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Introduction 
Induced ovulation is considered an evolutionary repro-

ductive trait developed by some species to achieve fertilization 
success (Bakker and Baum, 2000). This ovulation mechanism 
is mostly observed in animal species exhibiting low population 
densities or inhabiting highly seasonal environments, and it 

is intimately linked to copulation (Bakker and Baum, 2000). 
Tactile, visual, and olfactory stimuli occurring during mating 
behavior have been classically linked to eliciting or facilitating 
ovulation in induced ovulators. Since its early definition, the 
mechanical stimulation of the vagina and cervix during penile 
intromission that stimulates afferent sensory inputs has been 
ascribed to the main factor triggering a neuroendocrine reflex 
responsible for the preovulatory luteinizing hormone (LH) 
surge and subsequently ovulation (Kauffman and Rissman, 
2006). However, not much consideration has been given to the 
chemical or hormonal effect that semen can have on triggering 
the release of the oocyte.

The notion that the male could signal and influence the fe-
male reproductive physiology to improve the conditions for 
pregnancy success through semen deposition in the female 
tract is a notion just recently considered (Robertson, 2007). 
In fact, several studies have demonstrated that molecules pre-
sent in the seminal fluid of different species can affect fertiliza-
tion, early embryo survival, endometrial receptivity, and finally 
pregnancy outcome (Robertson, 2007). Recently, it has been 
proposed to extend further the concept of pheromones, based 
on the observations made in camelids, to include along with the 
classic air-borne chemical signals a separate class of seminal 
molecules that act on the female reproductive tract (Robertson 
and Martin, 2022).

Seminal plasma is the largest portion of an ejaculate con-
taining sugars, salts, lipids, proteins, hormones, antimicro-
bial molecules, and others acting as immunity suppressors. 
Nowadays, it is clear that apart from the role of several of these 
molecules on sperm physiology, they have a role in chemical 
communication between males and females that surpass mating 
itself  (Robertson, 2007; Schjenken and Robertson, 2020). In 
this regard, findings reported during the last 30 yr provide ro-
bust evidence of the presence of an ovulation-inducing factor 
(OIF) in the seminal plasma of old (Bactrian and Dromedary 
camels) and new (llamas and alpacas; Figure 1) world camelids, 
which unequivocally support a pivotal role of the male on the 
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control of female reproduction via seminal plasma signals in 
camelids.

Early South American studies classified female llamas and 
alpacas as induced ovulators based on experimental designs 
that included different mating variations (San-Martin et  al., 
1968; Fernandez-Baca et al., 1970). These studies established 
the classic notion that the mechanical stimulation occurring 
during copulation was required to induce the preovulatory LH 
surge and subsequent ovulation. However, as mentioned, later 
studies elucidated and provided depth insights into the mech-
anism of induced ovulation in domestic South American cam-
elids, which is driven by a protein factor present in the seminal 
plasma rather than by physical stimulation of the female genital 
tract and subsequent nerve transduction (Ratto et al., 2012). 
Besides the effect on the induction of ovulation in llamas and 
alpacas that occurs shortly after systemic protein administra-
tion, this ovulation-inducing factor also enhances the develop-
ment and function of the corpus luteum (Adams et al., 2005; 
Silva et al., 2014; Ulloa-Leal et al., 2014), a potential strategy 
to stimulate early embryo development and implantation.

The present review aims to condense most of our current 
understanding regarding the major female reproductive ef-
fects of the OIF—also known as beta-nerve growth factor 
(β-NGF)—that is present in the male llama and alpaca seminal 

plasma, as well as its possible mechanisms of actions in the 
brain which still awaits to be elucidated. A  potential use of 
β-NGF in the light of recent evidence of its effect in cattle is 
also reviewed.

A Brief History of the Discovery, 
Characterization, and Identification of OIF

In the ‘80s, the pioneering work of Chinese researchers 
(Chen et  al., 1983) brought to our attention the fact that a 
high rate of ovulations was induced after intravaginal depos-
ition of semen in Bactrian camels, an induced ovulation spe-
cies. After two decades of intense work, the research conducted 
in Bactrian camels has led to the following findings: 1) rather 
than the mechanical stimulation of copulation, a protein pre-
sent in the seminal plasma is responsible for triggering ovula-
tion in this species (Chen et al., 1983, 1985); 2) after systemic 
or intrauterine administration of the seminal factor, a rapid 
preovulatory LH surge is induced (Xu et al., 1985); 3) the pro-
tein factor is chemically different from other ovulatory mol-
ecules (gonadotropin-releasing hormone [GnRH], LH, Human 
chorionic gonadotropin [hCG], equine chorionic gonadotropin 
[eCG], and prostaglandin F2alpha [PGF2α] ; Pan et al., 2001); 
and 4) this factor is transported via the bloodstream to upper 
central structures that control reproduction (Zhao et al., 1990). 
However, the complete identification of the seminal factor in 
Bactrian camels could not be accomplished, so generically it 
was called OIF.

Two decades after the Bactrian camel studies, Adams et al. 
(2005) reported the existence of an OIF in the seminal plasma 
of llamas and alpacas, demonstrating that the administration 
of a single intramuscular dose of seminal plasma can lead to 
high rates of ovulation and also an enhanced preovulatory LH 
surge that, in turn, determined a larger secretion of proges-
terone from the resulting corpus luteum, and so providing the 
first evidence of a luteotropic effect of OIF.

Since these early studies, llamas and alpacas have consti-
tuted a useful animal model to study the OIF using either hom-
ologous or heterologous seminal plasma (Adams et al., 2005; 
Ratto et al., 2005, 2006), seminal fractions (Ratto et al., 2010, 
2011), or purified OIF (Silva et al., 2011; Tanco et al., 2011; 
Ulloa-Leal et al., 2014) given by intramuscular, intravenous, or 
intrauterine routes. In the last decade, this factor has been bio-
chemical and functionally characterized in llamas and alpacas 
as the neurotrophin β-NGF (Ratto et al., 2011, 2012, Kershaw-
Young et al., 2012), a molecule exhibiting a potent ovulatory 
effect in both alpacas and llamas, and also a significant luteo-
tropic effect in llamas (Adams et al., 2005; Silva et al., 2014; 
Ulloa-Leal et al., 2014). Nevertheless, a similar effect has not 
been confirmed in alpacas (Kershaw-Young et al., 2012; Stuart 
et  al., 2015). Subsequent studies also reported its presence 
in the seminal plasma of other species, including dromedary 
camels (Druart et al., 2013; Kumar et al., 2013).

In a cleverly designed experiment, Berland et al. (2016) con-
firmed that intrauterine administration of seminal plasma, 
but not penile intromission, is sufficient to elicit the LH surge 

Figure 1. Domestic South American camelids. Llamas (upper panel) and al-
pacas (low panel) are domestic species native to the Andean region of Peru, 
Bolivia, and northern Chile and Argentina. Small herds can be easily kept for 
different purposes in lowlands as illustrated in the pictures, which are located 
in Southern Chile.
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and ovulation in this species: female llamas mated with an in-
tact male or given an intrauterine infusion of seminal plasma 
showed 86% and 83% ovulation rate, respectively, while females 
mated with an urethrostomized male llama completely failed to 
ovulate (0%; Figure 2). Also, the circulating concentration of 
LH was positively correlated with an increase in plasma β-NGF 
in the same study. This LH surge induced by systemic admin-
istration of purified llama β-NGF can be abolished in llamas 
pretreated systemically with the GnRH antagonist, cetrorelix, 
which blocks GnRH membrane receptors at the gonadotrophs 
(Silva et al., 2011). These pieces of evidence suggest that sem-
inal β-NGF is absorbed through the endometrium following 
copulation and, consequently, entering systemic circulation to 
stimulate GnRH release by direct or indirect actions on hypo-
thalamic GnRH neurons, eliciting the preovulatory LH surge. 
This mechanism represents a whole new category of induced 
ovulation, which is chemically, but not physically, induced 
(Adams et al. 2016; Silva et al. 2020).

Neurotrophins and Reproductive Function
The family of neurotrophins regulates the development 

and maintenance of peripheral sympathetic and sensory 
neurons, as well as some cholinergic neurons. This family in-
cludes nerve growth factor (NGF), brain-derived neurotrophic 
factor (BDNF), neurotrophin 3 (NT-3), neurotrophin 4 (NT-
4), neurotrophin 5 (NT-5), and neurotrophin 6 (NT-6), the 
latter present only in teleost fish (Pezet and McMahon, 2006). 
All these neurotrophins bind the low-affinity transmembrane 
receptor known as p75NTR, but each neurotrophin binds with 
high affinity to its own specific Tyrosine kinases (Trk) receptor, 
which in the case of β-NGF corresponds to TrkA (Pezet and 
McMahon, 2006). Nowadays, it is known that, in addition to 
the nervous system, the actions of NGF are also exerted in 
other tissues, including testes and ovaries (Ayer-LeLievre et al., 
1988; Lara et  al., 1990; Dissen et  al., 2001; Jin et  al., 2006), 
indicating a potential role in sperm and follicular physiology. 

The β-NGF as a neurosecretory trigger
Since the initial report of Adams et  al. (2005), there has 

been an intense search for the site of action of β-NGF cam-
elids. Early in vitro studies in llama, cow, and rat pituitary cells 

showed that either purified β-NGF or alpaca seminal plasma 
led to LH secretion in the culture media suggesting a direct ef-
fect on the pituitary (Paolicchi et al., 1999; Bogle et al., 2012). 
However, in vivo pharmacological blockade of the GnRH re-
ceptor in llamas completely prevents LH release and ovulation 
in response to β-NGF (Silva et al., 2011). Given that hypothal-
amic GnRH secretion is the main trigger for pituitary LH se-
cretion (Clarke and Cummins, 1982), it has been hypothesized 
that the β-NGF-mediated mechanism is guided directly or in-
directly by the GnRH system in the hypothalamus.

In the last decades, the view that has dominated the neuro-
endocrine field is that GnRH neurons operate under the in-
fluence of afferent neurons that enhance or suppress the 
hypothalamic GnRH output (transsynaptic mechanism; Ojeda 
et al., 2003). This concept is derived from studies conducted in 
spontaneous ovulatory species where GnRH neurons do not 
contain the relevant estrogen receptor for an LH surge (Shivers 
et  al., 1983, Herbison and Theodosis, 1992, Lehman and 
Karsch, 1993). This notion was evaluated by testing whether 
NGF receptors are expressed in GnRH neurons of llama, 
showing low colocalization of p75NTR and TrkA in GnRH 
neurons (0% and 2.5%, respectively; Carrasco et  al., 2018), 
which suggest that β-NGF may be controlling GnRH output 
by interacting with an interneuron in the hypothalamus. In a 
subsequent study, several populations of neurons colocalizing 
TrkA and p75NTR receptors were found in the forebrain, single-
labeled TrkA neurons were found in the periventricular hypo-
thalamus, and also ependymal cells expressing p75NTR were 
found in the third ventricle (Carrasco et al., 2021b).

A recent study, which examined the activation of GnRH 
neurons after intravenous β-NGF administration, did not 
show differences in the proportion of GnRH neurons ex-
pressing Fos protein (a well-established marker of neuronal ac-
tivation; Moenter et al., 1993) after 4 h when compared with 
saline-treated animals, although LH concentrations were 3-fold 
higher in β-NGF-treated llamas (Carrasco et al., 2021a). The 
role of progesterone (an inhibitor of GnRH release; Skinner 
et al., 1998) on the effects of β-NGF in llamas was also evalu-
ated, revealing that circulating concentrations as high as 14 ng/
mL failed to impair the β-NGF-induced LH surge (Carrasco 
et al. 2021a).

The kisspeptin system and the role of its peptide product, a 
well-known secretagogue of GnRH in spontaneous ovulators, 

Figure 2. Chemically induced ovulation in South American camelids. Female llamas mating with an urethrostomized male completely failed to ovulate, whereas 
mating with an intact male or administration of β-NGF induces LH release that triggers ovulation. Furthermore, corpus luteum induced with β-NGF, but not 
GnRH, shows enhanced expression of enzymes involved in not only steroid synthesis but also vascularization, yielding high progesterone input.
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have been assessed for its potential involvement in β-NGF-
induced ovulation in llamas (Carrasco et  al., 2020; Berland 
et al., 2021); NGF receptors were not identified in kisspeptin 
neurons of both the preoptic area and the arcuate nucleus; 
however, systemic administration of kisspeptin led to an in-
crease of LH release (Carrasco et al., 2020). Since the morpho-
logical evidence does not favor a transsynaptic route of action 
for β-NGF, it could be that β-NGF acts on a different mech-
anism that perhaps does not directly involve neuronal elements 
in the hypothalamus.

If  systemic β-NGF does not penetrate into the brain to elicit 
its actions, a plausible explanation of the effects of systemic 
β-NGF on GnRH release could be that it acts on targets located 
outside of the blood–brain barrier, such as the circumventricular 
organs. An emerging body of research has shown an important 
role of tanycytes in regulating neurosecretory processes in the 
median eminence, a circumventricular organ. Tanycytes are a 
group of elongated ependymal cells that are part of the blood–
brain barrier where they are in contact with both portal blood 
and Cerebrospinal fluid. In rodents, the association of tanycytes 
and GnRH terminals undergoes constant plastic changes in 
accordance with the estrous cycle (Reviewed by Prevot, 2002). 
The presence of p75NTR in tanycytes of llama median eminence 
has been recently identified (Carrasco et  al., 2020), similarly 
as in primates (Borson et al., 1994; Blurton-Jones et al., 1999) 
and rodents (Yan and Johnson, 1989; Pioro and Cuello, 1990; 
Koh and Higgins, 1991) studies; in the latter species, a recent 
study has reported a close association between GnRH fibers 
and p75NTR-expressing tanycytes (Pinet-Charvet et  al., 2020). 
It is puzzling that the low-affinity receptor of β-NGF is ex-
pressed in tanycytes because most biological effects of β-NGF 
known to date are mediated by the TrkA receptor. Currently, it 
is unclear whether tanycytes are the target of β-NGF; however, 
their key location at the median eminence—where GnRH is 
released—offers a potential explanation for the fast response 
in LH concentrations after β-NGF administration (~15 min; 
Figure 3).

The luteotropic effect of β-NGF
In addition to the well-established ovulatory effect of 

β-NGF mediated by the release of the preovulatory LH surge 
from the pituitary gland that is determinant for the initial stage 
of luteinization, and corpus luteum formation and function, 
the administration of β-NGF also exerts a potent luteotropic 
effect in llamas as reported in several studies (Adams et  al., 
2005; Tanco et al., 2011; Ulloa-Leal et al., 2014). The forma-
tion of the corpus luteum by intrauterine infusion or intramus-
cular administration of β-NGF consistently results in higher 
progesterone output from the early stages of corpus luteum 
development than those induced after GnRH administration. 
Moreover, it has been established a positive relationship be-
tween the magnitude of the LH peak and the following luteal 
function when females are treated with either β-NGF purified 
from seminal plasma or whole seminal plasma (Tanco et al., 
2011; Silva et al., 2015). These pieces of evidence have served 

as a substrate to hypothesize that the secretory pattern of LH 
induced by β-NGF is the main responsible event for the luteo-
tropic effect in llamas.

Follow-up ultrasonography studies have shed light on the 
luteotropic effect of β-NGF. Power Doppler ultrasonography, 
a technique that provides detail of blood flow, has shown that 
both the preovulatory follicle and the early corpus luteum ex-
hibit greater vascularization in llamas treated with seminal 
plasma β-NGF than those injected with GnRH (Figure 4), and 
this results in higher levels of progesterone in the blood (Ulloa-
Leal et al., 2014; Silva et al., 2017). This increase in vascular-
ization has also been corroborated in a subsequent histological 
analysis (Silva et al., 2017). Furthermore, vascular endothelial 
growth factor (VEGF), a molecule that induces angiogenesis by 
stimulating the proliferation of endothelial cells of preexisting 
capillaries (Dvorak et al., 1999), seems to be key to eliciting the 
luteotropic effect in vivo as administration of β-NGF leads to 
enhanced expression of the gene that codifies for this protein 
factor (Valderrama et al., 2019).

Interestingly, evidence originating from different spontan-
eous and induced ovulation species indicates that follicles are 
equipped with the machinery to bind and transduce β-NGF 

Figure 3. Potential mechanisms of action of β-NGF to trigger the 
preovulatory GnRH release in llamas. Systemic β-NGF may act by pene-
trating the brain at choroid plexuses (CHO)/blood–brain barrier to act on 
β-NGF-responsive neurons that activate GnRH neurons and/or by acting on 
tanycytes expressing p75NTR, promoting their retraction that allows the release 
of the GnRH peptide into the portal blood vessels.
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actions: expression of both TrkA and p75NTR NGF receptors in 
granulosa and theca cells has been found in rabbits (Maranesi 
et  al., 2018), cows (Dissen et  al., 2000), rats (Dissen et  al., 
1996), and humans (Salas et  al., 2006); these pieces of evi-
dence suggest that the luteotropic action of β-NGF may also 
be exerted directly at the ovary. Consistent with this notion, 
the application of β-NGF to granulosa cells collected from 
llama preovulatory follicles results not only in enhanced gene 
expression of the vascular factor VEGF but also in the expres-
sion of steroidogenic enzymes involved in progesterone syn-
thesis and the output of progesterone hormone (Valderrama 
et al., 2020). Moreover, this in vitro effect has been shown to 
result in higher upregulation of the expression of VEGF and 
STAR genes after 20 h than the observed in cells treated with 
LH (Valderrama et al., 2019). Finally, an in vivo llama study 
(Fernández et al., 2014) shows that multiple administration of 
β-NGF during the periovulatory stage induces greater luteal 
vascularization and progesterone secretion than that observed 
in those females treated with a single dose.

In addition to the effect on vascular development, fe-
male llamas treated with seminal plasma β-NGF exhibit the 
upregulation of genes encoding for enzymes involved in steroid 
synthesis in luteal tissue, including the p450SCC and STAR on 
days 4 and 8 of the luteal phase, which results in enhanced pro-
gesterone secretion (Silva et al., 2017). Moreover, both natural 
mating and systemic administration of purified llama β-NGF 
have been reported to induce a rapid shift from estradiol to 
progesterone synthesis (an indicator of luteinization) in the 
preovulatory follicle in llamas: the upregulation of the main 
genes related to progesterone production results in an increased 
progesterone/estradiol ratio in the follicular fluid (Valderrama 
et al., 2019). This in vivo effect on gene expression and pro-
gesterone production is greater in llamas given with β-NGF 

or submitted to mating than those given with GnRH alone, 
indicating a direct effect on the ovary (Silva et  al., 2017; 
Valderrama et al., 2019).

Perspective: Is the β-NGF a Potential 
Biotechnological Tool in Farm Animals? 
Studies conducted in cattle, a species of spontaneous ovu-

lation, show that the administration of β-NGF purified from 
llamas does not induce ovulation in pre-pubertal heifers, but 
it does have a luteotropic effect in sexually mature heifers and 
accelerates the appearance of the next follicular wave when 
β-NGF is intramuscularly given during the first follicular 
wave (Tanco et  al., 2012). In another bovine study, Tribulo 
et al. (2015) did not observe an increase in LH concentration 
or ovulation when heifers were intramuscularly given with a 
volume of 12 mL of bovine seminal plasma containing at least 
250 µg of β-NGF, but a more rapid increase in progesterone 
secretion and a longer corpus luteum lifespan was observed. In 
this sense, Carrasco et al. (2016) observed abundant expression 
of the high-affinity receptor TrkA, in antral ovarian follicles 
and in the corpus luteum throughout the estrous cycle in cattle. 
Furthermore, in vivo and in vitro gene expression of TrkA re-
ceptors in rat preovulatory follicles is reported to be elicited by 
the progressive discharge of LH (Dissen et al. 1996), indicating 
a potential role of LH in the regulation of the expression of 
NGF receptors in follicular and luteal cells. A recent study in 
bovine (Stewart et al., 2020) analyzed the effect of β-NGF in 
heifers when this is incorporated in an estrus synchronization 
protocol using GnRH; heifers treated with GnRH plus β-NGF 
exhibited enhanced LH release and an LH peak 2-fold higher 
than those heifers receiving only GnRH. Similarly, a significant 
increase in luteal vascularization and progesterone secretion in 
heifers treated with a dose of 1 mg of purified llama β-NGF 
during the preovulatory LH surge induced by a progesterone/
estradiol-based estrus synchronization protocol was detected 
when compared with their control non-treated counterparts 
(Gajardo et  al., 2021). This evidence indicates that β-NGF 
could exert a luteotropic effect in cattle not only by increasing 
LH release but also by acting at the ovarian level.

Conclusions
The molecule β-NGF that is present in the male sem-

inal plasma of llamas and alpacas has been shown to be es-
sential for reproduction in these species. Evidence indicates 
that the sole administration of β-NGF is sufficient to elicit a 
strong ovulatory and luteotropic effect in these species, chal-
lenging our conception of induced ovulation in mammals. 
However, the central mechanism by which β-NGF stimulates 
the preovulatory release of GnRH that, in turn, stimulates 
the release of LH that causes ovulation has yet to be eluci-
dated. Finally, recent studies conducted in cattle indicate that 
the luteotropic effect of β-NGF is conserved in this species, 
thereby opening a new avenue for the use of this molecule as a 
potential tool to enhance fertility in farm production systems. 

Figure 4. Effect of β-NGF on the vascularization of corpus luteum. 
Ovulations induced by administration of β-NGF lead to an increased vas-
cular area of the resulting corpus luteum than the ones induced by GnRH.
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