transfer
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learning-based MLP requires additional resources for computation

and libraries for deep learning.

A comparison of global variable importance between the gradient

boosted model and the neural network transfer learning model sug-

gested commonalities as well as differences in variables important

for accurate prediction of neurological status between non-COVID-

19 and COVID-19 patients. Duration of resuscitation, initial cardiac

arrest rhythm, admission CPC, and patient age were important to

determining the likelihood of neurological survival in resuscitation

survivors across both populations.18–20 Mechanical ventilation and

pneumonia had a higher variable importance in our transfer learning

model that was trained on COVID-19 patients. Clinical manifesta-

tions of pneumonia in COVID-19 patients are dominant,21 while the

need for mechanical ventilation has traditionally been associated

with poor survival in COVID-19 patients.

Our study has several limitations. First, we utilized retrospective

data elements that are available within the GWTG-R registry and

thus may be missing important predictors of neurological outcomes

among COVID-19 patients. Second, our cohort included both con-

firmed and suspected COVID-19 cases, which may increase the

heterogeneity of the results. Further validation is required to assess

differences between patients suspected of COVID-19 in comparison

to those confirmed with COVID-19. Other cohort selection biases

may also exist based on return of spontaneous circulation criteria

that may not be missing at random or by eliminating patients due

to early withdrawal of treatment. Additionally, about 2 % of our

excluded population had missing discharge CPC scores. While this

is less than our original study on non-COVID-19 patients (about

5 % of exclusions had missing discharge CPC scores), it is poten-

tially another source of selection bias. These limitations collectively

underline the need for prospective validation prior to use in clinical

practice. Third, while our model includes pre-existing conditions,

our data does not further expand on details regarding IHCA etiology.

Fourth, similar to published methods, our model cannot be used for

assessing neurological outcomes in out-of-hospital cardiac arrests.

We also stress that AUC is a global metric for assessing the perfor-

mance of prediction models. Individual decisions regarding clinical

care must be made at cut points that are set with clinically actionable

responses in mind. Similar to our original non-COVID-19 model, our

model is best suited for estimating chances of adequate neurological

recovery for COVID-19 IHCA survivors for quality initiatives, risk-

adjustment, or goal-of-care discussions after additional prospective

validation. Finally, our study does not account for hospital factors

or local pandemic responses that could impact assessment and

resuscitation practices.

Conclusion

We validated the performance of published machine learning models

for detecting resuscitation survivors with COVID-19 who are likely to

be discharged with a favorable neurologic status. Our results high-

light the utility of these models for predicting neurological outcomes

in COVID-19 cardiac arrest survivors and the ability of transfer learn-

ing to improve model calibration.
CRediT authorship contribution statement

Anoop Mayampurath: Methodology, Software, Validation, Formal

analysis, Investigation, Visualization, Writing – original draft, Writing

– review & editing. Fereshteh Bashiri:Methodology, Software, Writ-

ing – review & editing. Raffi Hagopian: Methodology, Software,

Writing – review & editing. Laura Venable: Methodology, Software,

Writing – review & editing. Kyle Carey: Data curation, Software,

Writing – review & editing. Dana Edelson: Conceptualization, Inves-

tigation, Writing – review & editing. Matthew Churpek: Conceptual-

ization, Methodology, Investigation, Formal analysis, Supervision,

Writing – original draft, Writing – review & editing.

Acknowledgements

We thank Mary Akel and Madeline Oguss for administrative assis-

tance. We also thank the members of the American Heart Associa-

tion’s Get With The Guidelines Adult Research Task Force: Anne

Grossestreuer PhD; Ari Moskowitz MD; Dana Edelson MD MS;

Joseph Ornato MD; Mary Ann Peberdy MD; Matthew Churpek MD

MPH PhD; Monique Anderson Starks MD MHS; Paul Chan MD

MSc; Saket Girotra MBBS SM; Sarah Perman MD MSCE; Zachary

Goldberger MD MS. IQVIA (Parsippany, New Jersey) serves as

the data collection (through their Patient Management Tool – PMTTM)

and coordination center for GWTG. The University of Pennsylvania

serves as the data analytic center and has an agreement to prepare

the data for research purposes. The Get With The Guidelines�-

Resuscitation program is provided by the American Heart Associa-

tion. The American Heart Association Precision Medicine Platform

(https://precision.heart.org/) was used for data analysis. All partici-

pating institutions were required to comply with local regulatory

and privacy guidelines and, if required, to secure institutional review

board approval. Because data were used primarily at the local site for

quality improvement, sites were granted a waiver of informed con-

sent under the common rule. Dr. Mayampurath is supported by a

career development award from the National Heart, Lung, and Blood

Institute (K01HL148390). Dr. Churpek is supported by R01s from

NIGMS (R01 GM123193), NHLBI (R01 HL157262), NIDDK (R01-

DK126933), and a PRMRP grant from DOD (W81XWH-21-1-0009).
Conflicts and Disclosures

Dr. Mayampurath is supported by a career development award from

the National Heart, Lung, and Blood Institute (K01HL148390). Dr.

Churpek is supported by R01s from NIGMS (R01 GM123193),

NHLBI (R01 HL157262), NIDDK (R01-DK126933), and a PRMRP

grant from DOD (W81XWH-21-1-0009). Drs. Churpek and Edelson

have a patent pending (ARCD. P0535US.P2) for risk stratification

algorithms for hospitalized patients and has received research sup-

port from EarlySense (Tel Aviv, Israel). Dr. Edelson has received

research support and honoraria from Philips Healthcare (Andover,

MA). Dr. Edelson has ownership interest in AgileMD (San Francisco,

CA), which licenses eCART, a patient risk analytic.



62 R E S U S C I T A T I O N 1 7 8 ( 2 0 2 2 ) 5 5 –6 2
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.

org/10.1016/j.resuscitation.2022.07.018.

Author details

for the American Heart Association’s Get With The Guidelines�-

Resuscitation Investigators aDepartment of Biostatistics & Medical

Informatics, University of Wisconsin, Madison, WI, United

States bDepartment of Medicine, University of Wisconsin, Madison,

WI, United States cDepartment of Medicine, Weill Cornell Medicine,

New York, NY, United States dDepartment of Medicine, University of

Chicago, Chicago, IL, United States
R E F E R E N C E S
1. Ebell MH, Becker LA, Barry HC, Hagen M. Survival After In-Hospital

Cardiopulmonary Resuscitation. J Gen Intern Med 1998;13:805–16.

https://doi.org/10.1046/j.1525-1497.1998.00244.x.

2. Girotra S, Nallamothu BK, Spertus JA, Li Y, Krumholz HM, Chan PS.

Trends in Survival after In-Hospital Cardiac Arrest. N Engl J Med

2012;367:1912–20. https://doi.org/10.1056/NEJMoa1109148.

3. Geocadin RG, Callaway CW, Fink EL, et al. Standards for Studies of

Neurological Prognostication in Comatose Survivors of Cardiac

Arrest: A Scientific Statement From the American Heart Association.

Circulation 2019;140:e517–42. https://doi.org/10.1161/

CIR.0000000000000702.

4. Chan PS, Spertus JA, Krumholz HM, et al. A Validated Prediction

Tool for Initial Survivors of In-Hospital Cardiac Arrest. Arch Intern

Med 2012;172:947–53. https://doi.org/10.1001/

archinternmed.2012.2050.

5. Mayampurath A, Hagopian R, Venable L, et al. Comparison of

Machine Learning Methods for Predicting Outcomes After In-Hospital

Cardiac Arrest. Crit Care Med 2021. https://doi.org/10.1097/

CCM.0000000000005286.

6. Mitchell OJL, Yuriditsky E, Johnson NJ, et al. In-hospital cardiac

arrest in patients with coronavirus 2019. Resuscitation

2021;160:72–8. https://doi.org/10.1016/j.resuscitation.2021.01.012.

7. Hayek SS, Brenner SK, Azam TU, et al. In-hospital cardiac arrest in

critically ill patients with covid-19: multicenter cohort study. BMJ

2020;371. https://doi.org/10.1136/bmj.m3513 m3513.
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