

http://pubs.acs.org/journal/acsodf

Polyethyleneimine-Modified Amorphous Silica for the Selective Adsorption of CO_2/N_2 at High Temperatures

Cheng Li,[‡] Xiaoqing Wang,[‡] Anjie Yang, Peng Chen, Tianxiang Zhao,^{*} and Fei Liu^{*}

 Cite This: ACS Omega 2021, 6, 35389–35397
 Read Online

 ACCESS
 Int
 Metrics & More
 Image: Article Recommendations
 Image: Supporting Information

 ABSTRACT: Mechanochemistry is very attractive as an efficient, solvent-free and simplified technique for the preparation of PEI Room temp.
 Ball-milling Room temp.
 21

ABSTRACT: Mechanochemistry is very attractive as an efficient, solvent-free, and simplified technique for the preparation of composite adsorbents. Here, a series of polyethyleneimine (PEI)-modified SiO₂ adsorbents were prepared via mechanical ball milling for selective adsorption of CO₂ at high temperatures. The structural properties of these adsorbents were characterized by XRD, SEM, TGA, FTIR, and N₂ adsorption-desorption. This method can better disperse the PEI evenly in the SiO₂ as well as maintain the porous structure of the adsorbents by comparing with the impregnated adsorbents. These adsorbents presented appreci-

able performance in separating CO₂ at high temperatures, and the CO₂ adsorption capacity of PEI(70%)/SiO₂ is up to 2.47 mmol/g at 70 °C and 1.5 bar, which is significantly higher than that of the same type of CO₂ adsorbent reported in the literature. Furthermore, the adsorbent of PEI(70%)/SiO₂ provided an ideally infinite selectivity for CO₂/N₂ (15:85) at 70 °C. These results showed that mechanical grinding methods are a simple and effective approach to producing amine-modified silica composite adsorbents.

1. INTRODUCTION

Atmospheric CO₂ is continuously increasing at a high rate, which is mainly due to the intensive use of fossil fuels.¹ Further, the environmental issue caused by the increase in CO₂ has become a global problem that cannot be ignored.^{2,3} Many options for reducing CO₂ emissions had been investigated and liquid amine adsorption was generally considered to be one of the most effective methods of CO₂ capture.^{4,5} However, this method has some disadvantages such as high cost, high energy consumption, amine losses, and high corrosiveness. These issues limit the potential of liquid amines for CO₂ capture applications.^{6,7}

There has been a great concern for the development of efficient solid adsorbents for the capture of CO_2 . Particularly, it is of high significance for the capture of high-temperature flue gases in thermal power plants $(CO_2/N_2 \text{ of about } 0.15/0.85)$.⁸ Solid amine adsorbents have the advantage of both physisorption and chemisorption, which makes them one of the most promising methods for capturing CO_2 .^{8,9} Therefore, many porous materials are widely used as an amine support for the physical and chemical adsorption of CO_2 , including porous carbon, ^{10,11} mesoporous silica, ^{12–14} zeolites, ^{15,16} porous polymers, ^{17,18} and metal–organic frameworks (MOFs).^{19,20} As mentioned above, mesoporous silica is widely used as a support to immobilize amines due to its good thermal stability, high pore volume, and abundance of surface silica hydroxyl groups.^{9,21,22}

There are two main approaches to preparing solid amine adsorbents: (a) wet impregnation and (b) silane chemis-

try.^{8,13,23-25} Wet impregnation is a simple and most common technique for the addition of organic amines to mesoporous silica. Nevertheless, these methods require large amounts of solution and long synthesis times. In addition, the removal of the solvent also requires energy, which has a significant impact on production costs. In the case of the industrial synthesis of solid amine adsorbents and protection of the environment, mechanochemistry could be used as a simple, efficient, and sustainable method.^{26,27} The mechanochemical method has the obvious effect of changing the physicochemical properties of the materials, i.e., changing the size of the particles, creating structural defects, enhancing the chemical reactions during the grinding process, etc. 27-32 There have been reports of condensation reactions between hydroxyl groups on the surface of silica and siloxane groups by mechanochemical methods.^{32,33} Amrute et al.³³ reported the mechanochemical functionalization of different supports (SBA-15, SiO₂ gel, etc.) with various silicone compounds without the use of any solvent in only 5 min at room temperature, which provides a new idea for the modification of silica with organic amines.

Received:August 30, 2021Accepted:December 7, 2021Published:December 14, 2021

© 2021 The Authors. Published by American Chemical Society

Figure 1. XRD patterns of (a) SiO₂ before and after PEI modification and (b) different loading amounts of PEI-modified SiO₂.

Figure 2. SEM images of (a, b) silica, (c, d) $PEI(70\%)/SiO_2$, and (e, f) IM- $PEI(70\%)/SiO_2$. (g-j) Elemental (O, Si, and N) mapping images of $PEI(70\%)/SiO_2$.

Polyethyleneimine (PEI) has high CO₂ absorption capacity, which is used as a modifier to modify silica for improving CO₂ adsorption performance and selectivity.^{8,34-37} The most commonly used method for constructing amine-silica adsorbents is the solvent impregnation method, in which amine can be uniformly dispersed on the silica. However, the silica with high amine loading is easy to agglomerate, and the use of organic solvents for dispersion also increases the production cost. Therefore, it is highly desirable to develop an effective method to prepare high amine loading silica adsorbents for effective separation of CO2. Herein, we demonstrated a straightforward method to prepare a silica adsorbent with high PEI loading by the mechanical grinding method without any solvents. The structural properties of adsorbents synthesized using different methods were systematically characterized by XRD, SEM, TGA, FTIR, and N₂ adsorption-desorption. The CO₂ adsorption performance of adsorbents was investigated, and the adsorption selectivity of CO_2/N_2 and CO_2/CH_4 binary mixtures was also calculated from the ideal adsorbed solution theory (IAST). In addition, the CO_2 adsorption isotherms and the isosteric heats of CO_2 adsorption were discussed by the dual-site Langmuir-Freundlich (DSLF) model and Clausius-Clapeyron equation.

2. RESULTS AND DISCUSSION

2.1. Characterization of PEI-Modified SiO₂ Adsorbents. The PEI-modified SiO₂ adsorbents were prepared by impregnation and ball milling methods, and the obtained adsorbents were marked as IM-PEI(70%)/SiO₂ and PEI(70%)/SiO₂, respectively, where 70% represents the mass fraction of PEI. The structure of the PEI-modified SiO₂ adsorbents was characterized by XRD. As shown in Figure 1a, a broadened peak from 2θ of 10° to 35° corresponds to the amorphous silica phase.³⁸ The crystalline structure of silica did not change after 70% PEI was loaded by either the impregnation method or ball milling method. In addition, changing the loading amount of PEI has no significant effect on the crystal structure of silica (Figure 1b). It is suggested that PEI was fixed on silica through physical interaction.

The microstructure of adsorbents was studied by SEM, and results are shown in Figure 2. SiO_2 has a rich porous structure and is very favorable for supporting amine (Figure 2a,b). The surface texture of the amine-modified silica became denser after supporting 70% PEI. The pores of SiO_2 also significantly reduced, indicating that PEI was uniformly loaded on the support due to the strong interaction of mechanical grinding (Figure 2c,d). Furthermore, elemental mapping images of Figure 2g show uniform dispersions of N throughout the support SiO_2 , thus indicating that the PEI units are uniformly dispersed in the adsorbent. In contrast, the agglomeration of

Figure 3. N_2 adsorption-desorption isotherms and BJH pore size distributions of (a, b) SiO₂, (c, d) ball-milled SiO₂, (e, f) PEI(70%)/SiO₂, and (g, h) IM-PEI(70%)/SiO₂.

IM-PEI(70%)/SiO₂ prepared by the impregnation method is easier. Large pore channels were also obtained by removing the solvent from the adsorbent during the impregnation synthesis (Figure 2e,f).

The N₂ adsorption/desorption isotherms and BJH pore size distribution curves of SiO₂ and PEI-modified SiO₂ adsorbents are drawn in Figure 3. After directly ball-milling SiO₂, the specific surface area of ball-milled SiO₂ decreases observably, indicating excessive collapse of the pore structure. This was due to the absence of protective agents (e.g., PEI and ethanol) during ball milling.^{39,40} The specific surface area of SiO_2 was further reduced by loading different masses of PEI, and all PEImodified SiO₂ adsorbents exhibit almost classic type IV isotherms.⁴¹ Notably, PEI(70%)/SiO₂ exhibits a prominent type H3 hysteresis, indicating the presence of mesopores. Even if the loading of PEI is augmented, there is still no significant change in hysteresis loops of PEI(70%)/SiO₂ (Figure S1). In contrast, the hysteresis loops of IM-PEI(70%)/SiO₂ shift from type H3 to type H1 with the increase in PEI loading.^{42,43} Furthermore, the BJH pore size distribution curves indicate that modified adsorbents prepared by mechanical grinding have narrower aperture distribution. This narrower pore size is conducive to the adsorption and mass transfer of CO₂. As shown in Table 1, the S_{BET} of all the PEI-modified SiO₂

Table 1. Textural Properties of the Synthesized Adsorbents

sample	$S_{\rm BET} \over (m^2/g)$	$(\text{cm}^{3/P}\text{g})^{a}$	$d_{\rm BJH}_{\rm (nm)}$	CO ₂ uptake ^c
SiO ₂	393.28	1.59	14.51	0.59
ball-milled SiO ₂	223.71	0.55	8.91	
PEI(30%)/SiO ₂	122.32	0.56	10.04	1.21
PEI(50%)/SiO ₂	100.14	0.53	11.91	1.54
PEI(70%)/SiO ₂	70.86	0.63	20.06	1.80
$PEI(100\%)/SiO_2$	55.84	0.51	19.33	1.67
IM-PEI(30%)/SiO ₂	118.91	1.46	26.95	1.29
IM-PEI(50%)/SiO ₂	81.46	1.10	27.08	1.66
IM-PEI(70%)/SiO ₂	72.37	0.63	19.89	1.70
IM-PEI(100%)/SiO ₂	19.85	0.24	22.83	1.06

^{*a*}Cumulative BJH desorption pore volume. ^{*b*}Average BJH desorption pore diameter. ^{*c*}Adsorption capacity of CO₂ at 25 °C (1.0 bar).

adsorbents decreases with the increase in PEI loading, which is in line with expectations. According to the pore structure information of the PEI-modified SiO_2 adsorbents prepared by the ball milling method and impregnation method, both methods are effective for loading amines onto SiO_2 . From the perspective of environmental-friendliness, the ball milling method has more advantages because it can achieve a uniform load of a large amount of PEI and maintain the porosity of the adsorbent to a certain extent.

The thermostability of PEI-modified SiO₂ was analyzed by TGA analysis.^{14,42,44} As shown in Figure 4a, the initial weight loss below 125 °C was attributed to desorption of water, CO₂, and other volatile gases. As shown in Figure 4b, IM-PEI(70%)/SiO₂ had a further mass loss (about 4%) in the temperature range of 150 to 230 °C, while no weight loss was observed in PEI (70%)/SiO₂. It indicated that the adsorbent prepared by mechanical ball milling is more thermally stable. Furthermore, the dramatic weight loss after 230 °C shows the significant loss of PEI. This is mainly due to the decomposition of the amino group. In summary, the TGA results show the good thermal stability of ball-milled adsorbents.

The FTIR spectra of the adsorbents are shown in Figure 5. The corresponding functional groups of SiO₂ are indicated in Figure 5a. The peaks at 3750-3400 cm⁻¹ and 967 cm⁻¹ are attributed to O-H vibrations of the silica surface. After PEI modification, peaks at 1643 and 1573 cm⁻¹ correspond to the vibrations of secondary amine (R₂NH) and primary amine (RNH₂), respectively.⁸ The chemical structure of PEI chains was also observed at 2957 and 2836 cm⁻¹. The adsorbents synthesized by the impregnated method also show a similar characteristic infrared absorption peak (Figure S2). Therefore, these PEI-modified SiO₂ adsorbents can chemically adsorb CO₂.⁴⁵ Notably, it is worth noting that for the characterization of $PEI(70\%)/SiO_2$ after adsorbing a large amount of CO_2 , physically adsorbed CO₂ could be clearly identified at 2340 cm^{-1} (Figure 5b).²² The above results indicate that CO₂ can be adsorbed through synergistic physical and chemical adsorption.

2.2. CO_2 Adsorption. The influence of the PEI loads and different synthesis methods on the CO₂ adsorption capacity at 25 °C was studied, and results are shown in Figure 6. For both the mechanical grinding and impregnation methods, the CO₂

Figure 4. (a) TGA curves of the PEI-modified SiO₂ adsorbents prepared by the ball milling method with different PEI loads and (b) PEI(70%)/SiO₂ vs IM-PEI(70%)/SiO₂.

Figure 5. (a) FTIR spectra of the silica adsorbent prepared by ball milling with different PEI loads and (b) FTIR spectra of $PEI(70\%)/SiO_2$ before and after adsorption of CO_2 .

adsorption capacity of PEI-modified SiO₂ increases with increasing amine content (Figure 6a,b). When the mass ratio of PEI to SiO₂ was 0.7:1, the CO₂ adsorption capacity of the adsorbents synthesized by both methods reached maximum values. The CO_2 adsorption capacity of $PEI(70\%)/SiO_2$ is 1.88 mmol/g at 1.5 bar and 25 °C. However, the CO₂ adsorption capacity of the impregnated adsorbents decreased sharply with further increasing PEI load. That is a result of blocking in the silica pores and the amine covering the SiO₂ surface in caking form, which prevents CO₂ molecules from entering the active center of adsorption and leads to an obvious reduction in CO₂ adsorption capacity.^{42,46} Furthermore, PEI(70%)/SiO₂ has a faster CO_2 adsorption rate (Figure S3), which may be due to the better retention of the pores of $PEI(70\%)/SiO_2$ than IM- $PEI(70\%)/SiO_2$. These all suggest that mechanical grinding is a promising way to prepare amine-modified adsorbents.

The CO₂ adsorption by PEI-modified SiO₂ adsorbents was further investigated at temperatures ranging from 0 to 90 °C, as shown in Figure 6c. A high temperature is unfavorable for CO₂ adsorption, but the viscosity of PEI and the diffusion resistance of CO₂ in the inner layer are reduced.⁸ Therefore, more amine sites are exposed, enabling enhanced CO₂ adsorption with increasing temperature. The adsorption capacity reached a maximum of 2.47 mmol/g at 70 °C and 1.5 bar. Then, CO₂ adsorption decreased with further temperature increase but still maintained a high capacity. More importantly, CO₂ uptake is already up to 1.95 mmol/g at 70 °C and 0.15 bar, indicating the effective adsorption of lowpressure CO₂ by PEI(70%)/SiO₂. The adsorption performance of IM-PEI(70%)/SiO₂ for CO₂ was also tested under the same conditions (Figure S4). It is found that the PEI-modified SiO₂ adsorbent prepared by the ball milling method has a higher adsorption capacity (Figure 6d) and speculated that the ball milling method has a higher amine utilization rate than the impregnation method.

2.3. N₂ and CH₄ Adsorption. We also investigated the N₂ and CH₄ adsorption of the material. As shown in Figure 7, the isotherms of CH₄ and N₂ were significantly different from the shape of the CO₂ isotherm. CO₂ adsorption is a combined adsorption through physical and chemical interactions. In contrast, the N₂ and CH₄ isotherms are almost linear, indicating that the adsorption is physisorption and adsorbents lack specific adsorption sites for N₂ and CH₄. As shown in Figure S5, even at 0 °C and 1.5 bar, the adsorption of N₂ (0.037 mmol/g) and CH₄ (0.086 mmol/g) was very low. These results showed that adsorbents have a strong affinity for CO₂. Interestingly, the adsorbent showed no uptake of N₂ at 70 °C, demonstrating that the adsorbent could completely separate CO₂ and N₂ at 70 °C.

2.4. Selectivity and Isosteric Heat of Adsorption. In this work, we have calculated the gas selectivity of $PEI(70\%)/SiO_2$ by IAST. At first, the DSLF equation was employed to fit the adsorption isotherms for CO_2 , N_2 , and CH_4 , as expressed by:¹⁹

$$q = \frac{q_1 b_1 p^{1/n_1}}{1 + b_1 p^{1/n_1}} + \frac{q_2 b_2 p^{1/n_2}}{1 + b_2 p^{1/n_2}}$$
(1)

а

CO₂ uptake (mmol/g)

С

CO₂ uptake (mmol/g)

0.0

0.0

0.3

0.6

0.9

Pressure (bar)

1.2

Figure 6. CO_2 absorption isotherms of (a) ball-milled PEI-modified adsorbents and (b) PEI-impregnated adsorbents at 25 °C. (c) CO_2 absorption isotherms of PEI(70%)/SiO₂ at different temperatures. (d) CO_2 absorption trends for PEI(70%)/SiO₂ and IM-PEI(70%)/SiO₂ at different temperatures.

1.5

1.3

0

20

40

Temperature (°C)

60

80

100

Figure 7. CO₂, N₂, and CH₄ absorption isotherms of PEI(70%)/SiO₂ at (a) 25 °C and (b) 70 °C.

Figure 8. (a) CO₂ adsorption isotherms and dual-site Langmuir–Freundlich model fits for $PEI(70\%)/SiO_2$ at 0, 25, and 70 °C. (b) Isosteric heat of adsorption for CO₂ on $PEI(70\%)/SiO_2$ according to the CO₂ adsorption data at 0 and 25 °C.

35393

Article

where q is the equilibrium absorption (mmol/g) at gas pressure p (bar), q_i is the capacity of sites i (mmol/g) at saturation, b_i is the affinity coefficients of sites i, and n_i is the ideal homogeneous surface deviation. The fitting parameters for the DSLF model are listed in Table S1, and Figure 8a shows the experimentally CO₂ adsorption isotherms and model curves. The results indicated that the model gives a good fit to the experimental isotherms of CO₂, CH₄, and N₂. Then, the adsorption isotherms of the gas mixture were predicted by IAST and the selectivity of the binary gas mixture was calculated. The equation is shown as:⁴⁸

$$S = \frac{x_1 / x_2}{y_1 / y_2}$$
(2)

where x is the molar fraction in the adsorbed phase and y is the molar fraction in the gas phase. At 25 °C and 1 bar, the selectivity values of PEI(70%)/SiO₂ for CO₂/N₂ (15:85) and CO₂/CH₄ (40:60) binary gas mixtures were 561.0 and 148.5, respectively. Moreover, PEI(70%)/SiO₂ exhibits a high CO₂ adsorption capacity as well as high CO₂/CH₄ and CO₂/N₂ selectivity at low CO₂ pressure and 70 °C. As shown in Table 2, the selectivity of PEI(70%)/SiO₂ is higher than that of many

Table 2. Comparison of Selectivity for $\rm CO_2/N_2$ and $\rm CO_2/CH_4$ Mixtures

adsorbent	T (°C)	CO ₂ uptake ^d	$S_{\rm CO2/N2}$	S _{CO2/CH4}	ref
PEI(70%)/SiO2 ^a	25	1.40	561.0	148.5	this work
PEI(70%)/SiO2 ^a	70	2.04	infinite ^e	148.5	
MCM-41 ^b	25		11		47
TRI-PE-MCM-41 ^b	25		308 ^f		47
MOF-505@5GO ^a	25	1.25	37.2	8.6	19
C-COP-P-Mn ^c	25	0.13		6.3	48
PAN-NP ^c	0	0.80	101.1	16.5	49
nanosized zeolite L ^a	25	1.96	198.6	75.3	50
cylindrical zeolite ^a	25	1.65	188.6	72.9	50
NPC-3-500 ^a	0	1.39	160.4		51

^{*a*}The gas mixtures of CO_2/N_2 (15:85) and CO_2/CH_4 (40:60) at 1 bar. ^{*b*}The gas mixtures of CO_2/N_2 (20:80) at 1 bar. ^{*c*}The gas mixtures of CO_2/N_2 (15:85) and CO_2/CH_4 (50:50) at 1 bar. ^{*d*} CO_2 uptake at 0.15 bar CO_2 (mmol/g). ^{*e*}The adsorbent showed no uptake of N_2 at 70 °C; thus, the adsorbents showed ideally infinite selectivity. ^{*f*} CO_2/N_2 molar selectivity ratio for materials at 1 bar.

reported porous materials. It is a promising CO_2 capture adsorbent especially for the separation of high-temperature flue gas.

The isotropic heat of adsorption (Q_{st}) was calculated from the CO₂ adsorption data at 0 and 25 °C using the Clausius–Clapton equation:¹⁷

$$Q_{\rm st} = \frac{RT_1T_2\ln(p_2/p_1)}{T_2 - T_1}$$
(3)

where p_i and T_i represent the pressure and corresponding temperature of isotherm *i*, respectively, and *R* is the constant (8.314 J/K·mol). The CO₂ adsorption of PEI(70%)/SiO₂ is a typical chemical adsorption. As shown in Figure 8b, the Q_{st} of CO₂ adsorption on the adsorbent decreased significantly as the amount of CO₂ adsorption increased. Afterward, the Q_{st} value was lower than the energy of forming chemical bindings (40 kJ/mol), indicating that it was a physical adsorption process.²² Overall, this implies the heterogeneity of the adsorbent surface and obvious advantage for low-pressure CO_2 uptake.

2.5. Cycle Performance. To test the regenerative performance of $PEI(70\%)/SiO_2$, CO_2 adsorption-desorption experiments were carried out, as shown in Figure 9. It can be

Figure 9. Cyclic adsorption performance of $PEI(70\%)/SiO_2$ for CO_2 at 25 °C and 1.5 bar.

observed that $PEI(70\%)/SiO_2$ has excellent regeneration capacity, and the CO_2 adsorption capacity has only little fluctuations after 10 subsequent cycles. There was no significant difference in the CO_2 absorption, which means no loss of amine active centers. Therefore, $PEI(70\%)/SiO_2$ is very stable and has outstanding regenerability.

2.6. Adsorption Mechanism. Combined with the current experimental results and previous studies, $^{9,52-54}$ a plausible carbon dioxide adsorption mechanism is proposed and shown in Figure 10. After immobilization of PEI, SiO₂ adsorbents have more active adsorption sites (e.g., $-NH_2$). Thus, CO₂ can be adsorbed chemically to form zwitterions with immobilized amines and, finally, carbamates with higher thermal stability. In addition, CO₂ can also be fixed by hydrogen bonding between silicon hydroxyl and CO₂. In the adsorption process, abundant alkaline $-NH_2$ sites are the key reason for the highly selective separation of CO₂ and N₂.

3. CONCLUSIONS

In conclusion, a series of amine-modified amorphous silica was prepared by a simple, green, and efficient mechanical grinding method. The influence of mechanical grinding on amine content, porous structure, and CO₂ adsorption performance was investigated by characterization. The results showed that this method has significant advantages for amine dispersion. The absorbents also have a remarkably CO₂ adsorption capacity at high temperatures. At 25 °C and 1 bar, its IAST selectivity values for CO₂/N₂ (15:85) and CO₂/CH₄ (40:60) were up to 561.0 and 148.0, respectively. The adsorption–desorption tests showed the stability and regeneration of the adsorbent. Therefore, it is proved to be a promising adsorbent for the capture and separation of CO₂ from power-plant flue gas.

4. EXPERIMENTAL SECTION

4.1. Materials. Polyethyleneimine (PEI, $M_w = 600$ Da) and silica (SiO₂, hydrophilic-380 type) were purchased from Energy Chemical Technology Co., Ltd., and Aladdin Biochemical Technology Co., Ltd. China, respectively. All

Article

Figure 10. Possible CO₂ adsorption mechanism of the PEI-modified SiO₂ adsorbent.

chemicals were used directly without further purification. CO_2 (>99.99%), N_2 (>99.999%), and CH_4 (>99.999%) were supplied by Guiyang Sanhe Special Gas Center, China.

4.2. Preparation of Adsorbents by the Ball Milling Method. The PEI-modified SiO_2 adsorbents were prepared by mechanical ball milling. In a typical synthesis procedure, 0.7 g of PEI was dissolved in 1 mL of methanol and allowed to stir for 30 min. Then, the solution and 1 g of SiO_2 were added to a 45 mL ZrO_2 grinding bowl with 10 ZrO_2 balls (diameter, 10 mm) and ball-milled at 500 rpm for 1 h (forward and reverse rotation for 30 min each) using a vertical planetary mill (YXQM-0.4L, MITR Instrument & Equipment Co., Ltd., China). Finally, the sample was allowed to dry at 80 °C for 12 h. The obtained sample was denoted as PEI(70%)/SiO_2. Similarly, 30, 50, and 100% PEI-modified SiO_2 adsorbents were synthesized.

4.3. Preparation of Adsorbents by the Impregnation Method. The PEI-modified SiO_2 adsorbents were prepared by the impregnation method. In a typical synthesis procedure, a desired amount of PEI was dissolved in 30 mL of methanol. After complete dissolution, 1 g of SiO_2 was added to the solution and stirred for 6 h at 25 °C. Then, the methanol in the mixture was evaporated at 90 °C under vacuum. The sample was dried at 80 °C under vacuum for 12 h. The obtained sample was denoted as IM-PEI(70%)/SiO₂. Similarly, 30, 50, and 100% PEI-modified SiO₂ adsorbents were synthesized.

4.4. Characterization of Adsorbents. FTIR spectra of adsorbents were recorded on a Nicolet iS50 FTIR spectrometer. Thermogravimetric analysis (TGA) was performed using an STA 449F5 simultaneous thermal analyzer over the temperature range of 30 to 500 °C with a heat rate of 10 °C·min⁻¹ in a N₂ atmosphere. The pore structure of the samples was recorded by a BSD-PS(M) surface area and porosity analyzer (Beishide Instrument-S&T). The surface morphology of adsorbents was determined by scanning electron microscopy (SEM, Hitachi S-3400 N). X-ray diffraction (XRD) was performed on a small-angle X-ray diffractometer (D8 Advance) in the range of 2 θ from 5° to 90°.

4.5. Gas Adsorption Experiment. CO_2 , N_2 , and CH_4 adsorption isotherms were determined using the BSD-PS(M) by varying the temperature from 0 °C to 90 °C, and the gas pressure was changed from 0 bar to 1.5 bar. Before the test, the samples were degassed in vacuum at 110 °C for 3 h. The cycle performance was tested by the above process repeating 10 times. Adsorption kinetics was evaluated by a typical procedure, and CO_2 gas (99.99%) was bubbled at a flow rate of about 10 mL·min⁻¹ through the absorbent. The CO_2 uptake was measured with an electronic balance.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c04743.

Details about the structure characterization of the PEImodified SiO_2 adsorbents and the gas adsorption performance (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Tianxiang Zhao Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China; orcid.org/0000-0001-8197-2423; Email: txzhao3@gzu.edu.cn
- Fei Liu Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China; Email: ce.feiliu@gzu.edu.cn

Authors

- **Cheng Li** Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
- Xiaoqing Wang Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
- Anjie Yang Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
- **Peng Chen** Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c04743

Author Contributions

[‡]C.L. and X.W. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (no. 22168012), Natural Science Special Foundation of Guizhou University (no. X2019065 Special Post A), Natural Science Foundation of Guizhou Science and Technology Department (nos. 2021068 and 2021069), Characteristic Field Project of Education Department in Guizhou Province (no. 2021055), Cultivation Project of Guizhou University (no. 201955), One Hundred Person Project of Guizhou Province (no. 20165655), Innovation Group Project of Education Department in Guizhou Province (no. 2021010), and the "SRT program" for college students of Guizhou University.

REFERENCES

(1) Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-combustion CO_2 capture with chemical absorption: a state-of-the-art review. *Chem. Eng. Res. Des.* **2011**, *89*, 1609–1624.

(2) Yang, X. Q.; Zou, Q. Z.; Zhao, T. X.; Chen, P.; Liu, Z. M.; Liu, F.; Lin, Q. Deep eutectic solvents as efficient catalysts for fixation of CO_2 to cyclic carbonates at ambient temperature and pressure through synergetic catalysis. *ACS Sustainable Chem. Eng.* **2021**, *9*, 10437–10443.

(3) Shao, L.; Li, Y.; Huang, J.; Liu, Y.-N. Synthesis of triazine-based porous organic polymers derived n-enriched porous carbons for CO₂ capture. *Ind. Eng. Chem. Res.* **2018**, *57*, 2856–2865.

(4) Li, C.; Liu, F.; Zhao, T.; Gu, J.; Chen, P.; Chen, T. Highly efficient CO_2 fixation into cyclic carbonate by hydroxyl-functionalized protic ionic liquids at atmospheric pressure. *Mol. Catal.* **2021**, *511*, 111756.

(5) Oschatz, M.; Antonietti, M. A search for selectivity to enable CO₂ capture with porous adsorbents. *Energy Environ. Sci.* **2018**, *11*, 57–70.

(6) Chen, C.; Bhattacharjee, S. Mesoporous silica impregnated with organoamines for post-combustion CO_2 capture: a comparison of introduced amine types. *Greenhouse Gases Sci. Technol.* **2017**, *7*, 1116–1125.

(7) Zhang, X.; Zheng, X.; Zhang, S.; Zhao, B.; Wu, W. AM-TEPA impregnated disordered mesoporous silica as CO_2 capture adsorbent for balanced adsorption-desorption properties. *Ind. Eng. Chem. Res.* **2012**, *51*, 15163–15169.

(8) Kishor, R.; Ghoshal, A. K. High molecular weight polyethyleneimine functionalized three dimensional mesoporous silica for regenerable CO_2 separation. *Chem. Eng. J.* **2016**, *300*, 236–244.

(9) Panda, D.; Kumar, E. A.; Singh, S. K. Amine modification of binder-containing zeolite 4A bodies for post-combustion CO_2 Capture. *Ind. Eng. Chem. Res.* **2019**, *58*, 5301–5313.

(10) Sarwar, A.; Ali, M.; Khoja, A. H.; Nawar, A.; Waqas, A.; Liaquat, R.; Naqvi, S. R.; Asjid, M. Synthesis and characterization of biomass-derived surface-modified activated carbon for enhanced CO_2 adsorption. J. CO2 Util. **2021**, 46, 101476.

(11) Chai, S. H.; Liu, Z. M.; Huang, K.; Tan, S.; Dai, S. Amine functionalization of microsized and nanosized mesoporous carbons for carbon dioxide capture. *Ind. Eng. Chem. Res.* **2016**, *55*, 7355–7361. (12) Chaikittisilp, W.; Khunsupat, R.; Chen, T. T.; Jones, C. W. Poly(allylamine)-mesoporous silica composite materials for CO₂ capture from simulated flue gas or ambient air. *Ind. Eng. Chem. Res.* **2011**, *50*, 14203–14210.

(13) Lee, J. J.; Sievers, C.; Jones, C. W. Silica-supported hindered aminopolymers for CO_2 capture. *Ind. Eng. Chem. Res.* **2019**, *58*, 22551–22560.

(14) Henao, W.; Jaramillo, L. Y.; López, D.; Romero-Sáez, M.; Buitrago-Sierra, R. Insights into the CO_2 capture over aminefunctionalized mesoporous silica adsorbents derived from rice husk ash. J. Environ. Chem. Eng. **2020**, *8*, 104362.

(15) Liu, Q.; He, P.; Qian, X.; Fei, Z.; Zhang, Z.; Chen, X.; Tang, J.; Cui, M.; Qiao, X.; Shi, Y. Enhanced CO₂ adsorption performance on hierarchical porous zsm-5 zeolite. Energy Fuels 2017, 31, 13933-13941.

(16) Dabbawala, A. A.; Ismail, I.; Vaithilingam, B. V.; Polychronopoulou, K.; Singaravel, G.; Morin, S.; Berthod, M.; Al Wahedi, Y. Synthesis of hierarchical porous Zeolite-Y for enhanced CO₂ capture. *Microporous Mesoporous Mater.* **2020**, 303, 110261.

(17) Sang, Y. F.; Huang, J. H. Benzimidazole-based hyper-crosslinked poly(ionic liquid)s for efficient CO₂ capture and conversion. *Chem. Eng. J.* **2020**, 385, 123973.

(18) Deng, J.; Liu, Z.; Du, Z.; Zou, W.; Zhang, C. Fabrication of PEI-grafted porous polymer foam for CO_2 capture. *J. Appl. Polym. Sci.* **2019**, 136, 47844.

(19) Chen, Y.; Lv, D.; Wu, J.; Xiao, J.; Xi, H.; Xia, Q.; Li, Z. A new MOF-505@GO composite with high selectivity for CO_2/CH_4 and CO_2/N_2 separation. *Chem. Eng. J.* **2017**, 308, 1065–1072.

(20) Younas, M.; Rezakazemi, M.; Daud, M.; Wazir, M. B.; Ahmad, S.; Ullah, N.; Inamuddin; Ramakrishna, S. Recent progress and remaining challenges in post-combustion CO_2 capture using metalorganic frameworks (MOFs). *Prog. Energy Combust. Sci.* **2020**, *80*, 100849.

(21) Uehara, Y.; Karami, D.; Mahinpey, N. CO_2 adsorption using amino acid ionic liquid-impregnated mesoporous silica sorbents with different textural properties. *Microporous Mesoporous Mater.* **2019**, 278, 378–386.

(22) Zhang, W.; Gao, E. H.; Li, Y.; Bernards, M. T.; He, Y.; Shi, Y. CO_2 capture with polyamine-based protic ionic liquid functionalized mesoporous silica. *J. CO2 Util.* **2019**, *34*, 606–615.

(23) Huang, C. H.; Klinthong, W.; Tan, C. S. SBA-15 grafted with 3aminopropyl triethoxysilane in supercritical propane for CO_2 capture. *J. Supercrit. Fluids* **2013**, *77*, 117–126.

(24) Yang, Y.; Chuah, C. Y.; Bae, T.-H. Polyamine-appended porous organic polymers for efficient post-combustion CO₂ capture. *Chem. Eng. J.* **2019**, *358*, 1227–1234.

(25) Jing, Y.; Wei, L.; Wang, Y.; Yu, Y. Synthesis, characterization and CO_2 capture of mesoporous SBA-15 adsorbents functionalized with melamine-based and acrylate-based amine dendrimers. *Microporous Mesoporous Mater.* **2014**, *183*, 124–133.

(26) Casco, M. E.; Kirchhoff, S.; Leistenschneider, D.; Rauche, M.;
Brunner, E.; Borchardt, L. Mechanochemical synthesis of N-doped porous carbon at room temperature. *Nanoscale* 2019, *11*, 4712–4718.
(27) Szczesniak, B.; Borysiuk, S.; Choma, J.; Jaroniec, M. Mechanochemical synthesis of highly porous materials. *Mater.*

Horiz. 2020, 7, 1457–1473. (28) Mucsi, G. A review on mechanical activation and mechanical alloying in stirred media mill. *Chem. Eng. Res. Des.* 2019, 148, 460– 474.

(29) Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D. C. W.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y. S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. *Bioresour. Technol.* **2020**, *312*, 123613.

(30) Romeis, S.; Schmidt, J.; Peukert, W. Mechanochemical aspects in wet stirred media milling. *Int. J. Miner. Process.* **2016**, *156*, 24–31. (31) Li, Z.; Pan, Z.; Wang, Y. Mechanochemical preparation of ternary polyethyleneimine modified magnetic illite/smectite nanocomposite for removal of Cr(VI) in aqueous solution. *Appl. Clay Sci.* **2020**, *198*, 105832.

(32) Gao, W.; Lu, J.; Song, W.; Hu, J.; Han, B. Solution mechanochemical approach for preparing high-dispersion SiO_2 -g-SSBR and the performance of modified silica/SSBR composites. *Ind. Eng. Chem. Res.* **2019**, *58*, 7146–7155.

(33) Amrute, A. P.; Zibrowius, B.; Schüth, F. Mechanochemical grafting: a solvent-less highly efficient method for the synthesis of hybrid inorganic-organic materials. *Chem. Mater.* **2020**, *32*, 4699–4706.

(34) Miao, Y.; He, Z.; Zhu, X.; Izikowitz, D.; Li, J. Operating temperatures affect direct air capture of CO_2 in polyamine-loaded mesoporous silica. *Chem. Eng. J.* **2021**, 426, 131875.

(35) Lou, F.; Zhang, G.; Ren, L.; Guo, X.; Song, C. Impacts of nanoscale pore structure and organic amine assembly in porous silica on (36) Zhao, Y.; Zhu, Y.; Zhu, T.; Lin, G.; Shao, M.; Hong, W.; Hou, S. Polyethylenimine-based solid sorbents for CO_2 adsorption: performance and secondary porosity. *Ind. Eng. Chem. Res.* **2019**, *58*, 15506–15515.

(37) Liu, L.; Chen, J.; Tao, L.; Li, H.; Yang, Q. Aminopolymer confined in ethane-silica nanotubes for CO_2 capture from ambient air. *ChemNanoMat* **2020**, *6*, 1096–1103.

(38) Boudriche, L.; Calvet, R.; Hamdi, B.; Balard, H. Effect of acid treatment on surface properties evolution of attapulgite clay: An application of inverse gas chromatography. *Colloids Surf., A* **2011**, *392*, 45–54.

(39) Li, H.; He, J.; Sun, Q.; Wang, S. Effect of the environment on the morphology of Ni powder during high-energy ball milling. *Mater. Today Commun.* **2020**, *25*, 101288.

(40) Wang, B.; Wei, S.; Wang, Y.; Liang, Y.; Guo, L.; Xue, J.; Pan, F.; Tang, A.; Chen, X.; Xu, B. Effect of milling time on microstructure and properties of Nano-titanium polymer by high-energy ball milling. *Appl. Surf. Sci.* **2018**, 434, 1248–1256.

(41) Al-Ghouti, M. A.; Da'ana, D. A. Guidelines for the use and interpretation of adsorption isotherm models: A review. *J. Hazard. Mater.* **2020**, 393, 122383.

(42) Chen, H.; Liang, Z.; Yang, X.; Zhang, Z.; Zhang, Z. Experimental investigation of CO_2 capture capacity: exploring mesoporous silica SBA-15 material impregnated with monoethanolamine and diethanolamine. *Energy Fuels* **2016**, *30*, 9554–9562.

(43) Li, Q.; Zhang, H.; Peng, F.; Wang, C.; Li, H.; Xiong, L.; Guo, H.; Chen, X. Monoethanolamine-modified attapulgite-based amorphous silica for the selective adsorption of CO_2 from simulated biogas. *Energy Fuels* **2020**, *34*, 2097–2106.

(44) Wang, L.; Yao, M.; Hu, X.; Hu, G.; Lu, J.; Luo, M.; Fan, M. Amine-modified ordered mesoporous silica: the effect of pore size on CO_2 capture performance. *Appl. Surf. Sci.* **2015**, 324, 286–292.

(45) Li, K.; Jiang, J.; Yan, F.; Tian, S.; Chen, X. The influence of polyethyleneimine type and molecular weight on the CO_2 capture performance of PEI-nano silica adsorbents. *Appl. Energy* **2014**, *136*, 750–755.

(46) Sanz, R.; Calleja, G.; Arencibia, A.; Sanz-Perez, E. S. Amino functionalized mesostructured SBA-15 silica for CO_2 capture: exploring the relation between the adsorption capacity and the distribution of amino groups by TEM. *Microporous Mesoporous Mater.* **2012**, *158*, 309–317.

(47) Loganathan, S.; Ghoshal, A. K. Amine tethered pore-expanded MCM-41: a promising adsorbent for CO_2 capture. *Chem. Eng. J.* **2017**, 308, 827–839.

(48) Xie, C.; Huo, F.; Huang, Y.; Cheng, Y.; Liu, G.; Xiang, Z. Holey graphitic carbon derived from covalent organic polymers impregnated with nonprecious metals for CO_2 capture from natural gas. *Part. Part. Syst. Charact.* **2017**, *34*, 1600219.

(49) Zhang, B.; Yan, J.; Li, G.; Wang, Z. Carboxyl-, hydroxyl-, and nitro-functionalized porous polyaminals for highly selective CO₂ capture. *ACS Appl. Polym. Mater.* **2019**, *1*, 1524–1531.

(50) Wu, L.; Liu, J.; Shang, H.; Li, S.; Yang, J.; Li, L.; Li, J. Capture CO_2 from N_2 and CH_4 by zeolite L with different crystal morphology. *Microporous Mesoporous Mater.* **2021**, *316*, 110956.

(51) Cai, K.; Liu, P.; Chen, P.; Yang, C.; Liu, F.; Xie, T.; Zhao, T. Imidazolium- and triazine-based ionic polymers as recyclable catalysts for efficient fixation of CO_2 into cyclic carbonates. *J. CO2 Util.* **2021**, *51*, 101658.

(52) Zhao, T.; Guo, B.; Han, L.; Zhu, N.; Gao, F.; Li, Q.; Li, L.; Zhang, J. CO_2 fixation into novel CO_2 storage materials composed of 1,2-ethanediamine and ethylene glycol derivatives. *ChemPhysChem* **2015**, *16*, 2106–2109.

(53) Yu, J.; Chuang, S. S. C. The structure of adsorbed species on immobilized amines in CO_2 capture: an in situ IR study. *Energy Fuels* **2016**, *30*, 7579–7587.

(54) Zhao, T.; Li, C.; Hu, X.; Liu, F.; Wu, Y. Base-assisted transfer hydrogenation of CO₂ to formate with ammonia borane in water under mild conditions. Int. J. Hydrogen Energy 2021, 46, 15716–15723.

Article