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Light, heat, action: neural control of fruit
fly behaviour

David Owald, Suewei Lin and Scott Waddell

Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road,
Oxford OX1 3SR, UK

The fruit fly Drosophila melanogaster has emerged as a popular model to

investigate fundamental principles of neural circuit operation. The sophisti-

cated genetics and small brain permit a cellular resolution understanding of

innate and learned behavioural processes. Relatively recent genetic and tech-

nical advances provide the means to specifically and reproducibly

manipulate the function of many fly neurons with temporal resolution.

The same cellular precision can also be exploited to express genetically

encoded reporters of neural activity and cell-signalling pathways. Combin-

ing these approaches in living behaving animals has great potential to

generate a holistic view of behavioural control that transcends the usual mol-

ecular, cellular and systems boundaries. In this review, we discuss these

approaches with particular emphasis on the pioneering studies and those

involving learning and memory.
1. Introduction
The appreciation that behaviours are orchestrated by functioning neural circuits

has led to several large-scale projects that are attempting to map neural dia-

grams of mammalian and insect brains [1–4]. Although these static views of

circuit architecture, or connectomes, are important road maps, they will not

explain behavioural control. Even the relatively simple 302 neuron connectome

of the round worm Caenorhabditis elegans, which has been known for 30 years

[5,6], is insufficient to explain the animal’s behaviour because internal states

and experience modulate and alter the efficacy of the neural networks [7].

Therefore, one needs to understand functional connectivity—how individual

neurons and neuronal assemblies operate together—within the brain.

This is not a trivial task by any means. On top of a connectome, one needs to

assign the mode of signalling to each component neuron, have an appreciation

of the strength of connections between neurons, in addition to learning how

different behavioural states of the animal alter the neural circuit dynamics. It

perhaps seems obvious that achieving such a complete picture of a brain is

easier when studying animals, such as invertebrates, that have a relatively

small nervous system. These numerically reduced systems are likely to provide

the first opportunities to model realistic brain function and to understand how

adaptive and context-appropriate behavioural control arises. A small number of

neurons is not the only desirable feature, because deciphering neural circuit

function requires intervention. Recent revolutionary developments allow inves-

tigators to switch identified neurons on and off while recording consequences

in larger neural networks, as the animal behaves. Many of these tools and

approaches were first demonstrated in research using the fruit fly Drosophila
as a model, and these will be emphasized in this review.

At the heart of all of the new developments has been the general concept

that biology can be understood by harnessing the numerous intricate cell bio-

logical processes that have arisen across species; shaped and honed by the

selective pressures of evolution. In this review, we will discuss how some of

these highly evolved mechanisms from a multitude of organisms, including

the fly itself, have been exploited as transgenic tools. By expressing them in
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Figure 1. Schematic illustrating some of the many behaviours that have been
investigated using fruit fly genetics. Flies must decide which of the homeo-
static behaviours, sleep, feed, drink, mate, fight and groom, to preferentially
engage in and which mode of locomotion, walk, jump or fly, to employ to
accomplish getting where they need to go. They can also adjust their strategy
through learning.
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either a heterologous or ectopic manner, fly researchers have

probed how neural circuit activity translates to behavioural

control, and even how memory is used.
2. The fruit fly as a model for behaviour
Behaviour has been studied in the fruit fly since the pioneering

neurogenetic studies in the early 1970s by the late Seymour

Benzer and colleagues [8]. The principle was straightfor-

ward—the same mutagenesis strategies that uncovered

mysteries of developmental biology [9,10] would yield insight

into the generation of behaviour. These early efforts in the

Benzer laboratory initiated the field by jumping into some of

the most interesting areas, such as circadian rhythms [11],

courtship [12] and learning and memory [13]. More recently,

studies have extended to include feeding [14–16], aggression

[17], sleep [18,19] and motivation [20,21], as well as longevity

[22] and neurodegenerative conditions [23–25].

We now know that in addition to being a fantastic genetic

model, the fruit fly nervous system has an intermediate

numerical complexity to the worm or mouse, making it an

appropriate model to study conserved neural circuit under-

pinnings controlling a fairly sophisticated behavioural

repertoire. The approximately 100 000 neurons of the fly

brain orchestrate behaviours that facilitate the survival and

propagation of the species (figure 1). Recent genetic tools

now allow one to reproducibly and specifically manipulate

the activity of many neuron types in the fly brain. This ability

to directly influence the function of specific cells is a key

feature of the studies emphasized here.
3. Cell-specific gene expression
The first critical step towards controlling cells is to have a

means to express effector genes with the desired cellu-

lar specificity. Most of these approaches in the fly rely

on transposable elements and binary gene expression sys-

tems (figure 2). Promoter regions confer cell-type-specific

expression to genes that lie downstream. These promoters,

and their cell-type-specific expression, can be captured if a

transposable P-element carrying a reporter gene reading
frame inserts downstream [28–30]. The reporter carried by

the transposon then ‘enhancer-traps’ the promoter and

gains expression in the cells that usually express the trapped

gene. P-elements have been genetically engineered to a fine

art in the fly and many variants now exist [31,32]. Critically,

their mobilization can be controlled at will, and engineered

elements are not capable of moving again in an unassisted

manner. This has allowed the generation of thousands of

stable fly strains with P-elements inserted in unique positions

in the fly genome, and that by virtue of position can be used

to express other genes in specific cells in the animal.

If the P-elements encode a transcription factor, this tran-

scription factor can be used in a binary manner to express

another gene with the same cell-type specificity as that

governed by the enhancer driving the transcription factor.

The critical trick is to use a transcription factor from another

organism that lacks a cognate factor in flies. The first version

of this was developed using the budding yeast GAL4 tran-

scription factor and the upstream activating sequence

(UASGAL4) that is bound by GAL4 driving a reporter gene

[33] (figure 2). Selecting a suitable transcription factor for

this type of application is not trivial. One needs to make

sure the same transcription factor binding site is not used by

a homologous or unrelated fly transcription factor; e.g. the

budding yeast PHO4 shares a site with c-Myc [34] making

it less suitable for this purpose. The GAL4 and UAS-

reporter parts were imported into the fly on two engineered

P-elements [33]. When combined, the cell-type-specifically

expressed GAL4 drives expression of the reporter with

the same cellular specificity, allowing one to visualize the

expression (figure 2).

Rather than relying on random transposon insertion, one

can logically select promoter regions from genes that are

known to be expressed in the cell type of interest, to drive

GAL4 with a similar cell-specificity. For example, the TH
gene encodes tyrosine hydroxylase, an enzyme that is required

for the synthesis of dopamine [35]. Consequently, a fragment

from the TH-promoter [36] directs gene expression in some

dopaminergic neurons (although this not always infallible; in

fact, the heavily employed TH-GAL4 does not label rewarding

dopaminergic neurons [37,38]). Similarly, a fragment from the

acetylcholine transporter drives gene expression in many

cholinergic neurons [39]. These two examples, however, pro-

vide expression control confined to most of the cells that use

dopamine or acetylcholine but not to defined subsets of this

cell type in a particular region of the brain. This is important

because it is clear that anatomically discrete neurons that use

the same transmitter have unique functions. This is exemplified

by fly dopaminergic neurons; those in the central complex

regulate arousal [40–42], whereas others innervating discrete

zones in the mushroom body lobes convey positive or nega-

tive reinforcement [21,37,38,43,44], or provide motivational/

state-dependent control [20]. Clearly, it is critical to control

individual dopaminergic neurons to understand how each

one functions. Although more precise control can sometimes

be obtained with the randomness of different P-element

strains, the GAL4 system also provides some logic to increase

cellular specificity.

In yeast deprived of galactose, GAL80 binds to GAL4 and

represses its activity [45]. Ectopic co-expression of GAL80

therefore allows one to inhibit GAL4 activity in the fly [46]

(figure 2). Partially overlapping GAL4 and GAL80 expression

domains limit GAL4 activity to a subset of cells that only
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Figure 2. The GAL4, split-GAL4, LexA and QF binary expression systems. (a) The GAL4 coding region is either cloned downstream of a promoter stretch (e.g. as
shown, from the oamb gene), or inserted randomly in the genome on a transposable element. The specificity of the local enhancer confers similar cell-specific
expression on GAL4. This source of GAL4 can then be combined with a UAS-driven green fluorescent protein (GFP) transgene to visualize the resulting expression
pattern. (b) A confocal microscope projection through such a GAL4 line that specifically expresses GFP in a subset of rewarding dopaminergic neurons (green).
Additional expression has been removed for illustrative purposes. The brain is generally labelled with an antibody against the synaptic protein Bruchpilot (magenta).
Scale bar, 40 mm. (c) The specificity of expression can be improved using the split-GAL4 positive intersectional approach where the DNA-binding (DBD) and trans-
activation domains (AD) are expressed using different enhancers and a functional GAL4 is only reconstituted in cells that express both parts. (d ) Negative intersection
with GAL80 can be used to inhibit GAL4 activity. This control can be constitutive or temperature regulated using GAL80ts. (e) The binary LexA/LexAop system
functions similarly to GAL4 although LexA does not have a regular inhibitory partner. One study intersected its function using RNAi to LexA [21]. Versions
also exist where the LexA DBD is fused to the GAL4 or QF AD [26,27]. ( f ) The QF system can be inhibited by the QS protein. Furthermore, QS-mediated inhibition
can be temporally regulated by feeding flies with quinic acid.
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express GAL4. Several useful GAL80 strains exist, such as Cha-

GAL80, that suppresses expression in cholinergic neurons [47],

TH-GAL80 in dopaminergic neurons [48], DvGlut-GAL80 [49]

in glutamatergic neurons and teashirt-GAL80 [50] that removes

most expression in the ventral ganglion and thus confines

expression to the brain.

GAL80 has additional strengths. Classic studies in yeast

genetics often screened for temperature-sensitive muta-

tions. Such a temperature-sensitive variant of GAL80, when

ubiquitously expressed in the fly, permits temporal control

of GAL4-directed gene expression [51,52]. GAL80ts exhibits

a similar temperature sensitivity in the fly as it does in

yeast, inhibiting GAL4 below 258C and losing suppression

above 298C [52]. Simply elevating ambient temperature

alters the body temperature of the flies and releases

GAL80ts inhibition of GAL4. GAL80ts is particularly useful

to control the expression of activity-regulating tools that

lack intrinsic temporal features, e.g. when ectopically expres-

sing potassium channels such as Kir2.1 [53], EKO [54] or
DORK [55] to silence, or at least reduce neural activity, inhibi-

tors or toxins such as tetanus to inhibit exocytosis [56], or

pertussis to inhibit Gi signalling [57], genetically encoded

RNA interference [58,59], or constitutively active dominant

negative transgenes.

The general principles of the GAL4-UAS system have

been replicated in additional binary systems based on the

bacterial LexA transcription factor and its LexAop [26] and

the Neurospora crassa QF and its QUAS [27,60] (figure 2). In

addition, methods exist that allow one to temporally control

each of these systems. The QF factor can be suppressed

by expression of the Neurospora protein QS and the QS

inhibition can in turn be relieved by feeding flies with

quinic acid [27,60]. A fusion of the LexA DNA-binding

domain with either the GAL4 or QF activation domain

to form LexA-GAL4AD or LexAQF permits control using

the GAL80 or QS systems, whereas a LexA::VP16 version

that uses the herpes viral VMW65 activation domain is

resistant to GAL80 and QS control [26,27]. Combining the
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three binary systems in parallel in the same fly allows

simultaneous and independent labelling of three sets of

neurons, or when combined with the numerous effector and

reporter transgenes, described later, permits an amazing combi-

nation of parallel and independent circuit manipulations in the

same behaving fly.

One can also intersect the binary expression systems in

logical ways to limit expression to either cells that are

common to the two lines, or cells that are unique to one of

the two lines. There are many ways to do this, for example

one can use LexA to drive expression of the yeast FLP recombi-

nase which removes a FLP-recombinase target (FRT) sequence

flanked transcriptional stop cassette from a UASGAL4 target

transgene [61,62]. Therefore, only where LexA overlaps with

the GAL4 will the GAL4 be able to drive the UASGAL4 target

transgene. Alternatively, the FRT sequences can flank the

target transgene reading frame [63] so that the target is not pre-

sent in the LexA/FLP positive cells and so is only driven in the

cells that are unique to the GAL4 line.

A similar intersectional logic can be used with com-

ponents of a split-GAL4 system. Independent expression of

separate DNA-binding and activation domains in partially

overlapping patterns only reconstitutes the active transcrip-

tion factor in the cells that are common [64] (figure 2).

Sometimes the resulting cellular specificity is spectacular.

A large library of mushroom body-related split-GAL4

lines has recently been published [65]. A split LexA system

has also been reported [66] and approaches have been

generated that permit exchange of cassettes encoding

GAL4, LexA, QF and the split systems within transposable

element backbones in a known genomic context [67,68].

This incredible genetic flexibility greatly facilitates production

of a customized tool-kit to direct cell-specific expression of

effector transgenes.
4. Temporal control of specific neurons
The most successful tools that have been developed can be

driven by the GAL4-, LexA- or QF-based systems and provide

the ability to control specific neurons with temporal resolution

(figure 3). In this section, we will overview the various effectors

(figure 4)—putting their development in a historical context.

However, the reader should note that beyond discussing the

founding examples, other studies have been selected to high-

light a particular use, and it is not our objective to provide a

comprehensive list here.
(a) Shibirets1-temporal blockade of neurotransmission
Shibire was the first genetically encoded tool that permitted

temporal control of neural function and it fundamentally

altered the way neural circuit analysis is approached in the

fly. In a seminal study in the early 1970s, a set of non-comple-

menting temperature-sensitive Shibire alleles were discovered

[69,70]. Mutant animals showed impaired locomotion at

temperatures above 298C [69]. They also lost the on and off

transients in electroretinograms suggesting a possible defect

in neural signalling [70]. Importantly, the disruption was

reversible; the flies regained wild-type behaviour and physi-

ology within seconds/minutes of being returned to room

temperature. When cloned, Shibire was shown to interact

with the membrane dynamics of endocytosis [71–73] and

to encode a dynamin protein [74,75] (figure 4). In addition,

at restrictive temperatures, shits1 dynamin has been shown

to lead to rapid synaptic fatigue within 20 ms of repetitive

stimulation at the dorsal longitudinal muscle neuromuscular

synapses of adult Drosophila [76]. The groundbreaking devel-

opment involved cloning the Shits1 coding region under

UASGAL4 control [77]. This UAS-Shits1 transgene allowed
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one to misexpress Shits1 in neurons of choice and transiently

block their neurotransmission by elevating the temperature of

the flies above the restrictive 298C [77].

The utility of UAS-Shits1 was first demonstrated in a

memory study testing for an acute role of dorsal paired

medial (DPM) neurons in memory consolidation [78] and

was quickly followed by studies of the mushroom body neur-

ons [79,80]. DPM neurons were identified as expressing the

amnesiac locus and they project complex processes through-

out the mushroom body lobes [78]. This DPM study

exemplified a key strength of the temporal control provided

by UAS-Shits1. Efforts to ablate the DPM neurons using cell

death genes were ineffective because earlier larval expression

of the GAL4 line that labels DPM neurons in the adult fly

lead to lethality. Instead, acutely blocking DPM neurons in

the adult fly using UAS-Shits1 disrupted the stability of olfac-

tory memory; a near phenocopy of the defect observed in

amnesiac mutant flies [78].

Another invaluable feature of UAS-Shits1 is reversibility.

In most cases, normal neural function resumes when the

flies are returned from the restrictive to permissive tempera-

ture. This was exploited in mushroom body studies that used

UAS-Shits1 to temporally limit inactivation to discrete periods

of the learning and memory process [79,80]. By only elevating

the temperature during either the training, testing or inter-

vening periods of the experiment, mushroom body neurons
could be selectively crippled during the memory acquisition,

retrieval or consolidation phases. Follow up studies on the

mushroom body have led to the general idea that olfactory

memory is processed by the anatomically discrete g, a0b0

and ab subsets of the overall 2000 mushroom body neurons

functioning together as a time-sensitive system. This inter-

action is most clear following appetitive conditioning where

neurotransmission from the g neurons is required for short-

term memory retrieval, a0b0 neuron output is required after

training with the DPM neurons to stabilize memory, and

the ab neurons are most critical for long-term memory

retrieval [81–85].

UAS-Shits1 of course has caveats. It is not clear whether it

uniformly blocks the release of all synaptic vesicles, such

as those that are ‘dense core’ containing monoamine and

neuropeptide transmitters. Nevertheless, there are numerous

examples where the tool has created a phenotype in dopa-

minergic and peptidergic neurons. For example, UAS-Shits1

has been instrumental in determining the nature of dopamin-

ergic reinforcement in the fly and it is noteworthy that the

mushroom body ab and g neurons express short Neuro-

peptide F [86], although some phenotypes might result

from disruption of the co-release of a currently mysterious

fast-transmitter. Even after 15 years, UAS-Shits1 remains the

tool of choice to test the importance of specific neurons in a

particular neural process.
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(b) Optogenetic neural stimulation
Neuroscience across species has recently been revolutionized

by light-triggered neural activation, or as it was later termed

‘optogenetics’. The proof of concept of optogenetics was

demonstrated using heterologous expression of components

of the fly visual system—arrestin 2, a rhodopsin, and the

alpha subunit of a G-protein—in hippocampal neurons [87].

Broad illumination of a population of neurons elicited action

potentials only in those cells expressing the ‘chARGe’ system.

This study firmly established the precedent that if such

switches could be selectively expressed in neurons of interest,

they could be specifically activated by light that was generally

applied across the brain.

The second pioneering step demonstrated the utility of

optogenetics in live-behaving fruit flies. Rather than use the

three visual system components of chARGe, the authors

expressed the rat ATP-responsive P2X2 receptor [88] (figure 4)

that does not have a clear equivalent in the fly genome. Neurons

expressing P2X2 could then be selectively activated in intact flies

by photo-release of an injected caged ATP; in effect producing

light-controllable animals. The first results were spectacular.

Expression of UAS-P2X2 in the fly giant fibre neurons led to

light evoked take-off, even in flies that lacked a head! In

addition, activating the TH-GAL4 labelled population of dopa-

minergic neurons lead to alteration of locomotor behaviour.

Another study from the same group used UAS-P2X2 to generate

male-specific courtship song by activating fruitless-expressing

neurons in the thoracic ganglion of female flies. Although

these females sung ‘out-of-tune’, their song could be perfected

if the females also expressed the male-specific fruM isoform

[50]. These results suggest that a song-generating motor pro-

gramme exists in female flies, but that it lacks the male

physiology and neural commands for song initiation. Another

impressive demonstration formed phantom aversive memories

by pairing odour exposure with P2X2-mediated light-activation

of TH-GAL4 dopaminergic neurons [43].

The optogenetic tools that are now the most widely used

are based on microbial opsins that are integral to cation chan-

nels [89,90]. As the name suggests, the Channelrhodopsins

(figure 4) provide an easier tool for neuronal activation because

the product of a single transgene can be directly gated by light.

There is no requirement for photo-uncagable compounds

but in many cases the critical all-trans-retinal cofactor needs

to be provided in the fly’s diet. However, until recently, low

channel conductance and poor penetration of the fly cuticle

of the short wavelength light required to activate Channelrho-

dopsin have impeded its application to adult fly behavioural

studies.

The first optogenetic study of learning in Drosophila
bypassed the issue of the adult cuticle by expressing a UAS-

Channelrhodopsin 2 (ChR2) in transparent larvae [91]. One

hundred millisecond light pulses delivered to motor neurons

expressing ChR2 evoked activity in body wall muscles at

the neuromuscular junction. The authors also expressed

ChR2 in either TH-GAL4 labelled dopaminergic or Tdc2-

GAL4 labelled octopaminergic neurons and paired their

photoactivation with odour exposure. Whereas dopaminergic

neuron activation formed aversive memory, the octop-

aminergic neuron encoded experience was appetitive [91].

UAS-ChR2 was also employed to study the consequences of

peripheral sensory neuron activation in adult flies [92–94]

and it has been successfully used in physiological studies
where part of the head cuticle is removed and the brain is

directly illuminated [95–98].

Recent technical improvements have made Channelrhodop-

sin variants that are much more useful for adult fly behaviour.

For instance, shifting the activation into the red spectrum in

UAS-ReaChR [99] increased penetration of the fly cuticle as

well as using wavelengths of light that apparently do not

interfere with normal fly vision. UAS-ReaChR permitted time-

resolved activation of courtship song [100]. ReaChR was also

employed in a recent study to demonstrate that activating

output neurons from the tips of the horizontal lobes of the

mushroom body, drives avoidance behaviour [101]. Further

novel variants of Channelrhodopsins with distinct properties

have been identified by de novo sequencing more than 100

algal transcriptomes [102]. The activation wavelengths of

CsChrimson lie within the red spectrum (figure 4). The authors

demonstrated CsChrimson’s value for studying fly behaviour,

by expressing it in projection neurons that mediate CO2 avoid-

ance and observing that flies avoid illuminated quadrants of a

plate [102]. CsChrimson was also instrumental in a recent

study of mushroom body output neurons. CsChrimson-

mediated activation of individual sets of mushroom body

output neurons was shown to either drive avoidance or

approach behaviour [103]. Lastly, mutagenesis has been used

to generate ChR2-XXL, a Channelrhodopsin with high

expression level and a long open-state [104] and chemical engin-

eering has provided artificial retinal analogues that can alter

colour tuning and light sensitivity of ChR2 variants [105].
(c) Temperature-triggered neural activation
Changes in ambient temperature such as those that are appro-

priate for inactivating neurotransmission with Shibirets1 [77]

can also be used to activate neurons that misexpress tempera-

ture-sensitive transient receptor potential (TRP) channels.

Both the fly heat-activated dTrpA1 [106] and cold-activated

rat TRPM8 [107,108] channels have been effectively used in

the fly (figure 4).

The fly dTrpA1 gene encodes a non-specific cation channel

that is required in a small number of neurons in the brain for

temperature preference [106]. Ectopically expressed UAS-

dTrpA1 depolarizes neurons when flies are exposed to more

than 258C, allowing one to stimulate specific neurons by raising

the temperature of the flies. An early study expressed UAS-

dTrpA1 in circadian neurons with pdf-GAL4 and found that

continuously stimulating these neurons, by housing the flies

at 278C, promoted wakefulness in the early night [109]. More

acute activation protocols were used in another study that

identified three layers of a neural circuit that provides hunger

control of the behavioural expression of sugar-reward

memory [20]. UAS-dTrpA1 mediated activation of Neuropep-

tide F (dNPF), the fly orthologue of mammalian NPY,

producing neurons prior to memory testing mimicked food-

deprivation and led to expression of sugar memory even in

food satiated flies. By contrast, similarly timed dTrpA1-

mediated activation of the mushroom body innervating dopa-

minergic MB-MP1 neurons suppressed sugar memory

retrieval in hungry flies.

In another striking study, dTrpA1-mediated activation of

dorsal fan-shaped body neurons was shown to be sufficient to

put flies to sleep. Furthermore, the artificially induced sleep

was capable of facilitating long-term memory formation [110].
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Acute neural activation with UAS-dTrpA1 has also been

instrumental in studies of reinforcement signalling during

learning. As briefly mentioned above, blocking dopaminergic

neurons with UAS-Shits1 implicated specific groups of these

neurons in aversive [111] and rewarding reinforcement

[37,38] during olfactory conditioning. Furthermore, the opto-

genetic study of Claridge-Chang et al. [43] revealed that

dopaminergic neurons in the PPL1 cluster were those that

were likely to be sufficient to provide aversive reinforcement.

Further studies with dTrpA1-mediated activation established

that the MP1 and MV1 neurons within PPL1 have reinforcing

properties [44], in addition to the MB-M3 neurons from an ana-

tomically discrete cluster called PAM [112]. dTrpA1-mediated

neural activation combined with UAS-Shits1 experiments also

facilitated the discovery of rewarding dopaminergic neurons

in the PAM cluster. Pairing their heat-activation with odour

formed robust odour approach behaviour, whereas blocking

them compromised sugar- or water-rewarded learning

[21,37,38,113,114].

To date, the cold and menthol-activated TRPM8 has been

less frequently employed [107,108,115]. In the original fly

study, UAS-TRPM8 was driven in neurons that express the

CCAP neuropeptide and activation of CCAP neurons by pla-

cing the flies at 158C was shown to induce wing expansion in

newly eclosed adults [116]. UAS-TRPM8 was also used to

corroborate the dTrpA1 findings that activation of the MB-

MP1 dopaminergic neurons suppressed appetitive memory

expression in hungry flies [20].

Ectopic expression of UAS-TRPM8 or UAS-dTrpA1 driven

by large GAL4 collections has also been used to screen for

neurons contributing to a wide-range of behaviours, such

as feeding, walking, grooming, courtship, copulation and

aggression [117–124]. Lastly, a clever recent study showed

that dTrpA1-mediated activation of random collections of

mushroom body Kenyon cells could be paired with an elec-

tric shock punishment to induce aversive memories; with

the flies subsequently avoiding the zone of a temperature gra-

dient that would lead to the reactivation of these same

neurons [125].

In principle, it should be possible to combine dTrpA1 and

TRPM8 tools by using the different binary expression sys-

tems, to express them in discrete sets of neurons of the

same fly. These neurons could then be independently con-

trolled with the relevant changes in temperature required to

activate the two TRP channels.

It is important to note that the onset of activity is much

slower with heat than it is with light control, and that opto-

and thermogenetic stimulation will not always provide simi-

lar results. For instance, a separation between a deterministic

and a probabilistic component of male courtship song was

evident using UAS-ReaChR mediated activation of neurons

but not using thermogenetic UAS-dTrpA1 [100]. Most of the

optogenetic and thermogenetic neural stimulation studies

discussed above stimulate particular neurons without

detailed consideration of the firing dynamic. The obvious

success of these studies therefore surprisingly questions the

importance of temporal activity patterns in these neurons.

It will be interesting to record from neurons during stimu-

lation with these tools and to compare the evoked activity

patterns with those generated by physiologically relevant

stimuli. It is conceivable that some neurons are constrained

to adopt one of a few possible firing states, regardless of

the activity that is injected with the optogenetic or
thermogenetic actuators. Another potential issue of artifi-

cially induced firing is the observation that excessive firing

can put neurons into a refractory depolarization block

period where they do not fire at all [126]. In such a case,

investigators might be misled to think an observed pheno-

type results from excitation when in fact the neurons have

been inhibited.
5. Recording circuit physiology
Stimulation and inhibition techniques allow one to assemble

a low-resolution idea of how certain neural circuits are

ordered and operate to direct behaviour. These models can

be challenged and extended by using the same cell-specific

expression control to produce a number of genetically encoded

reporters of neural activity and cell-signalling processes

(figures 3 and 4).

Despite having lower temporal resolution, genetically

encoded reporters do have advantages over single electrode

electrophysiology. They can be relatively easily and reprodu-

cibly targeted to the same cell type and with the right control,

they can facilitate recording from specific cells or neural

ensembles in the small fly brain. Lastly, they can be moni-

tored by a somewhat less invasive procedure that only

requires a small window to be opened in the head cuticle

of a fly that is mounted in a suitable orientation for viewing

under the microscope and that permits the fly to respond to

the relevant stimuli. All of the currently popular reporters

rely on variants of fluorescent proteins that ‘report’ activity,

or a particular cellular event, by changing their emission.

The difficulties in their use are therefore mostly related to

recording fluorescence. Although the animal is mounted

under the optics of a suitable microscope, movement of the

tissue needs to be minimized and accounted for because

subtle shifts of the focal plane lead to measurable changes

in fluorescence. This is a particular issue if the sensitivity

and signal-to-noise ratio of the reporter is low. One way

to account for that is to co-image a second non-activity

reporting fluorescent marker in the same focal plane.

Lastly, as some of the reporters bind ions or metabolites,

they could potentially buffer, and therefore disrupt, the

cellular process that they are designed to record. Neverthe-

less, the advantages of genetically encoded reporters largely

outweigh the concerns. The ability to specifically express

the reporter of choice in the neurons of interest means that

targeted recording is readily and reproducibly achievable.

At present, the most commonly used reporters monitor

changes in calcium concentration [127–133], synaptic vesicle

fusion [134], second messengers (such as cAMP [135]) or vol-

tage [136,137] (figure 4). Most of these tools have been used

to observe spontaneous or stimulus-evoked responses, as

well as to measure neural responses to artificial stimulation

of potentially afferent neurons.

A pioneering study used the GAL4-UAS system to express

the calcium-sensitive luminescent protein apoaequorin in

Drosophila Kenyon cells [138]. Surprisingly, when the essential

cofactor coelenterazine was added to dissected brains in a

luminometer, the mushroom bodies exhibited a synchronous

oscillation in intracellular calcium; a phenomenon that was

altered in brains taken from forgetful amnesiac mutant flies.

Three landmark studies imaged odour-evoked neural activity

in the antennal lobe using either live fly or partly dissected
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fly head preparations. Expression of the ratiometric calcium

sensor UAS-cameleon 2.1 [127] in projection neurons measured

odour-evoked activity in the antennal lobes and mushroom

body calyces [139]. A more detailed study [140] measured

synaptic transmission at multiple layers of the olfactory

system by expressing the synaptic vesicle localized pH-

sensitive UAS-Synapto-pHluorin (spH) in olfactory sensory

neurons, projection neurons and inhibitory local neurons in

the antennal lobes. Natural odours were seen to elicit similar

combinatorial patterns of activity in the sensory neuron

and projection neuron layers of the antennal lobe suggest-

ing a faithful transmission of odour information within

identifiable glomeruli [140]. In addition, the ability to record

synaptic transmission revealed that projection neurons have

recurrent synapses in the antennal lobe and that local neurons

provide broad interglomerular inhibition. A similar conserved

sensory-projection neuron activation was also observed using

the calcium-sensitive UAS-GCaMP reporter [141].

Although Synapto-pHluorin provides a more direct

measure of vesicle dynamics than presynaptic calcium

influx, the increased sensitivity and improved speed of a

new generation of GCaMP reporters (GCaMP6 can detect

single action potentials) [133] has made GCaMP the most

popular activity reporter. However, GCaMP and spH have

both been heavily employed at all levels of the neural circui-

try involved in olfactory memory. For example, several

studies have identified physiological changes in odour-

evoked responses after training, or ‘memory traces’ in the

mushroom body neurons [142–145], and the mushroom

body-associated DPM and anterior paired lateral (APL) neur-

ons [146–148], some of which are altered in memory

defective flies [146,149], suggesting their plausible impor-

tance in learned behaviour. Other applications have

included the visualization of sparse odour coding in the

Kenyon cell population [150–152], reward and punishment

signalling in reinforcing dopaminergic neurons

[21,37,38,153,154], activity in dopaminergic neurons after

training [153,155,156] and learning-induced changes in

odour-evoked drive to neurons downstream of the mush-

room body [101,157–159].

As calcium is only ever a surrogate for neural activity, and

direct physiological recording is tricky for single cells

and impossible for larger ensembles, there has been great

interest in developing genetically encoded fast voltage

sensors (figure 4). There is still someway to go, but the

recently described ArcLight and FRET-opsin reporters

suggest robust millisecond resolution voltage recording will

be achievable [136,137,160]. The ideal voltage sensor would

partially replace the need for classical electrophysiology

and make it possible to perform multi-channel ensemble

recording in the small fly brain.

Genetically encoded sensors can also allow one to monitor

changes in cAMP second messenger signalling. These are

particularly useful in neuroscience because several neuropep-

tide, monoamine and fast-transmitters evoke metabotropic

responses in recipient neurons through G-protein-coupled

receptors. The Epac1-camps cAMP sensor [135] was first

employed in fly circadian neurons to show a modulatory

effect of the PDF neuropeptide [161] and to later determine

that the clock network comprises multiple independent

oscillators [162]. Epac1-camps and a Protein kinase A sensor

AKAR2 [163] have also been used to measure the effect of

extraneous dopamine on mushroom body neurons [164,165].
Finally, genetic approaches also exist to mark cells that are

subject to dopaminergic modulation [166].
6. Combining the approaches to assemble
functional neural pathways

Opto- and thermogenetic stimulation and inhibition and

recording studies permit the identification of component

neurons that contribute to behaviours but do not themselves

provide information about neural circuitry. It is necessary to

understand how they are embedded within a larger context—

what neurons lie upstream and downstream. Knowing the

neurotransmitter a particular neuron uses can be very helpful

for this purpose. If neural stimulation allows one to generate

an overt behavioural change, such as mimicking a change in

the animals state or forming a memory, one can assume that

the relevant downstream neurons must express receptors to

receive the signals. Cell-specific expression of RNA interfer-

ence constructs to neurotransmitter receptors can therefore

be used to identify the sites in the brain where the gain of

function transmitters act, and therefore to map functional

connectivity. This is more difficult for fast-transmitters

because of the complexity of the number and subunit compo-

sition of their receptors but it is fairly straightforward for

neuropeptides and monoamines, which often exert their

function via single or small numbers of receptors that are

single subunits.

As previously discussed, dTrpA1-mediated activation of

peptidergic dNPF neurons conferred a food-deprived like

state that promoted the behavioural expression of appetitive

memory [20]. After finding that loss of the dNPF receptor

npfr1 gene locked the flies in an apparently food-satiated

state and inhibited appetitive memory expression, the

authors used cell-type-restricted expression of UAS-npfr1RNAi

to identify where dNPF acts. They identified the MB-MP1

dopaminergic neurons as a key site where dNPF signalling

is required to gate appetitive memory expression. As noted

earlier, UAS-Shits1 and UAS-dTrpA1/TRPM8 experiments

subsequently established an inhibitory mode of operation

for MB-MP1 neurons, thus leading the authors to propose a

hierarchical inhibition circuit motif [20]. Hunger promotes

the release of dNPF, which releases the inhibitory influence

of MB-MP1 dopaminergic neurons to facilitate the expression

of food-relevant memories.

If stimulation of a particular set of neurons results in an

ectopic behaviour, the relevant downstream receptor can also

be identified, by testing whether the activation phenotype

remains in a receptor mutant background. For example, pair-

ing odour exposure with UAS-dTrpA1 mediated activation of

Tdc2-GAL4 labelled octopaminergic neurons formed a labile

appetitive memory, but it could not be formed in flies that

were compromised for either the Oamb alpha-adrenergic-like

receptor or the octb2R beta-adrenergic-like receptor [38].

These two receptors appear to exert their learning-related func-

tions in different subsets of reinforcing dopaminergic neurons.

Consequently, Tdc2-GAL4 activation also failed to implant

reward memory in a dumb1 mutant background that lacks

the D1-like dopamine receptor.

A similar mutant background approach established that

the aggression-promoting effects of dTrpA1-mediated acti-

vation of Tachykinin-releasing neurons required the function

of the Takr86C-encoded receptor [124].
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With sufficient and independent cell-specific control, inves-

tigators can combine as many of the described tools as they can

muster in one fly brain. For example, calcium imaging can be

combined with UAS-dTrpA1 and UAS-Shits1-mediated acti-

vation or inactivation of neural subtypes to understand

functional connectivity. Such an approach was used in a

recent study that uncovered feedback inhibition within the

mushroom bodies [152]. Odour-evoked activity was higher at

the restrictive temperature in mushroom body neurons that

coexpressed UAS-GCaMP3 and UAS-Shits1. The feedback

comes from the GABA-ergic APL neurons that have elabo-

rate processes throughout the mushroom body. Expressing

lexAop-dTrpA1 in Kenyon cells and UAS-GCaMP3 or UAS-

spH in APL neurons revealed that the mushroom body drives

the APL neurons. Further experiments that required intersec-

tional genetics to express UAS-Shits1 or UAS-dTrpA1 cleanly

in APL neurons and lexAop-GCAMP3 in Kenyon cells revea-

led that APL neurons inhibit odour-evoked activity in the

mushroom body, thereby closing the feedback loop.

A similar strategy was used to investigate the effects of

dopamine release onto the mushroom body [167]. Discrete sub-

sets of dopaminergic neurons were activated using UAS-dTrpA1
expressed under the control of various GAL4 drivers. Cyclic

AMP levels or PKA activity were simultaneously monitored

in the mushroom body neurons expressing either Epac1-

camps [135], TEpacVV [168] or the PKA-reporter AKAR3 [169],

respectively. Alternatively the Ca2þ sensor GCaMP3 driven

by a mushroom body neuron-restricted promoter was used to

measure odour-evoked activity following an artificial learning

paradigm pairing odour-presentation and dTrpA1-mediated

activation of dopaminergic neurons [167]. The use of tempera-

ture-regulated tools in combination with imaging is thus a

powerful approach, although temperature-induced movement

can make the imaging of small processes tricky.

An alternative to thermogenetics is to combine optoge-

netics or chemogenetics with imaging or electrophysiology.

For example, application of ATP onto mushroom body neurons

that express UAS-P2X2 while recording electrophysiologically

from projection neurons and local neurons in the antennal

lobe suggests a functional feedback within these layers of the

olfactory circuit in the fly [170]. Using a similar approach,

glutamate was shown to be an inhibitory neurotransmitter

in the fly antennal lobe. Activating glutamatergic local neurons

using UAS-P2X2 expression and ATP application while record-

ing from projection neurons revealed a hyperpolarizing

response [171]. UAS/lexAop-P2X2-mediated activation of

pdf-GAL4 expressing circadian neurons was also successfully
employed in combination with GCaMP and Epac1-camps

imaging in putative follower neurons in the clock system [162].

Channelrhodopsins have also been useful in such endea-

vours. An impressive study combined GCaMP imaging of

individual dendritic claws on a single Kenyon cell with UAS-

ChR2 optogenetic activation of subsets of projection neurons

and electrophysiological recordings of Kenyon cells [95]. The

authors found that each of the average of seven claws per

Kenyon cell responded as an individual, and that activity in

three to four of them was likely to drive the cell to spike.

Another study demonstrated functional connectivity in

the motion detection part of the fly visual system. UAS-

ChR2 was expressed in small-field T4 and T5 cells and

electrophysiological recordings were made from lobula

plate tangential cells [172].
7. Closing remarks
Beyond being a fabulous test-bed for new genetically encoded

tools, the future looks very bright for studies of neural circuit

function in the fly. Many studies already suggest that important

neuroscience questions can be addressed and that conserved

mechanisms will be revealed that have general relevance.

With improved resolution of microscopy and tools that

are localized to cellular subcompartments, one can foresee the

ability to combine systems neuroscience and synaptic physi-

ology in the brain. Recent studies in the more accessible

preparation of the larval neuromuscular junction have for

example used synaptically targeted GCaMP3 to distinguish

between spontaneous and evoked modes of neurotransmission

[173,174]. Others have employed ChR2 or a light-gated ionotro-

pic glutamate receptor to fine-tune synaptic transmission at the

neuromuscular junction [175,176]. In principle then, it should

be feasible to combine on and off switches with both detailed

synaptic recordings and behavioural analyses. This will not

be trivial but tethered fly preparations have already been devel-

oped that permit neural manipulation and recording while the

animal is still able to fly [177] or walk [178].
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