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Two objects can be distinguished if they have different measurable properties. Thus, distinguishability
depends on the Physics of the objects. In considering graphs, we revisit the Ising model as a framework to
define physically meaningful spectral invariants. In this context, we introduce a family of refinements of the
classical spectrum and consider the quantum partition function. We demonstrate that the energy spectrum
of the quantum Ising Hamiltonian is a stronger invariant than the classical one without refinements. For the
purpose of implementing the related physical systems, we perform experiments on a programmable
annealer with superconducting flux technology. Departing from the paradigm of adiabatic computation, we
take advantage of a noisy evolution of the device to generate statistics of low energy states. The graphs
considered in the experiments have the same classical partition functions, but different quantum spectra.
The data obtained from the annealer distinguish non-isomorphic graphs via information contained in the
classical refinements of the functions but not via the differences in the quantum spectra.

K
ac’s1 question ‘‘Can one hear the shape of a drum?’’ is part of the scientific pop culture2. The technical side
of the question concerns our ability to completely specify the geometry of a domain from the eigenvalues of
its Laplacian. The question has been reinterpreted in the study of Schrödinger operators on metric graphs

by Gutkin and Smilansky3 and restated in Algebraic Graphs Theory as ‘‘Which graphs are determined by their
spectrum?’’ by van Dam and Haemers4. (Through this work, the spectrum of a matrix M, denoted by SM, is the set
of its eigenvalues.) While we commonly employ different types of matrices to encode the structure of graphs, none
has yet been shown to efficiently provide a complete graph invariant, i.e., a parameter that does not change under a
permutation of the vertex labels. The spectrum of the adjacency matrix, for example, is a common invariant and
easily seen to satisfy the ‘‘if ’’ part of this statement; however, it is not a complete invariant, given the fact that co-
spectral non-isomorphic graphs are abundant5,6 (see for instance Supplementary Information Section A). In the
same spirit, physical scenarios have suggested various notions of refined spectra as a tool for distinguishing
graphs, with partial degrees of success7–9. A common intersection for these approaches is Quantum Mechanics,
arguably due to the popularization of quantum dynamics on graphs at the beginning of the last decade10.

It is interesting, not only from the historical point of view, to observe that the strong link between Physics and
graphs is via the Ising model, perhaps the most studied model in Statistical Mechanics. Originally proposed in
192511 as a simplified description of the magnetic properties of materials, the Ising model has found a vast number
of applications from Biology to Solid State Physics. Its great importance is emphasized by exact solutions and
numerical techniques for the identification of phase transitions and critical phenomena12. The Ising model
framework seems particularly suitable to observe differences between Classical and Quantum Mechanics in terms
of spectral information, since the quantum case is directly obtained by adding an appropriate (transverse) mag-
netic field to the classical Hamiltonian.

In what follows, we map a graph into an Ising model and interpret its energy spectrum as a graph invariant,
before and after the ‘‘switch’’ from Classical to Quantum Mechanics. We demonstrate with exhaustive numerical
examples that the quantum spectrum is a stronger invariant and propose a general framework to define physically
meaningful graph polynomials. Determining whether the quantum energy spectrum is a complete invariant
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remains an open problem. We perform experiments on a program-
mable annealer with superconducting flux technology13. Our pur-
pose is to ‘‘hear the shape of an Ising model’’, by generating statistics
of low energy states as the outcome of a noisy evolution. The experi-
ment is run disregarding whether or not the state of the device
follows an adiabatic path along its instantaneous ground state, there-
fore against the prescription for successful annealing14. In other
words, we are not only interested in the ground state but, unconven-
tionally, in the full output of a noisy computation. We obtain data on
non-isomorphic graphs that are distinguished by their quantum
energy spectra but not by the classical ones.

Results
Classical Cospectrality and Ising models. The Hamiltonian of the
Ising model15 (or, equivalent, 2-state Potts model) on a graph G, with
n vertices V(G) and edges E(G), is defined by the diagonal matrix

H G, Jð Þ :~J
X

i,jf g[E Gð Þ
H i, jð Þ:J

X
i,jf g

A Gð Þ½ �i,jH i, jð Þ ð1Þ

where, for each edge i, jf g, H i, jð Þ :~6
n
k~1H kð Þ is a 2n 3 2n matrix,

with H(k) 5 sz if k 5 i, j and H(k) 5 I, otherwise. A(G) is the
adjacency matrix with [A(G)]i,j 5 1 if {i, j} g E(G) and [A(G)]i,j 5

0, otherwise. sz is the Pauli matrix in the z-th coordinate axis, I is the
identity matrix, and J is the strength of interaction. From now on,
whenever the interaction strength is not expressly indicated as, e.g.,
in H(G), we implicitly set J 5 1 for all edges. The partition function of
the Ising model on G is

Z G, vð Þ~Tr e{bH Gð Þ
� �

, ð2Þ

where b:5 (kBT)21 and v 5 ebJ 2 1; kB is Boltzmann’s constant,
T [ R§0 is the temperature. By the Fortuin-Kasteleyn16 combina-
torial identity, Z(G, v) is an evaluation of the Tutte polynomial17,18,
which is a fundamental invariant that determines many parameters
including girth, chromatic number, etc. Remarkably, the Jones
polynomial of a knot is contained in the Tutte polynomial19. Recall
that, formally, G and G9 are isomorphic if they are the same graph up
to a relabeling of the vertices. This is denoted by G%G’. It is not hard
to find graphs with the same Tutte polynomial (T-equivalent) that
are not isomorphic20,21: for example, all trees on the same number of
vertices.

Observe that two graphs G and G9 have the same partition func-
tion if and only if they share the same spectrum of the Hamiltonian in
Eq. (1) (i.e. Z G, vð Þ~Z G’, vð ÞuSH Gð Þ~SH G’ð Þ). We say that G and
G9 are co-Ising if SH Gð Þ~SH G’ð Þ. Since the Tutte polynomial is a gen-
eralization of the partition function, if two graphs are T-equivalent
then they share the same energy spectrum and thus are co-Ising.
Thus, we know the following:

G%G’[SH Gð Þ~SH G’ð Þ

SH Gð Þ~SH G’ð Þ[= G%G’:
ð3Þ

Intuitively, we may attempt a refinement by adding a longitudinal
field. The Hamiltonian of the Ising model on G with longitudinal field
is defined by the diagonal matrix

HL G, J, hð Þ :~H G, Jð ÞzhM, ð4Þ

where M :~
Xn

i~1
K ið Þ is a 2n 3 2n matrix, with K ið Þ~

6
n
k~1HL kð Þ, HL(k) 5 sz if k 5 i and HL(k) 5 I otherwise.

Physically hM can be interpreted as a constant external magnetic
field applied to all vertices. Again, we set J 5 1 and h 5 1 unless they
are explicitly indicated. We say that two graphs G and G9 are longit-
udinal field co-Ising if SHL G,J,hð Þ~SHL G’,J ,hð Þ for all values of J and h.
The following equation summarizes what we know about graphs

with this property (see Supplementary Information Section A and
B for examples):

SHL G,J,hð Þ ~
VJ,h

SHL G’,J,hð Þ[SH G,Jð Þ~
VJ

SH G’,Jð Þ

SHL Gð Þ~SHL G’ð Þ SH Gð Þ~SH G’ð Þ

VJ,h SHL G,J,hð Þ~SHL G’,J,hð Þ[= G%G’:

ð5Þ

From the diagonal matrices H(G) and M, we can define the energy
and magnetization vectors as es(G) 5 H(G)s,s and ms 5 Ms,s, where
s 5 0, 2, …, 2n 2 1 runs over the classical states of the Ising model on
G, where 0 denotes the ground state. With the use of these vectors, the
bivariate Ising polynomial is defined as22:

Z G; x, yð Þ~
X

s

xes Gð Þyms : ð6Þ

Notice that the spectrum SHL G,J,hð Þ can be obtained from Z(G; x, y) for
all values of the constants J and h, since a change in these parameters
is just a rescaling of the coefficients x and y. The Ising polynomial
generalizes the partition function in Eq. (2) because Z(G, e2Jb, 1) 5

Z(G, eJb 2 1), encodes the matching polynomial, is related to the van
der Waerden polynomial, and is contained in a more general poly-
nomial introduced by Goldberg, Jerrum and Paterson23–25. The
bivariate Ising polynomial in Eq. (6) can be intuitively generalized
by working with any physical observable in addition to energy and
magnetization. If we denote by ok

s the eigenvalues of a diagonal
matrix (or observable) Lk, we can then define a multivariate poly-
nomial

Z G; x, y, zkð Þ~
X

s

xes Gð Þyms P
k

zok
s

k : ð7Þ

An example is given by the (permutationally invariant) spin-glass
order parameter used by Hen and Young26.

Quantum Cospectrality. The invariants that we have so far
considered belong to Classical Physics. We can now move into a
quantum mechanical regime by adding a further field. The
Hamiltonian of the quantum Ising model on G, as proposed by
Lieb, Schultz, and Mattis27 (see also28) is defined by the matrix

HT G, J, h, Dð Þ :~HL G, J, hð ÞzDMT , ð8Þ

where D [ R is a transverse external magnetic field; here MT :~Pn
i~1 T ið Þ is a 2n 3 2n matrix, with T ið Þ~6

n
k~1HT kð Þ, HT(k) 5

sx if k 5 i and HT(k) 5 I otherwise. As in the longitudinal case, MT

does not depend on G. Two graphs G and G9 are said to be quantum
co-Ising if SHT G,J,h,Dð Þ~SHT G’,J,h,Dð Þ for all values of J, h and D. It
follows from the definition that two graphs are quantum co-Ising
if they are isomorphic. The quantum partition function is defined
analogously to the classical one:

ZT G, b, J, h, Dð Þ~Tr e{bHT G,J,h,Dð Þ
� �

: ð9Þ

Two graphs are quantum co-Ising if and only if they have the same
quantum partition function. The ‘‘if ’’ part of this statement comes
directly from the definition. For the ‘‘only if’’ part, observe that in the
limit b R ‘, ZT Gð Þ^n0e{bE0 determines the lowest eigenvalue E0

with its multiplicity n0. Similarly, in the same limit ZT Gð ÞebE0
�

n0

determines the value and multiplicity of the second smallest
eigenvalue. The whole spectrum is obtained iteratively. The
statement above and its proof are valid only for systems of finite
size. It is a well-known fact that different Hamiltonians can have
the same partition function in the thermodynamic limit.

We tested numerically the converse of this fact by computing
the smallest eigenvalue for h 5 J 5 D 5 1. We tested all graphs with
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n # 9, all bipartite graphs with n # 11, all vertex transitive graphs
with n # 15, all regular graphs with n # 11, and all trees with n # 14
(also considered in22). We failed to find a counterexample. Hence,

G%G’[SHT Gð Þ~SHT G’ð Þ

SHT Gð Þ~SHT G’ð Þ[
?

G%G’:
ð10Þ

The transverse field Ising Hamiltonian is a sum of non-commuting
terms and determining its full spectrum requires the diagonalization
of a 2n 3 2n matrix. We cannot generalize directly the quantum
partition function to a generating Ising polynomial as done in the
classical case – when eigenvalues are integers (for J 5 h 5 1) –
although we can use the well-known Suzuki-Trotter formalism to
obtain a classical approximation29; the direct calculation of the eigen-
values is notoriously expensive, due to the size of the problem, and
prone to errors, making it difficult to numerically show the existence
of non-isomorphic quantum co-Ising graphs. A reasonable first
approximation for this task is to compute the absolute largest eigen-
value. That is what we have done in our tests. Taking into account
such difficulties, finding non-isomorphic quantum co-Ising graphs
is an open problem. Natural candidates are graphs for which iso-
morphism testing is known to be harder to solve (e.g., graphs
for which the Weisfeiler-Lehman algorithm fails)30. Nevertheless,
we emphasize that spectral information provided by Quantum
Mechanics is more accurate than Classical Mechanics. It must be
said that there are only a few precise (and in fact negative) statements
about the physically inspired graph invariants which have been
introduced recently (see7–9,26 and the references therein) and that
purely numerical analysis does not guarantee sufficient generality.

Experiments. Disregarding computational complexity aspects, we
have highlighted that from the theoretical point of view one can
hear the shape of certain quantum Ising models, while it is not pos-
sible for the classical analogue. We subsequently encode on the same
physical system pairs of non-isomorphic graphs that are co-spectral,
longitudinal field co-Ising (and consequently co-Ising), but not
quantum co-Ising. Rather remarkably, our set up finds an experi-
mental implementation in the optimization technique called quantum
annealing14,31–33. In this technique, the system evolves adiabatically
according to the following time-dependent Hamiltonian

HQA G, J, h, D, sð Þ~sHL G, J, hð Þz 1{sð ÞDMT , ð11Þ

where s 5 t/Ttot; t is a time parameter and Ttot is the total duration of
the dynamics. At the beginning of the computation, the system is
prepared in the ground state of the initial simple Hamiltonian
HQA(G, J, h, D, 0) 5 DMT. On the basis of the adiabatic
theorem34, adiabatic quantum annealing with general Hamiltonians
has been shown to be a universal model of computation by Aharonov
et al.35. In synthesis, the core idea is to evolve the system slowly
enough towards a final ground state, which is the solution of a
computational task. While the success of this paradigm depends
on the ability of avoiding level crossings with ad hoc annealing
schedules, Brooke et al.31 experimentally observed that tunneling
can hasten convergence to the solution.

In the setting specified by Eq. (11), we are interested in measuring
the observables e0, m0, and ok

0. In a realistic situation, temperature
and environment will usually excite the system. While these effects
are disruptive in the standard applications of quantum annealing, we
regard such a non-ideal implementation as a way to generate the
statistics of low energy states on which we measure the correspond-
ing observables. For this purpose, we run experiments on a D-Wave
Vesuvius programmable annealer. The hardware consists of 503
usable logical bits on an integrated circuit with superconducting flux
qubits (see13 for details on the technology). Quantum effects on the
chip are currently under investigation and there is evidence of
quantum annealing on random spin glass problems36–40. The

Hamiltonians that can be realized with the device are exactly of the
type in Eq. (11), where s is a non-linear function of time. The most
general form of the final Hamiltonian HL is given by an Ising model
whose possible spin interactions are constrained by the chip archi-
tecture. A particular limitation of the hardware is that measurements
can be performed only at the end of the evolution. Thus, the maximal
information that we can extract is encoded in the multivariate poly-
nomials of Eq. (7). On the other hand, the final state of the chip is a
result of a dynamics also governed by the transversal field MT. In fact,
our experiments attempt to identify the effects of MT in the final
statistics after the measurement outcomes are filtered out using vari-
ous type of multivariate polynomials.

We have tested the annealer on two pairs of non-isomorphic
graphs G and G9 (G13 and G’13, G27 and G’27, in Supplementary
Information Section B and C) such that SA(G) 5 SA(G9), SHL G,J,hð Þ~
SHL G’,J,hð Þ, and SHT Gð Þ=SHT G’ð Þ, i.e., with equal spectra of the adja-
cency matrix, equal classical spectra, even with a longitudinal field,
and different quantum spectra. To illustrate a possible (arbitrary)
refinement as introduced by Eq. (7), we include an extra observable,
V2, corresponding to the next-nearest neighbor interaction energy:
Vk~

X
i,j

H i, jð Þ Ak Gð Þ
� �

i,j. Notice that H(G) 5 V1/2. Figure 1

shows the statistics of measurement outcomes when the states are
distinguished through the doublet of observables {energy, magnet-
ization} on the pairs {G13, G’13}, for J 5 h 5 1/7 and J 5 h 5 1. These
are respectively the smallest and the largest values that can be reliably
set on the hardware. The final states are organized according to the
values of the two observables. As a consequence of the fact that the
two graphs are co-Ising, the measured values of the pairs {energy,
magnetization} are the same, and cannot be used to distinguish the
two graphs. Moreover, the shape of the two distributions is also the
same up to statistical errors. The shape of this distribution is assumed
to be a consequence of (noisy) open system quantum dynamics36,37

(see Supplementary Information Section D for a comparison bet-
ween experimental and thermal statistics). This means that we are
not able to identify differences in the final distributions that may
arise due to the different quantum spectra, i.e. due to non-equivalent
quantum evolution along the annealing schedule.

The graphs are indistinguishable by measuring energy and mag-
netization only. However, they become distinguishable in Figure 2 by
measuring the triplet {energy, magnetization, V2}, as clearly visible in
the statistics obtained with the chip. The pair {G27, G’27} is not dis-
tinguished by the triplet on the experimental data, as showed in
Figure 3. It should be possible, in principle, to classically distinguish
these graphs with the introduction of additional observables.
Similarly to what happens for the G13 pair, there are no noticeable
differences in the shape of the final distributions that can detect
differences in the quantum spectra.

Conclusions
The interplay between combinatorics and the classical Ising model is
well-established. We have introduced a general family of physically
meaningful graph polynomials suggesting a hierarchy of graph
invariants. We have demonstrated that the quantum Ising model is
a finer sieve to distinguish graphs than its classical analogue by con-
sidering the quantum partition function as a graph invariant. We
have tested experimentally its distinguishability power on a D-Wave
programmable annealer, by taking graphs with different quantum
spectra and the same classical Ising partition function. We used the
hardware unconventionally to generate the statistics of low energy
eigenvalues rather than focusing on the ground state. The data
obtained can distinguish one pair of graphs when measuring with
respect to a classical refinement of the partition function. We did not
find any measurable difference in the statistics of measurement out-
comes of the two pairs that can be related to non-equivalent quantum
dynamics. Notice that the transverse field spectra are very similar
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(Fig. 9 in the Supplementary Material). Of course, differences ex-
pected in an ideal quantum system are possibly lost due to decoher-
ence when approaching the classical regime at the end of the adiabatic
evolution.

Going beyond the scope of this work, it would be interesting to
compare the experimental data with numerical simulations of the
corresponding open quantum spin system at finite temperature41.
We propose two approaches to amplify the differences in the quan-
tum spectra: (a) reduce substantially the annealing time; (b) perform
measurements when the transverse field is on. Both approaches re-
quire a modification of the current control of the hardware. Another

interesting goal is to define other efficient observables, such as V2,
that would amplify the possible differences in the measurement stat-
istics. From the theoretical point of view a natural open question is
whether the transverse field alone is sufficient to define a complete
spectral graph invariant.

Methods
Experimental data collection. In order to collect enough statistics for averaging over
biases and systematic errors, we have considered 100 embeddings in the chip for each
graph. To average over precision errors when setting the intended couplings on the
machine, we have run 100 programming cycles for each embedding. For each cycle,
we have performed 1000 measurements. All the experiments have been performed

Figure 2 | The statistical distribution of measurement outcomes Nocc on the pairs G13,G’13f g. The outcomes have been now filtered after choosing a

triplet of classical observables {e0, m0, V2}. Data showed in the left panels correspond to the choice J 5 h 5 1/7. In the right panels J 5 h 5 1. Using a third

observable distinguishes the two graphs at the classical level.

Figure 1 | The statistical distribution of measurement outcomes Nocc on the pairs G13,G’13f g obtained by averaging over 100 cycles for each of the 100
different embeddings considered (10000 programming cycles in total). The horizontal red line corresponds to the median of the data while the edges of

the blue boxes correspond to the 1st and 3rd quartile. Each red cross is an outlier measurement. The outcomes have been filtered after choosing the pair of

classical observables {e0, m0}. Data showed in the left panels correspond to the choice J 5 h 5 1/7. In the right panels J 5 h 5 1, that is the maximum

strength of the couplings allowed by the hardware. With the given choice of classical observables, the distribution of measurement outcomes is not able to

distinguish the two graphs, nor at the classical, neither at the quantum level.
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choosing the shortest annealing time allowed by the hardware (Ttot 5 20 ms) in order
to minimize the effects of thermal excitations.
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21. Garijo, D., Goodall, A. & Nešetřil, J. Distinguishing graphs by their left and right

homomorphism profiles. Eur. J. Comb. 32, 1025–1053 (2011).
22. Andren, D. & Markstrom, K. The bivariate Ising polynomial of a graph. Discrete

Appl. Math. 157(11), 2515–2524 (2009).
23. Goldberg, L. A., Jerrum, M. & Paterson, M. The computational complexity of two-

state spin systems. Random Struct. Alg. 23, 133–154 (2003).
24. Kotek, T. Complexity of Ising polynomials. Combin. Probab. Comput. 21,

743–772 (2012).

25. van der Waerden, B. L. Die lange reichweite der regelmassigen atomanordnung in
mischkristallen. Zeitschrift für Physik 118, 573–479 (1941).

26. Hen, I., & Young, A. P. Solving the graph-isomorphism problem with a quantum
annealer. Phys. Rev. A 86, 042310 (2012).

27. Lieb, E., Schultz, T. & Mattis, D. Two soluble models of an antiferromagnetic
chain. Ann. Phys. 16, 407–466 (1961).

28. Sachdev, S. Quantum Phase Transitions (Cambridge University Press, Cambridge,
1999).

29. Dutta, A. et al. Quantum phase transitions in transverse field spin models: From
Statistical Physics to Quantum Information. arXiv:1012.0653.

30. Arvind, V. & Torán, J. Isomorphism Testing: Perspective and Open Problems.
Bulletin of the EATCS 86, 66–84 (2005).

31. Brooke et al. J. Quantum Annealing of a Disordered Magnet. Science 284, 779781
(1999).

32. Finnila, A. et al. Quantum annealing: a new method for minimizing
multidimensional functions. Chem. Phys. Lett. 219, 343–348 (1994).

33. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model.
Phys. Rev. E 58, 5355–5363 (1998).

34. Farhi, E. et al. Quantum Computation by Adiabatic Evolution. arXiv:quant-ph/
0001106.

35. Aharonov, D. et al. Adiabatic Quantum Computation is Equivalent to Standard
Quantum Computation. SIAM J. Comput. 37, 166 (2007).

36. Boixo, S. et al. Experimental signature of programmable quantum annealing.
Nature Comm. 4, 3067 (2013)

37. Boixo, S. et al. Evidence for quantum annealing with more than one hundred
qubits. Nature Physics 10, 218 (2014).

38. Smolin, J. A. & Smith, S. Classical signature of quantum annealing.
arXiv:1305.4904.

39. Shin, S. W. et al. How ‘‘Quantum’’ is the D-Wave Machine? arXiv:1401.7087.
40. Vinci, W. et al. Distinguishing Classical and Quantum Models for the D-Wave

Device. arXiv:1403.4228.
41. Albash, T. et al. Quantum adiabatic Markovian master equations. New J. Phys. 14,

123016 (2012).

Acknowledgments
We would like to thank Gabriel Aeppli, Andrew Fisher, Andrew Green, Itay Hen, Daniel
Lidar, Brent Segal, and Peter Young for valuable discussion. This work has been done within
a ‘‘Global Engagement for Global Impact’’ programme funded by EPSRC, and with support
from ARO grant number W911NF-12-1-0523, the Lockheed Martin Corporation and
DARPA grant number FA8750-13-2-0035.

Author contributions
W.V., S.S. and P.A.W. provided the central ideas, that were further developed by all authors.
K.M. performed the numerical exhaustive analysis of the graphs considered in the paper.
W.V. performed all data collection and analysis. A.R. contributed in the data collection. S.B.
and F.M.S. contributed in the data analysis. W.V. and S.S. wrote the main manuscript text.
All authors thoroughly reviewed the final manuscript.

Figure 3 | The statistical distribution of measurement outcomes Nocc for the pairs {G27, G’27}. J 5 h 5 1/7 in the left panels. J 5 h 5 1 in the right panels.
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