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Abstract. Experimental animal models are crucial in the 
study of biological behavior and pathological development of 
cancer, and evaluation of the efficacy of novel therapeutic or 
preventive agents. A variety of animal models that recapitulate 
human urothelial cell carcinoma have thus far been established 
and described, while models generated by novel techniques 
are emerging. At present a number of reviews on animal 
models of bladder cancer comprise the introduction of one 
type of method, as opposed to commenting on and comparing 
all classifications, with the merits of a certain method being 
explicit but the shortcomings not fully clarified. Thus the 
aim of the present study was to provide a summary of the 
currently available animal models of bladder cancer including 
transplantable (which could be divided into xenogeneic or 
syngeneic, heterotopic or orthotopic), carcinogen‑induced 
and genetically engineered models in order to introduce their 
materials and methods and compare their merits as well as 
focus on the weaknesses, difficulties in operation, associated 
problems and translational potential of the respective models. 
Findings of these models would provide information for 
authors and clinicians to select an appropriate model or to 
judge relevant preclinical study findings. Pertinent detection 
methods are therefore briefly introduced and compared.
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1. Introduction

Bladder cancer is one of the most common types of cancer 
globally. An estimated 72,570 new cases and 15,210 mortali-
ties from bladder cancer occurred in 2013 worldwide (1). The 
majority of types of bladder cancer arise from the urothelium, 
the well‑differentiated transitional epithelium that lines the 
urinary bladder, also known as urothelial cell carcinoma 
(UCC). Bladder cancer is the most common malignancy of 
the urinary tract and the second most common malignancy 
of the urogenital tract following prostate cancer in the United 
States (2). Risk factors that have been clearly associated with 
the formation of urothelial tumors include tobacco smoking, 
occupational exposure to aromatic amines, consumption 
of arsenic‑laced water and the therapeutic use of alkylating 
agents. Of all UCCs, 70% are a low‑grade, papillary, non‑inva-
sive entity that tends to recur in more than half of patients 
following local resection. With regard to the progression of 
low‑grade tumors into invasive forms, certain studies suggested 
that the progression rate may be as high as 10‑20% (3,4). 
However, controversy as to whether this is true progression or 
de novo development remains. The remaining 20‑30% of UCC 
are a high‑grade, non‑papillary, muscle‑invasive form that are 
responsible for the majority of morbidity and mortality. These 
invasive tumors can penetrate deeply through the muscle wall 
of the bladder, demonstrating a high propensity for distant 
metastasis and resistance to currently available treatments (5). 
These invasive and non‑invasive forms of UCC, are not only 
clinically distinguishable, but also reflected in two divergent 
molecular pathways  (6,7), while the majority of epithelial 
tumors are believed to progress along a single pathway.

Although certain progress has been achieved in exploring 
the molecular basis that underlies UCC, in general it is not thor-
oughly understood and bladder cancer remains a major public 
health issue. The effects of conventional radiotherapy and 
chemotherapy on advanced bladder cancer remain unsatisfac-
tory, therefore there remains a demand for the emergence of novel 
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agents either for survival improvement or for chemoprevention. 
Among all types of models of bladder cancer which contribute 
to our understanding of the cancer itself or novel therapies, 
animal models have an important role that cannot be replaced 
by other models. They constitute the essential link between 
cell‑based experiments and clinical trials, allowing the 
investigation of aspects that cannot be studied in traditional 
two‑dimensional cell culture or clinical conditions, including 
the biological behavior and pathological characteristics of 
cancer in living organisms, the genotypic and phenotypic 
heterogeneity among a cluster of cancer cells, or the efficacy, 
toxicity and pharmacokinetics of a novel medicine. The inven-
tion of artificial three‑dimensional extracellular matrices 
partly solved certain issues in terms of histological structures, 
cell differentiation and adhesion (8‑13). However, cell cultures 
usually harbor only one type of cell, while real tumors consti-
tute tumor, normal functional, stromal and immune cells, as 
well as other cell types that may support, promote or inhibit 
tumor growth. The microenvironment in cell culture regarding 
chemical components, biological properties and cell‑to‑cell 
interaction remains far from the in vivo condition. Increased 
effort has also been directed to the culture of normal tissues 
and organs, rather than to tumors and types of cancer.

For bladder cancer particularly, in the past century, much 
effort has been devoted to the development of an appropriate 
animal model. Certain criteria, however, are required for an 
ideal animal model, including that the tumor be of urothelial 
origin; mimic human bladder cancer pathogenesis; be ortho-
topic, meaning growing inside the urinary bladder instead of 
elsewhere; have several distinguishable pathological stages, 
similar to human bladder cancer; have similar phenotypic and 
genotypic alterations to those found in human bladder cancer, 
preserving heterogeneity at the same time; the animal host 
should be immunocompetent and easily manipulated from 
any aspect; and predominantly, the animal model should be 
feasible, in other words easy to set up, fast to develop, inex-
pensive to maintain, stable, predictable and reproducible. 
Unfortunately, the existing models barely adhere to these 
standards. Each animal model has its own advantages and 
disadvantages, and is only suitable for certain fields of study. 
In this review a critical look is taken at representatives of each 
type of animal model.

2. Selection of animals

Large mammalian animals including dogs or monkeys are 
biologically closer to humans, however, these induce finan-
cial burden and ethical issues. At present the most commonly 
used animal for bladder cancer models are rodents, including 
rats and mice. Rodents have a lower urinary tract comparable 
to humans, although neoplasms in the bladder are morpho-
logically alike (14). Despite the large difference in size, 80% 
of mouse genes may be matched to human genes, and the 
ratio for the rat is 90% (15). Additionally, these small animals 
are fast to grow and reproduce, inexpensive to acquire and 
maintain, and convenient for manipulation. Their robust 
vitality allows them to endure operations and resist mild 
infections. Although imperfect in their translatability into 
clinical knowledge, the rodents remain a critical tool in 
bladder cancer research.

3. Transplantable models

Xenogeneic models. Xenograft models are established by trans-
planting human urothelial cancer cell lines or primary cancer 
tissue fragments into immunodeficient mice (16). The receiver 
has to be the nude mouse model, which was identified in 1962 
by Dr N.R. Grist (17). Lacking a thymus, nude mice cannot 
generate mature T lymphocytes and are unable to mount the 
majority of types of immune response, otherwise the strong 
rejection response in immunocompetent mice would lead to 
either the mortality of the mice or the death of the cancer cells.

A number of cell lines, derived from human primary UCC 
tissue by immortalization or spontaneous proliferation in vitro, 
representing tumors of different grades and stages, have been 
developed and had their histology and tumorigenicity variably 
characterized. The cell lines have been shown to retain the 
characteristics of the originating tumors  (18), particularly 
exemplified in xenograft models (19,20), and human in vitro 
organotypic systems (21).

However, cell lines may differ from their origins in 
morphology, phenotype or growth patterns  (22‑25). To a 
certain degree, they can be considered ‘abnormal’ simply by 
having undergone the immortalization process. High rates 
of passaging are associated with increased spontaneous 
mutations, senescence and selection processes (26,27). The 
heterogeneity and biodiversity of the primary tumor are also 
gradually lost during the passages. Tumors formed in the 
xenograft model are unable to comprise enough various cell 
types as in the natural human UCC.

Apart from the phenotypic and genotypic drifts due to 
the selection pressures imposed during extensive cell culture, 
cross‑contaminated sub‑lines, signifying one cell line that is 
unintentionally replaced by another similar cell line, occur 
occasionally (28). The difference in aspects including enzyme 
production, drug resistance and radio sensitivity could lead 
to confounding results. Morphological changes and a shift in 
ploidy are also exhibited in serial passages of subcutaneous 
UCC xenografts, which results in removing certain animals 
out of a trial and transplanting the tumor into new animals (29).

Several decades have passed since the first cancer cell 
line was cultivated, yet certain basic cell activities have not 
been thoroughly elucidated, and information on gene expres-
sion and alterations of specific cell lines remain insufficient. 
Despite these potential drawbacks, the application of human 
UCC cell lines rather than animal cancer cells appears perti-
nent and convincing, thus xenograft models are employed in a 
number of clinical studies on the efficacy of therapeutic agents, 
including cytotoxic drugs, immunosuppressants, radiotherapy 
and monoclonal antibodies (30‑33). Within one to two weeks 
of implantation, urothelial neoplasm grows to a size sufficient 
for treatment evaluation, rendering it time‑ and cost‑effective 
when compared with carcinogen‑induced or transgenic mouse 
models. The inhibited immune system allows nude mice to 
receive cell or tissue grafts, but also leads to the uncontrollable 
growth of the cancer cells, invasion of the surrounding tissue, 
fast angiogenesis and rapid distant metastasis. In certain studies, 
xenograft models are used to simulate metastatic bladder 
cancer, studying neutralizing monoclonal antibody targeted 
at murine vascular endothelial growth factor receptor (30,34). 
Due to the immunodeficiency of nude mice, xenograft models 
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are not suitable for studies on interactions between the host 
immune system and the tumor, therefore experiments associ-
ated with Bacillus Calmette‑Guerin (BCG) cannot be carried 
out on such models. By contrast, transplantable syngeneic 
animal models are more appropriate to approach these issues. 
Nevertheless, these two models are not useful for the study of 
the mechanisms associated with carcinogenesis or the efficacy 
of agents in preventing carcinogenesis.

Syngeneic models. In contrast to xenogeneic models, synge-
neic models are established by inoculating rodent bladder 
cancer to syngeneic, immunocompetent animals. Syngeneic 
models are employed when the study focuses on the immune 
response or gene therapy. The commonly used rodent bladder 
cancer cell lines include AY‑27, MBT‑2 and MB49. AY‑27 and 
MBT‑2 were initially induced by feeding C3H/He mouse and 
Fischer 344 rat strains with N‑[4‑(5‑nitro‑2‑furyl)‑2‑thiazolyl] 
formamide (FANFT) (35,36), while MB49 was induced by 
administering 7,12‑dimethylbenzanthracene to the C57BL/6 
mouse strain (37). However, one type of rodent cancer cell line 
may not be compatible to the rodents of other strains from 
which the cell line was originally derived (38,39).

Transplantable syngeneic models and xenograft models 
are both time- and cost‑effective, and reproducible, but exhibit 
phenotypic and genotypic drifts in continuous cell or animal 
passages. The application of the immunocompetent host in 
syngeneic models allows the study of intravesical BCG treat-
ment or gene therapy (19,40‑45).

The immunoregulator BCG is widely recognized as a 
potent agent in preventing tumor recurrence, more effectively 
than any other chemotherapeutic agent. However, ~20% of 
patients discontinue BCG due to local and systemic toxicity 
and >30% of patients show evidence of recurrence (46), which 
has led to increased interest in exploring BCG‑associated 
mechanisms  (47). In this case, syngeneic animal bladder 
cancer models are essentially required as they provide a prac-
tical platform for seeking the reason underlying the lack of 
response of BCG observed in certain patients and testing the 
efficacy of combining new adjuvant agents with BCG (48‑50). 

Certain individuals argue that the tumors are of rodent 
and not human origin, and therefore inherent characteristics 
including tumor growth, latency, growth rate, invasion and 
metastasis may be different from their human counterparts, 
and therefore that the translational potential of syngeneic 
models is even lower than xenogeneic models, and is one step 
further from clinical applicability.

Heterotopic models. Based on whether the inoculation site is 
in the target organ or not, xenogeneic and syngeneic models 
could be further divided into heterotopic and orthotopic 
models. Heterotopic indicates that the graft is not transplanted 
in the original site, but usually subcutaneously in the flank or 
hind leg of the animal. If the target organ is not convenient for 
inoculation such as the bladder, kidney or bowels, the subcu-
taneous model should be considered since it is technically 
simple and can be carried out by an operator with minimum 
training. Furthermore, the tumor can be easily and non‑inva-
sively detected, and the tumor evolution can be conveniently 
assessed by palpation of the skin and measured with a caliper. 
For these reasons, subcutaneous bladder tumor models have 

been widely used in assessing the efficacy of novel therapeutic 
agents (51).

However, the alteration of the tumor microenvironment due 
to the inoculation site may significantly affect the biological 
behavior of tumor growth and metastasis, genetic expression 
or the efficacy of anti‑proliferative agents (52‑54). Drugs that 
have great anti‑proliferative or apoptosis‑inducing potential on 
heterotopic animal models may not be effective on orthotopic 
models. In a well‑known study (54), the highly metastatic 
KM12L4 human colon cancer cell line was implanted into 
different anatomical locations including the subcutis, cecum 
and spleen (leading to experimental liver metastasis) of nude 
mice, and doxorubicin was injected intravenously at 10 mg/kg 
for evaluation. Tumors grown within the subcutis showed an 
80% inhibition of growth following two intravenous injec-
tions of doxorubicin, compared with only 40% inhibition of 
the intracecal tumors and <10% inhibition of lesions in the 
liver (54). Apart from their limited translatability, in the study 
of bladder cancer, the modalities of intravesical treatment 
cannot be directly applied to subcutaneous tumors, requiring 
the establishment of orthotopic models.

Orthotopic models. Compared with subcutaneous models, 
orthotopic tumors mimic human bladder cancer behavior more 
closely, since the microenvironment is closer to the natural condi-
tion. Therefore experimental results generated by the orthotopic 
model are expected to have higher relevance (55). However, the 
accurate non‑invasive assessment of established tumors in the 
orthotopic model also requires further detection devices.

Different methods of orthotopic model establishment 
have been reported, mostly by intravesical instillation of the 
tumor/cancer cell suspension following preconditioning of 
the urothelium. Tumor cells instilled into normal bladders 
did not result in tumor establishment. To damage the integ-
rity of the urothelium, chemical denudation with HCl and 
subsequent neutralization with KOH or extensive washing 
with saline results in increased take rates  (56,57). Other 
agents, e.g., N‑methyl‑N‑nitrosurea (MNU) or silver nitrate 
can also be used for denudation but are not as effective as 
acid washing (36). Mechanical damage, including electrical 
cauterization or epithelial abrasion can also facilitate tumor 
cell adhesion (19,40,58). Prolonged dwell time of tumor cells 
can also improve take rates (19). Intramural inoculation via 
laparotomy does not require preconditioning of the urothelium 
or prolonged dwell time, and results in high take rates at the 
same time (59). However, the biological behavior of inoculated 
tumors may be altered compared with those inoculated by 
instillation (60). This does not signify that tumors inoculated 
through intravesical instillation of cell suspension completely 
mimic human bladder cancer. Certain tumors tend to be 
invasive from the beginning, without the Ta stages, possibly 
associated with preconditional urothelium damage such as 
extensive abrasion rather than with the aggressiveness of the 
cell line (61). Caution should be paid during bladder precon-
ditioning to prevent the rapid invasion of tumor cells into the 
underlying layers of the bladder.

Following a period of one to two weeks, tumor growth is 
usually detectable (62,63). Signs indicating successful inocula-
tion of the tumor include gross hematuria, significant weight 
loss and suprapubic mass. Palpation is easy and cost‑free, but 
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does not provide reliable parameters for evaluating the devel-
opment of the tumor, and only large tumors (>200 mg) may be 
detected by palpation (49).

Ultrathin cystoscopy (diameter 0.75 mm), developed by 
Asanuma et al, is a reliable non‑invasive method, permitting 
inspection of the urethra and whole bladder surface, obtaining 
detailed appearance and accurate locations of early lesions (64) 
with a sensitivity and specificity >90% (65). If enhancing 
agents such as aminolevulinic acid are used the result should 
be further improved (66). Cystoscopy does not distinguish 
non‑muscle‑invasive bladder cancer from muscle‑invasive 
disease and does not provide quantitative analysis.

Quantitative analyses are necessary for the confirma-
tion of inoculation and serial assessment of tumor evolution. 
Intravesical ultrasonography is reported as a reliable and appro-
priate non‑invasive method for evaluating tumor stage and 
size in an orthotopic model with the positive predictive ratio 
regarding tumor staging reaching 85% (67). However, infor-
mation on tumor location and appearance cannot be obtained. 
Resolution is limited and the detection procedure is skillfully 
demanding. Magnetic resonance imaging has been reported as 
an effective tool in terms of quantification (57,68,69). Tumors 
can be clearly delineated from normal tissue and their size 
can be accurately measured. In spite of all the merits, it offers 
poor diagnosis of small early lesions (<1 mm in diameter) due 
to its spatial resolution and slice thickness, and the detection 
process is relatively time‑consuming.

All of the imaging tests require anaesthesia and urethral 
catheterization. A certain percentage of the animals (≤20%), 
may die prior to the end of the study due to procedural 
mishaps (70). Thus more animals are required from the begin-
ning of the studies in case of accidental mortality during these 
tests. A combination of the detection methods introduced 
above can provide important information for records of tumor 
growth without sacrificing the animals, although pathological 
analysis of the bladder remains the gold standard.

4. Carcinogen‑induced models

Urinary bladder carcinogenesis has been studied extensively 
ever since the report by the surgeon Dr Rehn suggesting an asso-
ciation between contact with aniline dye and the development 
of bladder cancer in 1895 (71). Historically bladder cancer was 
regarded as a neoplastic disease strongly linked to professional 
and environmental contact with chemicals. Two decades later, 
Yamagiwa and Ichikawa successfully produced a carcinoma on 
the inner surface of the ear of the domestic rabbit with coal‑tar, 
proving the possibility of inducing cancer in experimental 
animals by chemical means (72). The induction of bladder cancer 
in dogs by 2‑naphthylamine, reported by Hueper in 1938, estab-
lished the experimental basis of bladder carcinogenesis (73). 
Since then, various attempts to induce tumors in rodent bladders 
by chemicals were unsuccessful until Armstrong and Bronser 
induced papillomas and carcinomas through oral administra-
tion of 2‑acetylaminoflourene (AAF) in CBA strain mice in 
1944 (74). However, AAF, which is a pluripotent carcinogen, 
induced tumors in other sites of the animal including the liver, 
pancreas, breast and skin as well as the bladder. The search 
for organo‑specific chemically defined bladder carcinogens 
achieved great success in the 1960s and early 1970s. Among 

those carcinogens, three were reported as being particularly 
effective in causing bladder tumors under the appropriate condi-
tions: FANFT, N‑butyl‑N‑(4‑hydroxybutyl)‑nitrosamine (BBN) 
and MNU (75,76).

Although the induction period is relatively long, the applica-
tion of these chemicals provided readily available reproducible 
models necessary for detailed studies of the biochemical, 
pathobiological and immunological mechanisms involved in 
the pathogenesis of bladder cancer (77). Various combinations 
of dose, period and frequency of administering the chemicals 
to the animals were attempted, and the results revealed several 
facts: i) Within a fixed experimental period, when the total 
dose of the carcinogen was increased, the grade of cellular 
atypia and the extent of invasion by these transformed urothe-
lial cells increased; ii) when the total dose and frequency was 
fixed, the longer the inducing period, the more invasive those 
tumors became; iii) when the total dose and period was fixed, 
a greater carcinogenic effect was observed when the total dose 
was administered as several fractions, which means the effect 
of the fractions was synergistic rather than additive (76,78,79).

Of the three organo‑specific carcinogens, the usage of 
FANFT is not currently common as a result of concern for 
environmental pollution and personnel health in spite of the 
fact that the commonly used AY‑27 and MBT‑2 rodent UCC 
cell lines, which are applied in the aforementioned syngeneic 
models, were induced by feeding rodents with FANFT. Thus 
the focus is on BBN and MNU. Since the chemically‑induced 
tumors grow intravesically, the detection methods are the same 
as those employed in the transplantable syngeneic models.

BBN. Highly limited to the urinary bladder, BBN is probably 
the most commonly referenced experimental carcinogen. 
Rodent bladder tumors induced by BBN mirror their human 
counterparts histologically and genetically (80). A previous 
study compared the mRNA and protein levels of the rodent 
bladder cancer model with human bladder cancer, finding 
concordant changes in several genes/proteins, demonstrating 
that the bladder cancer model induced by BBN is a powerfully 
reliable study tool (81).

In the mid‑1990s, clinical trials demonstrated that 
regular non‑steroidal anti‑inflammatory drug (NSAID) use 
significantly prevented and reversed esophageal and colorectal 
cancer (82). Similar reports later confirmed this finding, and the 
chemoprevention effect covered urinary bladder cancer (83). 
The effect of NSAIDs, including aspirin, celecoxib, rofecoxib, 
naproxen and indomethacin, was evidenced by results in the 
BBN‑induced models (84‑89). Other agents, including histone 
deacetylase inhibitor (90), sulforaphone (91), sirolimus (92), 
atorvastatin (93), and natural extracts or compounds including 
green tea polyphenol (94), cranberry juice concentrate (95), 
aqueous extract of sclerotia of Polyporus  umbellatus 
Fries (96) and isothiocyanates (97) have also been demon-
strated to possess efficacy in the prevention of bladder tumor 
development, although some herbal extracts were revealed not 
to be as effective as previously thought (98). Studies of chemo
prevention with BBN‑induced models continue to contribute 
to understanding when transgenic mouse models are feasible.

BBN is a yellow oily liquid usually dissolved in drinking 
water at the concentration of 0.05% to feed the animals. 
Although convenient, this method exhibits problems when 
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measuring the exact dose of BBN taken by each individual 
animal. Different individuals may consume different doses, and 
carcinogenesis may take a longer period of time in those that 
drink less water. Certain authors suggested gavage three times 
per week, solving the problem of dosing, but also requiring a 
far more manual operation. The incidence rate of tumor forma-
tion can be 100%, however, subsequent to feeding with BBN 
for 6‑8 weeks, another 6‑8 months are required for the develop-
ment of papilloma and carcinoma in all the animals (79).

With regard to the development of squamous cell carinoma, 
the percentage of squamous elements varied in different reports 
(99,100). The variation could be a result of divergence in strains of 
rodents, length of inducing period and extent of chronic inflam-
matory reaction (101). Reproducibility is greatly hampered by 
the long inducing period for tumor development. Therefore, 
these models are more often employed in chemoprevention 
studies, as introduced previously, but are less practical in thera-
peutic efficacy studies of novel anti‑proliferative compounds.

MNU. MNU is the only carcinogen recognized to act directly 
on the urothelium following spontaneous pH‑dependent decom-
position without requiring metabolic activation. Therefore the 
carcinogen can be administered directly in quantifiable pulse 
doses via intravesical instillation, possessing unique advantages 
for the experimental analysis of complete carcinogenesis. MNU 
is a fine yellowish crystalline powder that is intrinsically unstable. 
As a result, variations in carcinogenic potency were observed in 
early experiments. Initially introduced by Hicks and Wakefield 
in the 1970s (102), MNU was revealed to be the fastest in carci-
nogenic induction. Bladder tumors appeared from 12 weeks 
onwards. The method was later further modified by Steinberg 
(103), using a different inbred strain of rat (Fischer 344) and 
administering continuous antibiotics in the drinking water of 
the animals during carcinogen exposure to minimize urinary 
infections, which was believed to affect the type of pathological 
development. The frequency he used, which was once every two 
weeks for four times, gradually became routine procedure (103). 
Originally used as a denucleator, it was later realized that MNU 
is also a genotoxic carcinogen, and the only carcinogen to 
produce bladder cancer at a single dose (104). Due to the insta-
bility, great care should be taken during its storage, preparation 
and use. Low temperature, protection from light and addition of 
5% acetic acid are common requirements to keep MNU from 
decomposition.

In BBN induction, the two genders of rats or mice could 
be used, and male rodents are used more often, perhaps since 
in the human population males have a much higher incidence 
of bladder cancer, and notably previous findings indicate 
androgen or androgen receptors may be a contributing factor in 
tumorigenesis and angiogenesis (105,106). In MNU induction, 
mice are not a feasible option since the urethra is too thin for 
catheterization. Female rats are preferred for their anatomic 
structure. However, even with these, the operator would need 
a lot of practice prior to skillfully performing the operation, 
which is relatively more difficult and complicated than gavage. 
Urinary catheterization can occasionally cause urinary infec-
tion, urocystitis, bladder concretions and sepsis if the catheter 
is not inserted properly (107). Furthermore, anesthesia is also 
required. Some rats accidentally die due to these factors and 
this should be taken into consideration when designing a study.

The inherent inconvenience of the practice renders MNU 
less popular than BBN. However, findings are also generated 
using MNU‑induced models, such as the chemopreventive effect 
of curcumin (108). Few studies have attempted other routes 
of administration such as intraperitoneal injections (109,110). 
However, in these experiments MNU was used in combina-
tion with BBN intake in order to enhance and accelerate the 
carcinogenic effect of the latter. The effect of intraperitoneal 
injection of MNU alone is questionable.

Squamous tumors were also reported in MNU‑induced 
models. Steinberg suggested adding antibiotics in the drinking 
water of rats when they are administered MNU intravesical 
instillation to minimize the inflammatory response in order 
to prevent the development of squamous tumors (103). The 
modification resulted in 100% formation of UCC papilloma 
and carcinoma without squamous cell carcinoma.

5. Transgenic models

The transgenic mouse, or genetically engineered mouse 
(GEM), generated by ever‑improving techniques to carry 
cloned oncogenes or lack tumor‑suppressing genes, provides an 
ideal system for dissecting the roles of these molecular events, 
individually or in combination, in bladder tumorigenesis. In 
1974, Rudolf Jaenisch created the first GEM by microinjecting 
a simian virus 40 DNA into an early‑stage mouse blastocyst, 
which was subsequently transferred surgically to the uterine 
horns of a surrogate mother (111). During the early 1980s the 
technology used to generate GEMs was improved into a trac-
table and reproducible method (112).

A number of GEM models of UCC employed the uroplakin II 
(UPII) promoter, the 3.6  kb 5'‑upstream sequence of the  
mouse UPII gene, first identified in 1995 (113). UPs are a 
group of integral membrane proteins that are synthesized as 
the major differentiation products of the urothelium. The UPII 
promoter drives a Lac Z reporter gene and a human growth 
hormone gene to express at a high level in the urothelium. Later 
it was found to be capable of driving the urothelium‑specific 
expression of SV40T (an oncoprotein that can inactivate the 
p53 and retinoblastoma proteins) antigen following micro
injection of the UPII‑SV40T chimeric gene fragment into the 
pronuclei of fertilized eggs of FVB/N inbred mice for GEM 
production. The GEM developed UCCs that bear a strong 
resemblance, not only in phenotypes, but also in the mode of 
progression, with human UCCs (114,115). Certain GEM UCCs 
were even muscle‑invasive. The procedure is relatively techni-
cally demanding and complex, and the target gene could only 
be incorporated into ~10% of produced mice.

By then, clinical and pathological studies had already identi-
fied the low‑ and high‑grade forms of UCC, arising from two 
separate pathways (116). GEM UCC models were later validated 
and elucidated the divergent pathways. The role of numerous 
genes and receptors, e.g., Hras, p53, RB, PTEN, fibroblast growth 
factor receptor, and epidermal growth factor receptor, in the 
development of bladder cancer, also become more evident with 
the increasing insight provided by the GEM models (117‑124).

However, the findings of Ayala de la Peña et al demonstrated 
that, during the original cloning of this promoter, ~1,500 bp 
of the UPII promoter region was oppositely inserted between 
two SacI restriction enzyme sites (from ‑1262 to ‑2805 from 
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exon 1) (123). Using the appropriate promoter (referred to as 
UPKII), expressing the SV40 large T‑antigen (which inactivates 
both p53 and Rb) results in the development of carcinoma in situ 
only, without progression to invasive cancer. By contrast, SV40 
mice created using the UPII promoter develop muscle‑invasive 
disease (114,115). This lead to suspicion of the validation and 
accuracy of the results generated in GEM models with the UPII 
promoter, and the findings generated using the UPII promoter 
should be reconfirmed with the application of the appropriate 
promoter.

GEM models, however, have certain limitations. As a result 
of the inherent flaws of the mechanism, only a portion of the 
animals exhibit the desired genotypic traits, and occasionally 
it cannot be ascertained as to whether the trait is as required, 
as discussed above. A paucity of models representing the 
high‑grade, muscle‑invasive and metastatic form of bladder 
cancer remains. With target genes switched on or off, GEM 
is ideal for studying single or multiple gene functions, but any 
specific model may not fully mirror the genetic alterations in 
natural human tumorigenesis, which involves the deregulation 
of multiple signaling pathways. Cancer cells in these models, 
which have the same or similar origin, tend to be less hetero-
geneous than human bladder cancer. Therefore, the biological 
behavior of the cancer may be different from the human case. 
GEM is usually not applied in testing the efficacy of novel 
therapeutic or preventive agents. When translating the labo-
ratory findings of certain therapeutic strategies using GEM 
models, caution is essentially required.

In previous years, studies had applied BBN or MNU to GEM 
to test whether certain genes could facilitate the carcinogenesis 
process and shorten the long inducing period. P27 knock‑out 
mice are more sensitive to MNU, while Stat3‑transgenic mice, 
Fez1/Lzts1-deficient, Keap1 knock‑out and FHIT knock‑out 
mice are more susceptible to BBN (89,124‑127). As the inducing 
period was curtailed, studies using carcinogen‑induced GEM 
models could save time, which combines the advantages of the 
two types of model.

6. Use of rat or mouse model

Rats and mice, as important tools of study, were often used in 
setting up bladder cancer models. In a certain type of model, 
one of the animals may have preference over the other rodent. 
For studies of carcinogen‑induced bladder cancer models, rats 
are more frequently used than mice, particularly when induced 
by MNU. By contrast, in studies of genetically modified 
animal models, the usage of rats is rare.

The differences in pathologic structural characteristics 
between rats and mice have been previously identified (14). 
A number of exophytic tumors induced in rats are polypoid, 
often pedunculated and with an inverted papillary growth 
pattern  (14). By contrast, in mice, nodular hyperplasia is 
considerably more common than papillary proliferations, 
which were absent in a previous study (128). Thus, the rat 
model strongly resembles papillary neoplasms and the mouse 
model resembles flat urothelial lesions. Although the two 
forms are observed in human patients, papillary neoplasms 
definitely have higher incidence rates.

Since nude mice were identified as a potent tool for estab-
lishing xenograft models, mice began to gain more popularity 

compared to rats. This was aggravated by the emergence of 
GEM. Mice also have the inherent advantage of smaller size and 
faster breeding. However, the rat remains noteworthy in areas 
where its larger body size and physiological similarity to humans 
are important, including pharmacological studies which test the 
effects and toxicity of drugs. The genome sequencing study of 
the rat in 2004 (129) revealed that as many as 90% of rat genes 
exhibited matches in humans and mice, higher than the 80% 
reported (130) when comparing mice with humans, thus helping 
to restore favor for the rat in the laboratory and promoting the 
identification of new genetically engineered strains. In previous 
years the genetically modified rat became technically feasible 
and economically attractive  (131,132). Currently available 
knock‑out rat disease models for Parkinson's and Alzheimer's 
diseases, hypertension, and diabetes are developed using 
zinc‑finger nuclease technology. However, bladder cancer rat 
models have yet to be successfully established.

7. Conclusion

All the models developed by scientists make an effort to maxi-
mize the approximation of reality. Since it is hard to meet with 
all the standards of an ideal animal model, the objective of 
the present critical review is not to focus on the weakness of 
each model, dissert the superiority of one model over another, 
or prove the insufficient validation of the findings reported 
by studies using these models, but to offer investigators more 
information to take into account and select the ideal model 
that suits the relevant question of interest. Although GEM 
cancer models have been developing rapidly and showing great 
potential, they cannot fully take the position of transplantable 
and carcinogen‑induced models. A meta‑analysis compared 
outcomes from autochthonous models and GEMs and revealed 
that carcinogen‑induced tumors showed an improved associa-
tion with clinical responses (133).

Certain studies recruit more than one type of animal model 
to enhance its validity and translatability. In an investigation 
of the chemopreventive and chemotherapeutic effects of 
silibinin, the heterotopic xenograft and MNU induced models 
were employed (134). Perhaps multi-animal model studies will 
become a trend in the future.

Animal models of bladder cancer have advanced the 
understanding of the disease, enabled the exploration of treat-
ment regimens and, ultimately, the translation of preclinical 
knowledge to improved patient care. Further effort should 
be devoted to modifying and optimizing these models. 
Every protocol must be approved by the institutional ethics 
committee for the use of laboratory animals to protect the 
welfare of the animals.
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