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Abstract Genetic studies are traditionally based on single-gene analysis. The use of these analyses

can pose tremendous challenges for elucidating complicated genetic interplays involved in complex

human diseases. Modern pathway-based analysis provides a technique, which allows a comprehen-

sive understanding of the molecular mechanisms underlying complex diseases. Extensive studies uti-

lizing the methods and applications for pathway-based analysis have significantly advanced our

capacity to explore large-scale omics data, which has rapidly accumulated in biomedical fields. This

article is a comprehensive review of the pathway-based analysis methods––the powerful methods

with the potential to uncover the biological depths of the complex diseases. The general concepts

and procedures for the pathway-based analysis methods are introduced and then, a comprehensive

review of the major approaches for this analysis is presented. In addition, a list of available path-

way-based analysis software and databases is provided. Finally, future directions and challenges for

the methodological development and applications of pathway-based analysis techniques are dis-

cussed. This review will provide a useful guide to dissect complex diseases.
Introduction

The etiology for complex human disease is complicated, which

involves numerous genes, environmental factors and their
interactions [1]. Yet until recently, the genetic basis for most
complex diseases has been largely unknown, with just a list
of genes identified accounting for very little of the diseases in
nces and
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the population [2]. Genetic approaches that explore the hered-
itary variants for complex human diseases have significantly
changed from family-based linkage studies, which traditionally

mapped Mendelian disorders, to population-based association
studies, which were aimed at capturing both common and rare
variants for the complex diseases. In the last decade, following

the International HapMap Project [3], the development of
industrial high-throughput genotyping platforms has led to
large-scale genome-wide association studies (GWAS), which

are now commonly used to determine the genetic basis for
the complex human diseases [4,5].

The methods used to analyze large-scale genetic data are
significantly behind the rapid advances in the industrial omics

technology. Traditional genetic analysis to explore likely single
genes or SNPs associated with the disease only identifies a
small proportion of the susceptible genetic variants and con-

tributes to a limited understanding of complex diseases. In
addition, current popular single-point analysis of GWAS data
suffers from the low replication and validation rate [1,6,7].

There is a growing consensus that genetic risk to complex dis-
ease is mostly contributed by multiple genes of small or mod-
erate effect factors through their sophisticated interactions

acting in a modular fashion, rather than by the mutations of
individual genes [5,7]. Hence, to further interpret the underly-
ing molecular mechanisms that cause complex diseases, sys-
tematic dissection of the interactions between the individual

disease genes as well as their functionalities is essential [6,8].
Pathway-based analysis is an effective technique that over-

comes the limitations of the current single-locus methods. This

procedure provides a comprehensive understanding of the
molecular mechanisms that cause complex diseases [2]. Princi-
pally, a pathway-based approach is similar to the Gene Ontol-

ogy (GO) analysis [9]. However, the pathway analysis is more
specific and detailed, and it tests the association between a
pathway, which comprises a set of functionally-related genes,

and a disease phenotype. Its capacity of capturing biological
interaction among genes and improving power and robustness
has been well recognized [10,11]. The early application of path-
way-based approaches was extended directly from the Gene

Set Enrichment Analysis (GSEA) in microarray data analysis
[2,12] and now it has evolved in several directions [13,14].
Moreover, varieties of set-based methods with similar ideas

have been developed, such as the gene set analysis (GSA)
[15], SNP-ratio test (SRT) [16] and LRpath, a logistic regres-
sion-based method for pathway (or gene set) analysis [17].

Methods that focus on the original data instead of statistical
results have also been developed and these techniques test
the joint distribution of the multi-locus data or extract the
principal components from the original data, such as in the lin-

ear combination test (LCT) [18] and supervised principal com-
ponent analysis (SPCA) [19]. Recently, some topological
methods to parse the internal information of pathway (e.g.,

signaling pathway impact analysis (SPIA) [20] and CliPPER
[21]) have also been developed. In short, pathway-based anal-
ysis has gradually become an advanced way to the analysis of

complex diseases [22].
With the methodological advance, application of pathway-

based analysis to unravel complex human diseases has also

entered a new era [23,24]. Several studies have demonstrated
that pathway-based analysis is superior when it is applied to
large-scale genetic datasets for rheumatoid arthritis (RA)
[18,24], type 2 diabetes (T2D) [25], schizophrenia [13],
Parkinson’s disease [26], etc. In addition, tracing the shared
pathways among several pathologies tends to be an ongoing
interest of disease pleiotropism, for example, the study of

genetic links between RA and systemic lupus erythematosus
[27], schizophrenia and T2D [28].

This article is a comprehensive review of the pathway-based

analysis methods. The general concepts and principles for the
pathway-based analysis are introduced and then, a comprehen-
sive review of the major approaches for this type of analysis is

presented. In addition, a list of available pathway-based analysis
software and databases is provided. Finally, future directions
and challenges for the methodological development and appli-
cations of pathway-based analysis techniques are discussed.

Pathway-based analysis: general concepts

and principles

Currently, there are a variety of pathway-based approaches,
which correspond to different research designs and data types.

In this article, we focus on SNP/GWAS-derived pathway anal-
ysis, but we also include some classical tools for analysis of
microarray, as principally they can be easily extended to other

data types. Despite some differences in methods for pathway
prioritization or null hypotheses to be tested, the basic princi-
ple is largely the same, i.e., a pathway-based analysis relies on

the use of a testing strategy that targets damaged functional-
ities, which can produce the outward disease phenotype. It is
increasingly recognized that the genetic variations occurring
at multiple loci often perturb signal transduction, regulatory

and metabolic pathways, resulting in detrimental changes in
phenotype [18]. Therefore, pathway-based methods are aimed
at analyzing a predetermined aggregation of genes (or SNPs)

(alternatively called a gene set) that are contained in a func-
tional unit as defined by prior biological knowledge (e.g.,
Kyoto Encyclopedia of Genes and Genomes (KEGG), see

http://www.genome.jp/kegg/). Depending on whether the indi-
vidual genotype data or single-point SNP P values (often
obtained by single-point association test) are used, varieties

of methods, such as over-representation analysis (ORA), gene
set analysis for ‘results’ data [29], principal components or
regressions for the individual data [19,30]and topology-based
analysis [20] (see next section for details), are proposed to com-

bine information from multiple genetic loci within a pathway
to assess its overall association with a phenotype.

Compared to single gene analysis methods, pathway-based

approaches appear to be well suited for analysis of massive
GWAS data, either from biological or statistical consider-
ations [23]. First, since pathway-based approaches focus on

sets of genes instead of individual genes, dimension reduction
is automatically achieved. Consequently, pathway-based anal-
ysis unlikely suffers from the issue of the multiple-test correc-
tions when a large number of SNPs are examined. Second,

common diseases often arise from the joint action of multiple
SNPs/genes within a pathway. Although each single SNP may
confer only a small disease risk, their joint actions are likely to

have a significant role in the development of disease. If one
only considers the most significant SNPs, the genetic variants
that jointly have significant risk effects but make only a small

contribution if individually will be missed. Third, locus heter-
ogeneity, in which alleles at different loci cause disease in
different populations, will increase the difficulty in replicating

http://www.genome.jp/kegg/
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associations of a single marker with a disease. The list of sig-
nificant SNPs from several studies may have little overlap.
Therefore, replication of association findings at the SNP level

can be difficult if there are redundant genes with similar roles
present [18]. In comparison, pathway-based approaches that
utilize information from multiple loci in a functional unit

could produce more stable and robust results than single gene
analyses do [7,31]. Fourth, the ultimate purpose of genetic
studies of complex diseases is to decipher the path from geno-

type to phenotype. In spite of the conduct of extensive studies
in search for genes causing complex diseases, connections
between DNA variations and complex phenotypes, which are
essential for unraveling pathogeneses of complex diseases

and predicting variation in human health, have remained
elusive. In this sense, pathway-based approaches provide a
complementary role to single-point analysis for interpreting

the molecular paths underlying human diseases.

Pathway-based analysis methods

According to the strategies for handling the multivariate
genetic data for pathways, we classify pathway-based analysis
methods into four groups. Instead of individually reviewing

each pathway analysis approach, our goal here is to illustrate
the algorithms of the representative methods for each group,
as shown in Table 1, and discuss their relative merits.

Over-representation analysis

ORA, often called functional enrichment analysis, is the earli-
est pathway-based analysis approach to identify an over-repre-
sented pathway with a list of susceptible genes obtained by
using traditional statistical tests for contingency tables (e.g.,

Fisher’s exact test, see Table 1) [32]. ORA for SNP data starts
by selecting SNPs and mapping the interesting SNPs to the
corresponding genes. This initial selection process is based

on whether a SNP is mapped to the pathway or whether the
SNP is susceptible to the disease [32]. Depending on the
results, ORA builds a 2 · 2 contingency table to conduct a

hypergeometric test [32]. The corresponding P value of a given
pathway (ki) is computed by:

PðkiÞ ¼ 1�
X M

n

� �
N�M

n�m

� �
N

n

� � ;
Table 1 Algorithms and their applications in pathway-based analysis

Algorithm Core method

Over-representation analysis Fisher’s exact test

Gene set-based scoring GSEA

GSA

SRT

LRpath

Multivariate approaches A two-stage approach

SPCA

Logistic kernel machine re

Topological-based analysis SPIA

CliPPER

Note: GSEA, gene set enrichment analysis; GSA, gene set analysis; SRT, S

signaling pathway impact analysis.
where N is the number of all the studied genes, n is the total

number of the risk genes, M is the total number of genes in
a pathway ki and m is the number of risk genes contained in
pathway ki.

ORA is the most widely used functional analysis method
because it is easily performed. However, it has several limita-
tions. First, ORA considers that each individual gene is of
equal importance, which is often not so in biology. Second,

the gene (or SNP) list for ORA is usually based on a stringent
significant threshold, which can be a salient issue when the
number of genes or SNPs analyzed is very large. For GWAS

data, statistical power for identifying significant genes or SNPs
is limited and therefore the list is often incomplete. Third, con-
struction of the list of statistically significant genes based on

the univariate analysis of individual genes does not permit
results for genes in a pathway to reinforce each other for
detecting an over-represented pathway.

Gene set-based scoring

Gene set-based scoring approaches cover a range of methods

that are directly extended from ORA, in which each individual
gene is not assumed to be equivalent, instead their importance
is ranked by some statistics or P values. Some non-parametric

rank sum statistics like Kolmogorov–Smirnov statistic or the
Wilcoxon rank sum is used to assess the overall effect of a gene
set on a biological phenotype [2,12,33]. The abovementioned
ORA is the simplest case in that an equal weight is assumed

for all the genes included in a gene set.
The earliest application of a gene-set based scoring

approach is the analysis of genome-wide expression profiles

[12], in which Subramanian et al. described a powerful analyt-
ical method called GSEA for interpreting gene expression
data. The method derives its power by focusing on gene sets,

that is, groups of genes that share common biological function,
chromosomal location or regulation. The rationale is: if a set
of functionally-related genes (e.g., a module or a pathway) is

correlated with a disease phenotype, there is a trend that the
set enriches in a certain area of the ranked gene list according
to their differential expression between the sample classes [12].
This idea can be directly borrowed for pathway-based analysis

of GWAS data by using a ranked SNP/gene list according to
their statistical significance in association with a disease pheno-
type. Then, similarly, an enrichment score (ES), a running-sum

statistic, is calculated for a pathway-based gene set, by walking
down the list. This statistic reflects the degree to which a gene
Data types Refs.

SNP [32]

Microarray/SNP [2,12]

SNP [15]

SNP [16]

Microarray [17]

SNP [18]

SNP [19]

gression Microarray/SNP [38,39]

Microarray [20,46]

Microarray [21]

NP-ratio test; SPCA, supervised principal component analysis; SPIA,
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set is overrepresented at the extremes (top or bottom) of the
entire ranked list. ES is the maximum deviation from zero
encountered in the random walk; it corresponds to a weighted

Kolmogorov–Smirnov-like statistic. Finally, we can assess sig-
nificance of the analyzed pathway by using some permutation
techniques and adjust for multiple testing, as described

previously [34].
Later, Wang et al. [2] extended the aforementioned GSEA to

analyze the GWAS data and explicitly formulate the ES com-

putation. Supposed that N genes, which are each represented
by a SNP, have their statistical values ranked from the largest
to smallest, and the list is denoted by r(1), . . ., r(N). A weighted
Kolmogorov–Smirnov-like running-sum statistic tests for the

over-represented genes within a given gene set S (e.g., a path-
way composed of NH genes Gj) and is calculated by:

ESðSÞ ¼ max
16i6N

X
Gj2S; j6i

jrðjÞpj
NR

�
X

GjRS; j6i

1

N�NH

 !
;

where NR ¼
P

Gj2SjrðjÞj
p
and p is a parameter that gives more

weight to the genes with extreme statistical values [2].
Evidently, in gene set-based scoring approach, each individ-

ual gene is no longer considered of equal importance and it
uses more information than ORA to analyze pathways. Gene
set-based scoring approaches (GSEA and its derivatives) differ
from the previous ORA in two important aspects. First, it con-

siders all of the genes/SNPs in an experiment, not only those
above an arbitrary cutoff in terms of expression fold-change
or association significance. Second, it assesses the significance

by permuting the phenotype class labels, which preserves
gene–gene correlations and, thus, provides a more accurate
null model. Nevertheless, gene set-based scoring approach

relies on the results of single-point analysis for each genetic
locus, in essence it is a univariate analysis. It does not explicitly
configure the sophisticated interplays between genes contained
in a pathway.
Multivariate approaches

A two-stage approach

A two-stage approach, proposed by several scientists [18], is
aimed at tackling several challenges inherent in the aforemen-
tioned ORA and gene set-based scoring approaches. The first
challenge is how to represent a gene in GWAS. Wang et al.

[2] suggested to choose the most significant SNP from each
gene as a representative. But, in GWAS, a gene often contains
a variable number of SNPs. The genes that contain a number

of SNPs jointly having significant risk effects, but individually
making only a small contribution, will be missed in such rep-
resentation. The second challenge is how to deal with correla-

tions among SNPs and genes. Owing to linkage disequilibrium
(LD), there may be high correlations among some SNPs. The
statistics that were used by Wang and colleagues [2] for testing

association of a pathway with the disease do not take correla-
tions among SNPs into account.

To solve these problems, Luo et al. [18] considered three
basic units of association analysis––SNP, gene and path-

way––and suggest a two-stage (gene and pathway) GWAS.
In gene and pathway-based GWAS, each gene is represented
by all SNPs of the gene, which are either located within the
gene or are not >500 kb away from the gene. Unlike the afore-
mentioned ORA and gene set-based scoring approaches, in
which one examines whether significantly-associated genes

are overrepresented in the set of genes to be analyzed, the
authors formulated the gene and pathway-based GWAS as
the problem to jointly test for association of multiple SNPs

within the gene or multiple genes within the pathway with dis-
ease. As the proposed two-stage analysis makes full use of the
correlation structures between multiple SNPs within a gene or

multiple genes within a pathway, it demonstrated better
repeatability and reliability in identifying insightful pathways
or gene groups related to the development of complex diseases
in several large independent genome-wide association studies

[18,19,29,35–37].
In order to combine a set of dependent P values of SNPs

into an overall significance level for a gene or a set of depen-

dent P values of genes into an overall significance level for a
pathway, Luo et al. [18] proposed three novel statistics. These
include LCT, quadratic test (QT) and the decorrelation test

(DT). LCT takes a linear combination of P values for all SNPs
within the gene or a linear combination of statistics for testing
association of the genes within the pathway; QT is based on a

quadratic form and the test statistic thus follows asymptoti-
cally a central v2 distribution; finally, in DT, to combine
dependent P values, these dependent variables are first trans-
formed into independent variables and then independent vari-

ables are combined. For technical details of the three test
statistics, readers can consult with the original publication [18].

Supervised principal component analysis

Similarly, to deal with the problems of multicollinearity
encountered in a pathway-based analysis, Chen et al. [19]

proposed to apply the SPCA model to pathway-based SNP
association analysis to test the association between a group
of SNPs and variation in disease outcome. The idea behind

the SPCA model is that within a biological pathway, genetic
variations in a subset of SNPs, each contributing a modest
amount to disease predisposition, work together to disrupt
normal biological processes. Given a gene set defined by a pri-

ori knowledge for pathways (e.g., KEGG database), SNPs on
an array are first mapped to groups of genes within each
pathway. Then a subset of SNPs that is most significantly asso-

ciated with disease outcome is selected to estimate the latent
variable through PCA of this subset. Finally, to identify path-
ways associated with disease outcome, the authors [19] pro-

posed to test the association between the estimated latent
variable and disease outcome using a linear model. In the pro-
posed model, the estimated latent variable is an optimal linear
combination of a selected subset of SNPs; therefore, the pro-

posed SPCA model fully utilizes information from both dis-
ease-predisposing and disease-protective SNPs in a pathway.

Logistic kernel machine

The logistic kernel machine, first proposed by Liu et al. [38] for
analysis of genome-wide expression profiles, may be the first

unified approach for multi-dimensional parametric and non-
parametric modeling of the pathway effect. This model links
the disease to covariates parametrically, and to genes within

a genetic pathway nonparametrically using kernel machines.
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The nonparametric genetic pathway effect allows for possible
interactions among the genes within the same pathway and a
complicated relationship between the genetic pathway and

the outcome. Later, Wu et al. [39] extended this semi-
parametric regression model to analyze GWAS data. This type
of genome-wide pathway-based analysis proceeds via a two-

step procedure. First, SNPs are assigned to SNP sets based
on certain meaningful biological criteria (e.g., KEGG pathway
classifications or other genomic features). Then, tests for the

association between each genomic feature and a disease
phenotype are performed using a logistic kernel machine-based
multimarker statistic as described below.

For a population-based case-control GWAS in which n

independent subjects are genotyped, individual SNPs are first
grouped into a SNP set belonging to a pathway (more accu-
rately, genes annotated to these SNPs belong to a pathway).

For a pathway-affiliated SNP set containing p SNPs, zi1,
zi2, . . ., zip are the genotyped values of SNPs for the ith subject
(i = 1, . . .,n), and yi is the disease status for the ith subject

(yi = 0 and 1 for controls and cases, respectively). Let xi1,
xi2, . . ., xim denote the values of the covariates and zij = 0, 1
and 2, corresponding to homozygotes for the major allele, het-

erozygotes and homozygotes for the minor allele, respectively.
For the ith individual, the semiparametric model is given by

logitPðyi ¼ 1Þ ¼ a0 þ a1xi1 þ � � � þ amxim þ hðzi1; zi2; � � � ; zipÞ;

where a0 is an intercept term and a1, . . ., am are regression coef-
ficients of the covariates. The general function h(Æ) is arbitrary
and is defined by a positive, semi-definite kernel function K(Æ,Æ),
and yi is influenced by zi1, zi2, . . ., zip through h(Æ) [39].

Choosing an optimal kernel function is the key to analyzing
h(Æ). A desired model can be specified by changing the choice of

K(Æ,Æ). Essentially, K(Æ,Æ) is a function that projects the genotype
data from the original space to another space and then h(Æ) is
modeled linearly in this new space, such that if one considers
h(Æ) in the original space, it can be highly nonlinear. More intu-

itively, however, K(Æ,Æ) can be viewed as a function that mea-
sures the similarity between two individuals on the basis of
the genotypes of the SNPs in the SNP set. The common

choices for K(Æ,Æ) are the linear, Gaussian and identical-by-state
(IBS) kernels. Finally, the genetic effect of the pathway
specified by h(Æ) is tested by a variance component score, which

follows a scaled v2 distribution.

Topological-based analysis

Recently a new group of methods for pathway-based analysis
emerges as topological-based approaches, aiming at explicitly
incorporating the dependent structure among genes high-
lighted by the topology of pathways. Although most methods

of this category are developed for analyzing gene expression
data, they virtually can be extended to other data types (e.g.,
GWAS) fairly easily. Unlike the aforementioned approaches

that consider only the number of genes and their ‘‘expression’’
in a pathway, topological-based approaches combine the con-
ventionally measured molecular data and also the structural

information of the pathway provided by biological databases.
A large number of publicly available pathway knowledge bases
provide information beyond simple lists of genes for each

pathway. These knowledge bases, including KEGG [40], Reac-
tome [41], MetaCyc [42], RegulonDB [43], BioCarta (http://
www.biocarta.com) and PantherDB [44], also provide
information about gene products that interact with each other
in a given pathway, how they interact (e.g., activation or inhi-
bition) and where they interact (e.g., cytoplasm or nucleus).

Topological-based methods are essentially the same as the
aforementioned multivariate approaches. The key difference
between the two methodological groups is the use of pathway

topology to compute gene-level statistics. Massa et al. [45] pro-
posed to use graphical Gaussian models that exploit the graph-
ical evidence of a pathway. This method converts a pathway

into a graphical mode and then compares gene sets, which
are defined by the pathway. The topological analysis is focused
on the strength of the links among genes of a pathway between
two phenotypic groups, which is analogous to the aforemen-

tioned logical kernel machine modeling. Thus, both the rela-
tionship between the genes (i.e., their strength) determined
by their topology and experimental data (microarrays and

GWAS data) are used to analyze this pathway. Later on, Mar-
tini et al. [21] proposed CliPPER, an empirical two-step
method, for the identification of significant signal transduction

paths within significantly-altered pathways. The initial step
uses the aforementioned method to test the entire pathway,
which identifies the subgroups of the genes (i.e., signal paths)

that makes the entire structure different. The P value of the
test determining whether two graphical Gaussian models are
homoscedastic as the weight is collected to compute the rele-
vance of each path. Then, a junction tree is reconstructed to

identify related pathways with means or covariance matrices
that are significantly different between biological statuses.

A recent impact factor analytic approach called SPIA was

proposed by Tarca et al. [20,46], which attempts to capture
several aspects of the data: changes in gene expression, the
pathway enrichment and the topology of signaling pathways.

This method considers the structure and dynamics of an entire
pathway by incorporating a number of important biological
factors, including changes in gene expression, types of interac-

tions and the positions of genes in a pathway. In brief, SPIA
models a signaling pathway as a graph, where nodes represent
genes and edges represent interactions between them. Further-
more, it defines a gene-level statistic, called perturbation factor

(PF) of a gene, as a sum of its measured change in expression
and a linear function of the PFs of all genes in a pathway. The
impact factor of a pathway (pathway-level statistic) is defined

as a sum of PFs of all genes in a pathway.
In our own perception, topological-based analysis is supe-

rior to other methods because it also considers the internal

structure of the pathway, reflecting its own property of the path-
way, i.e., it gains power from pathway topology. An additional
advantage is that it has the merit of sound biological interpreta-
tion due to the very nature of this methodology. However, one

obvious limitation of this analysis is that these methods are lar-
gely empirical, thus hard to prove. In addition, there is a dearth
of available software and platforms for implementation,

although some Bioconductor packages or web tools (e.g.,
graphite [47,48]) are released. Finally, current topological-based
methods only handle the static properties of the network topol-

ogy; thus, they have the inability for a dynamic systems model.

Available resources for pathway-based analysis

Pathway resources have been rapidly accumulated, which has
in turn facilitated the development of pathway-based
approaches. The term ‘‘pathway-based’’ refers to the basic

http://www.biocarta.com
http://www.biocarta.com
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analysis unit that is not a gene or a SNP, but a pathway. A
pathway is usually defined as a set of related functional genes.
The composition of a pathway can be artificially defined or

acquired from several public pathway databases. These public
databases, include KEGG (website: http://www.genome.jp/
kegg/pathway.html) [49], BioCarta and Pathway Interaction

Database (PID, website: http://pid.nci.nih.gov), are aimed at
providing different pathway repositories based on their func-
tional categorizations (e.g., metabolic pathways and regulatory

pathways). Generally, these databases can be grouped into
four categories depending on what the researcher wants to
emphasize [10]: the metabolic pathway databases, signal trans-
duction pathway databases, protein–protein interaction path-

way databases and transcriptional regulation pathway
databases, respectively. More detailed descriptions about these
categories and the long list of the corresponding databases are

presented in Table 2.
In the last decade, software and web tools to utilize these

databases for pathway-based analysis of omics data were rap-

idly developed with advances in database construction, and
consequently have greatly promoted application of these pub-
lic resources in the biomedical fields. Table 3 lists the common

software and web platforms mainly used for analysis of micro-
array data, and Table 4 lists the available pathway-based ana-
lytical tools and web servers designed for pathway analysis on
GWAS data. Also, their unique features, functionalities, and

databases for annotations are given.
Challenges and future direction

Biological challenges

Pathway-based analysis has significantly enhanced our capac-
ity to explore large-scale omic data, providing an invaluable
tool for identifying the damaged functionalities involved in

complex diseases. However, we should be cautious on several
challenges and limits inherent in this knowledge-guided analy-
sis, which can be divided into two broad categories: (i) knowl-

edge biases and (ii) methodological challenges. Pathway-based
analysis relies on acquiring knowledge from gene or pathway
databases which provide us varieties of information about
Table 2 Pathway databases

Category Description

Metabolic pathways Primarily contain a series of biochemical react

especially the chemical modifications of the sm

molecule substrates of enzymes

Signal transduction

pathways

Describe the information spread from one par

sub-process of the cell to another, generally th

a series of covalent modifications of protein

Protein–protein interaction

pathways

Focus on interactions between proteins, most

which are derived from various large-scale

experimental methods

Transcriptional regulation

pathway

Mainly concern the relationships between tran

factors and the corresponding genes they regul
genes and how these genes interact with each other. Neverthe-
less, our knowledge about the existing genes or biological
pathways is incomplete [22]. Although a few prominent path-

ways are well studied, our knowledge of majority of biological
pathways (including the limited number of pathways docu-
mented in various pathway databases) remains largely frag-

mented. Because most of pathway-based approaches still rely
on mapping multiple SNPs to a single gene, followed by
gene-to-pathway mapping, it is often the case in a pathway-

based association study that a large number of SNPs or genes
fail to be mapped to their corresponding genes or pathways.
Apparently, to make full use of biological knowledge to gain
power for a pathway-based analysis, we need knowledge bases

with high-resolution annotations, in particular for analysis of
next-generation sequencing (NGS) data. In addition to the
incomplete annotations, many of the existing annotations are

of low quality and may be inaccurate. Annotations inferred
from indirect evidence (e.g., computationally predicted) are
considered to be of lower quality than those derived from

direct experimental evidence. Finally, current diagrams for
pathways are largely inferred from transcriptional relation-
ships among genes or at protein level, and knowledge for many

other regulatory factors (e.g., post transcriptional modifiers,
epigenetic factors and environmental triggers) is generally
lacking. Hence, for improved power of pathway-based
approaches to find damaged functionalities, more integrated

databases, which comprehensively review the link of genetic
variants, pathways and the environmental triggers, and which
jointly analyze their interplays and their contributions to

disease, have been called [8,26,50,51]. The Human Genome
Epidemiology Network (HuGENet) project is dedicated to this
end [52].

Methodological challenges

Methodological challenges for pathway-based approaches in

analysis of GWAS or transcriptome have been extensively
reviewed in several previous reports [22,53–55]. Hence, we only
discuss several key issues here. The first key issue is to improve
statistical power for detecting damaged functionalities, which

may be achievable by developing more proper weighing
schemes for SNPs within a gene or genes within a pathway
Examples URL

ions,

all

KEGG http://www.genome.ad.jp/kegg/

BioCyc http://www.biocyc.org/

BIOPATH http://www.mol-net.de/databases/biopath.html
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t or

rough

CSNDB http://geo.nihs.go.jp/csndb/
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scription
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CST http://www.cellsignal.com/
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Table 3 The common software and web platforms used for microarray data analysis

Software Feature Annotations URL

PathMAPA A tool for displaying gene expression and performing statistical tests

on metabolic pathways at multiple levels for Arabidopsis, based on

expression data

Local databases http://bioinformatics.med.yale.edu/pathmapa.htm

MetaCore Based on a high-quality, manually-curated database, MetaCore is an

integrated software suite for functional analysis of microarray,

metabolic, SAGE, proteomics, NGS, copy number variation, siRNA,

microRNA and screening data

MetaRodent, MetaLink,

MetaSearch

http://www.genego.com/

Ingenuity Pathway

Analysis (IPA)

A comprehensive software/database search tool for finding functions

and pathways for specific biological states

GO, KEGG, BIND https://www.ingenuity.com/

ePath3D An easy-to-use and powerful software for creating and managing

illustrated 3D pathways for publications and presentations

eProtein, ePathway http://www.proteinlounge.com/epath3d/

Pathway Builder An online pathway drawing tool which is the fastest and easiest

method of creating signal transduction pathways, enabling the

users to design their own project or use pre-made pathway templates

to help get them started

GenBank, Uniprot/Swiss-Prot,

TrEMBL,

KEGG, ENZYME, etc.

http://www.pathwaybuilder.com/

Interactive Pathways

Explorer (iPath)

A web-based tool for the visualization, analysis and customization of

various pathways maps from KEGG. The recently-released version 2

could deal with metabolic pathway, regulatory pathway and

biosynthesis of secondary metabolites

KEGG https://pathwayexplorer.genome.tugraz.at

GSEA-P & R-GSEA GSEA-P is a desktop application for Gene Set Enrichment Analysis,

with a friendly graphic interface. R-GSEA is provided as a

standalone R program.

MSigDB, Gene Set Cards, GEO http://www.broadinstitute.org/gsea/

DAVID A tool for augmenting and integrating functional annotations from

other databases

KEGG,GO http://david.abcc.ncifcrf.gov/

MetaCyc Applications include serving as an encyclopedia of metabolism,

providing a reference data set for the computational prediction of

metabolic pathways in sequenced organisms, supporting metabolic

engineering and helping to compare biochemical networks

KEGG, BioCyc, EcoCyc http://metacyc.org/

Reactome Intuitive bioinformatics tools for the visualization, interpretation and

analysis of pathway knowledge to support basic research, genome

analysis, modeling, systems biology and education

KEGG http://www.reactome.org/

GenMAPP Designed to visualize gene expression and other genomic data on

maps representing biological pathways and groupings of genes

GenMAPP, GO http://www.genmapp.org

FunCluster An integrative tool for analyzing gene co-expression networks from

microarray expression data; the analytic model implemented in the

library involves two abstraction layers: transcriptional and functional

(biological roles)

GO, KEGG http://corneliu.henegar.info/FunCluster.htm

Graphite web A novel web tool for pathway analyses, consisting of

topological-based analysis and network visualization for gene

expression data of both microarray and RNA-seq experiments

KEGG, Reactome http://graphiteweb.bio.unipd.it/
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Table 4 The available analytical tools and web servers designed for pathway analysis on GWAS data

Software Feature Annotations URL

INRICH A pathway-based genome-wide association (GWA) analysis tool that

tests for enriched association signals of predefined gene sets across

independent genomic intervals

KEGG, GO http://atgu.mgh.harvard.edu/inrich/

GeSBAP A simple implementation tool of the GSA strategy for the analysis of

GWA studies, provides a significant

increase in the power testing for this type of studies

GO, BioCarta, KEGG http://bioinfo.cipf.es/gesbap/

GSEA-SNP A program for the identification of disease-associated SNPs and

pathways, the understanding of the underlying biological

mechanisms, and the identification of markers with weak effects,

undetectable in association studies without pathway consideration

http://nr.no/pages/samba/area_emr_smbi_gseasnp

GSA-SNP A standalone software that implements three widely-used GSA

methods: Z-statistic method, Restandardized GSA and GSEA for

pathway analysis, providing a fast computation and an easy-to-use

interface

dbSNP, GO, MSigDB, GeneCards http://gsa.muldas.org

dmGWAS Designed to identify significant protein–protein interaction (PPI)

modules and the candidate genes, specifically adapted for GWAS

datasets, including data preparation, integration, searching and

validation in GWAS permutation data

GO,MINT, IntAct, DIP, BioGRID,

HPRD,MIPS/MPact

http://bioinfo.mc.vanderbilt.edu/dmGWAS.html

PLINK A whole genome association analysis toolset, designed to perform a

range of basic, large-scale analyses in a computationally-efficient

manner

http://pngu.mgh.harvard.edu/purcell/plink/

Path A valuable tool for investigating gene–gene interactions in large

genetic association studies, designed to help researchers interface

their data with biological information from several bioinformatics

resources

NCBI, OMIM, KEGG, UCSC dbSNP,

IIDB, PharmGKB, etc.

http://genapha.icapture.ubc.ca/PathTutorial

Pathway-PDT A new tool to perform pathway analysis using the framework of

Pedigree Disequilibrium Test (PDT) for general family data,

combining more information from raw genotypes in general nuclear

families

KEGG https://sourceforge.net/projects/pathway-pdt/

ALIGATOR A program for testing for Gene Ontology categories over-represented

on a list of significant SNPs from a GWA analysis, defining

significant SNPs by prespecified P value cut-off and then counting

significant genes in each pathway

GO, dbSNP, NCBI http://x004.psycm.uwcm.ac.uk/.peter/

GenGen A suite of free software tools to facilitate the analysis of

high-throughput genomics data sets

KEGG, BioCarta, GO http://www.openbioinformatics.org/gengen/

SNP ratio test Assess significance of enrichment of significant associations in GWA

studies and can be applied to pathways such as KEGG/GO or

user-defined pathways to test specific hypotheses

KEGG, GO http://sourceforge.net/projects/snpratiotest/

i-GSEA4GWAS A tool for SNP label permutation, assign SNPs to genes, calculate

modified GSEA enrichment score

KEGG, BioCarta, GO http://gsea4gwas.psych.ac.cn/

ICSNPathway A tool for comprehensive interpretation of GWAS data by integrating

LD analysis, functional SNP annotation and pathway-based analysis

KEGG, BioCarta, GO http://icsnpathway.psych.ac.cn/
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by leveraging a priori biological information from multiple
sources or integrating different omic data (e.g., GWAS, micro-
arrays and proteomics). For a pathway-based GWAS, improv-

ing SNP coverage and, thus, the number of informative genes
may also be a feasible solution. For multivariate approaches,
imputation for un-typed SNPs or other covariates is an effec-

tive way to increase sample size for improved power. Better
refined gene set definitions that group genes according to
well-defined biological information or by identifying the signal

paths within a pathway using the aforementioned topology-
based approaches [20,21,45,46] may also be beneficial. The sec-
ond key issue is to eliminate or reduce the biases introduced
during various steps of a pathway-based analysis. For

example, large genes containing many SNPs are more likely
to contain significant SNPs by chance alone and so are large
pathways containing large genes. Some permutation-based

approaches that control for gene size by comparing the actual
association data with the distribution of association statistics
generated from randomly-permuted data sets are expected to

reflect chance-based confounding effects, including biases
introduced by gene size [55]. However, the permutation proce-
dures per se, if not designed properly, can also introduce some

bias [53]. For instance, permutation of SNPs, which is often
used in P value-based approaches, can disrupt LD patterns
between SNPs and may not generate the correct null distribu-
tion. For raw genotype-based approaches, permutation of phe-

notypes (binary traits or quantitative traits) may not generate
the correct null distribution either, as explained previously
[53]. Furthermore, no matter whether the SNPs or phenotypes

are being permuted, the sampling units are assumed to be inde-
pendent and identically distributed, which may not be the case,
as gene–gene interactions may play an important role in dis-

ease susceptibility and study participants might be distantly
related. The third key issue is to enhance robustness of path-
way-based approaches or repeatability of the significance test-

ing results obtained for pathways. One possible cause for poor
repeatability of the results in pathway-based analysis is genetic
heterogeneity, in which different variants may account for dis-
ease status or trait level in different patients. In addition, the

different properties of statistical tests on a disease architecture
with no major-effect [53] or arbitrary thresholds used to assess
significance of a SNP, gene or gene set may also lead to poor

repeatability [54]. In conclusion, although some scientists
believe that results from testing gene sets rather than from
individual markers would be more stable across different sam-

ples in the population and, thus, easier to replicate [56,57],
enhancing robustness of pathway-based approaches or repeat-
ability of the significance testing results in analysis of pathways
still remains to be a difficult task.

Finally, it is worth noting that the recently-developed topo-
logical-based methods for analysis of microarrays have the
potential to significantly advance the current methods for the

pathway-based analysis for GWAS. The classical ORA [58]
or GESA [11,12] pay little attention to the contribution of gene
or pathway’s architecture on their biological activity [8,51],

while the multivariate approaches developed so far only con-
sider the statistical correlations between SNPs within a gene
or between genes within a pathway. It can be imagined that

the underlying genetic architecture for most complex pheno-
types is far more complicated than any mathematical models
could fully accommodate. For example, the commonly-used
Pearson’s correlation metric only captures the linear
dependence between genes in a pathway, while in reality the
biological relationships between genes may not follow linear-
ity. In our own perceptive, incorporating the internal structure

or topological properties and environmental triggers into path-
way-based analyses is essential for fully assessing the suscepti-
bility of a pathway to a disease. In addition to the merits

aforementioned, topology-based approaches have the poten-
tial to model and analyze dynamic responses or model effects
of external stimuli [22]. All these factors would render topol-

ogy-based approaches to be a next-generation benchmark
methodology for pathway-based analysis of both microarrays
and GWAS data.

Extension to analysis of NGS data

Although pathway-based approaches are initially developed
for expression microarray data, and later extended to analysis

of GWAS data, they may have good potential for a broader
application to other omic data like NGS data. Recently,
increasing attention is being placed on comprehensive explora-

tion of the genomic variants as high-throughput sequencing
has become a feasible solution in practice. The high resolution
genome-wide sequence maps provided by these advanced

sequencing technologies enable us to examine every detail in
sequence variations including SNPs that is used for the tradi-
tional GWA studies. In spite of some specific challenges for
pathway-based analysis of the massive but more informative

sequence data (see the previous review by Wang et al. [53]),
NGS data would provide golden opportunities to expand the
capacity and power of pathway-based analysis or gene set

analysis in general to formulate and test the global hypothesis
on disease susceptibility. First, the NGS data could provide
necessary coverage to capture all potential genomic subsets

[59]. Such refined subsets of candidate genomic regions would
allow us to examine all possible genomic structures and their
biological roles. Second, the NGS data could provide clues

for rare variant discovery. Rare variants and their interactions
with common variants and the environment have been shown
to contribute to the heterogeneity of several complex diseases
[60]. These rare variants may help us to purify the population

and to enhance power of a pathway-based analysis on the
NGS data. Although the NGS data hold several extended
promises, there are several outstanding statistical and practical

considerations for performing a pathway-based (or a set-
based) analysis of such huge data. To name a few, pathway-
based analysis of NGS data requires more efficient statistical

methods for detecting genome-wide rare variants, good com-
putational capacity for handling large-scale datasets, improved
genotype calling rate for sequencing data and finally the pre-
cise functional annotations. Nevertheless, with advent of

1000 Genomes Project [61] and improvements in both high-
throughput sequencing techniques and data analytic tools,
we believe that it will become feasible to perform sequenc-

ing-based GWA studies. It is delightful to see that the first
methodological article for pathway analysis on NGS data is
published this year. Zhao et al. [62] proposed a novel pathway

analysis approach, called smoothed functional principal com-
ponent analysis (SFPCA), for pathway-based association anal-
ysis on NGS data. We anticipate that more and more pathway-

based methodologies for dealing with this new data type will
appear in the near future. Also, we notice that a de novo
sequencing technology, known as Single Molecule Real Time
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(SMRT) DNA sequencing [63] is invented last year. It has
super capacity in fast sequencing DNA, RNA and methylated
DNA (10 times faster than current sequencing facilities). As a

result, we can foresee that large amount of sequencing data
will be available, providing unprecedented opportunities for
fully exploring the power of pathway-based approaches for

dissecting complex diseases.
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