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Abstract: The moment-based M2 M4 signal-to-noise (SNR) estimator was proposed for a complex
sinusoidal signal with a deterministic but unknown phase corrupted by additive Gaussian noise
by Sekhar and Sreenivas. The authors studied its performances only through numerical examples
and concluded that the proposed estimator is asymptotically efficient and exhibits finite sample
super-efficiency for some combinations of signal and noise power. In this paper, we derive the
analytical asymptotic performances of the proposed M2 M4 SNR estimator, and we show that,
contrary to what it has been concluded by Sekhar and Sreenivas, the proposed estimator is neither
(asymptotically) efficient nor super-efficient. We also show that when dealing with deterministic
signals, the covariance matrix needed to derive asymptotic performances must be explicitly derived
as its known general form for random signals cannot be extended to deterministic signals. Numerical
examples are provided whose results confirm the analytical findings.

Keywords: signal-to-noise ratio (SNR) estimation; method of moments; asymptotic variance; estimator’s
efficiency; super-efficiency; Cramer-Rao bound

1. Introduction

In [1], the authors address the problem of estimating the signal-to-noise ratio (SNR) in
the case of a complex sinusoidal signal with a deterministic but unknown phase corrupted
by additive Gaussian noise. A general signal model that, for example, represents the
complex envelope of frequency modulated signals with deterministic modulating signals.
The problem is found in many fields of practical interest such as in digital communication
and radar systems (see, for example, [1] and references therein). The authors propose an
estimator based on the sample-moment estimators of the second and fourth orders (M2M4
SNR estimator) and study its performances through numerical examples. The results let
them conclude that the proposed SNR estimator is asymptotically efficient and presents
finite sample super-efficiency in some cases that depend on the values of the signal and
noise power.

In this paper, we show that the proposed SNR estimator is neither (asymptotically)
efficient nor super-efficient, in any case. In fact, we study the performances of the
estimator through asymptotic analytical analysis besides numerical examples and show
that, though the estimator is not efficient, the performances are acceptable in many cases of
interest and not too distant from the Cramer–Rao lower bounds (CRLB).

The M2M4 SNR estimator belongs to a wider class of moment-based SNR estimators
that have been proposed mainly in the context of modulated telecommunication signals.
As reminded in [2], a similar estimator was first proposed by Benedict and Soong in real
AWGN channels [3]. Subsequently, in [4], Matzner derived a similar expression and,
in [5], together with Englberger, obtained the same result using a different approach.
In [6], the estimation of SNR for non-constant modulus constellations over a frequency-flat
fading channel is considered, and a family of estimators that use higher-order moments
is derived, and their performances studied. More specifically, the authors show that the
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M1M2 and M2M4 estimators contained in the family achieve the corresponding CRLBs
for constant modulus constellation, while for multilevel constellations, performances
degrade as the SNR increases. A different family of moment-based SNR estimators
that makes use of the second, fourth and sixth moments is proposed in [7], with the
purpose to improve the performances in the case of non-constant modulus constellations
for increasing SNRs. Subsequently, in [8], the authors propose an extended family of
moment-based SNR estimators that makes use of higher-order moments to further improve
the performances with non-constant modulus constellations. In [1], a different signal
model is considered, as the authors assume a complex exponential with a deterministic
but unknown phase rather then randomly modulated signals. In practice, the authors
consider a signal model very similar to the M-PSK vector model for the AWGN channel,
with the only difference being the deterministic nature of the unknown phase. Under this
assumption, the derivation in [1] is quite cumbersome. We show in this paper that a more
general method can be used instead, as suggested by Kay [9]. The result is an M2M4 SNR
estimator that has the same form of the similar estimator obtained for M-PSK constellations.

The M2M4 SNR estimator is simple to implement, has low computational complexity
and is blind as it does not require prior knowledge of signal or noise. However, the
performance of this estimator must be evaluated by numerical examples with Monte Carlo
simulations and/or asymptotic analytical analyses. In fact, exact analysis is difficult as
mathematics quickly becomes intractable as it involves the transformation of random
variables to obtain the estimator pdf. In [6–8], the performances of the proposed moment-
based estimators are studied in terms of asymptotic variance and CRLBs. However, care
is needed when analytical asymptotic performances are derived in the deterministic case,
since, in general, it is not possible to extend the results obtained for the random signals
to deterministic signals, and in this paper, we extend to the complex case what has been
already shown in the case of real deterministic a sinusoid in [10]. Since the derivation of
asymptotic variances depends on a covariance matrix that, in turn, depends on the signal
model, we show that, in general, the covariance matrix must be derived explicitly in the
case of deterministic signals. Nevertheless, it turns out that, in the specific case of complex
sinusoids with deterministic phase, the two covariance matrices coincide.

The paper is organized as follows: in Section 2, it is shown the derivation of even-
order moments and estimators for signal and noise power as well as the SNR; in Section 3,
asymptotic variances for all the estimators under investigation are derived; details of
derivations are presented in Appendices A and B; we provide some numerical examples in
Section 4; finally, in Section 5, we draw the conclusions.

2. Moment-Based Estimators

Let us consider the sequence of K samples

yk =
√

Sxk + wk, (1)

where xk = ejφk , and φk ∈ [0, 2π) is a deterministic unknown sequence, S is a real positive
scalar, and wk is an additive complex Gaussian random noise with zero mean and variance
equal to N, i.e., wk ∼ CN (0, N). The general model (1) includes, as special case, φk = 2πν0k,
i.e., a pure complex sinusoid with normalized frequency ν0; other choices for φk are possible
as shown, for example, in [1]. The base assumption made here is that φk is deterministic in
contrast, for example, to the case of phase modulated signals where the phase is random [2].

The signal-to-noise ratio (SNR), defined as ρ , S/N, is unknown and represents the
parameter we wish to estimate when the instantaneous phase φk is also unknown. In [1],
an estimator for ρ based on the method of moments, built as a ratio of the estimators of S
and N and that employs the second and fourth moment of yk (M2M4 estimator has been
proposed, and its performances presented through numerical examples only. In this paper,
we show that the same M2M4 estimator can be derived in an alternative, more general way,
and we present asymptotic analytical performances, along with new numerical examples,
that contradict some of the results obtained in [1].
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The method of moments is a well-known general statistical method to derive estimators
as a function of high-order sample-moments [9]. The key idea is to express the parameter
to be estimated as a function of the moments of yk of different orders, i.e., µm = E

[
|yk|m

]
,

where m is an integer, and use the natural estimators of the moments µ̂m , (1/K)∑K−1
k=0 |yk|m

in place of the true moments µm to obtain an estimate of the parameter from the observed
samples. Such estimators typically present good statistical performances that can be
derived through either numerical simulations or asymptotic analytical methods. In general,
the asymptotic efficiency of an estimator derived using this method cannot be guaranteed;
however, in many cases, the estimator turns out to be consistent.

The method relies on the possibility of expressing the moments µm as a function of the
parameters to be estimated, i.e., S and N in this case. However, when in the observed signal
model, one term is deterministic, as in the signal model (Equation (1)), the derivation of
the moments might be cumbersome, as shown, for example, in [1]. For these cases, Kay [9]
suggests to assume a random nature for the “deterministic” unknown phase. In this paper,
we follow such an approach to obtain the same M2M4 estimator derived in [1] by assuming
that φk is an r.v. independent of wk. As consequence, the general closed form expression
for the the even-order moments of yk, µ2m, obtained in [7] for general QAM signals, applies
also for the signal model (Equation (1)), i.e.,

µ2m , E[|yk|2m] =
m

∑
n=0

(m!)2

(m− n)!(n!)2 E
[
|xk|2n

]
SnN(m−n). (2)

Note that Equation (2), obtained under the random phase assumption, is equivalent
to the expression

µ2m =
m

∑
n=0

(m!)2

(m− n)!(n!)2

(
1
K

K−1

∑
k=0
|xk|2n

)
SnN(m−n), (3)

under the assumption that K → ∞. Since with xk = ejφk , we have E[|xk|2n] = 1 regardless
of the distribution of φk, Equation (2) simplifies to

µ2m =
m

∑
n=0

(m!)2

(m− n)!(n!)2 SnN(m−n). (4)

The above formula gives, as special cases, the second and fourth moments needed to
form the M2M4 estimator,

µ2 = S + N (5)

µ4 = S2 + 4SN + 2N2, (6)

from which we obtain both S and N as functions of µ2 and µ4 as follows

S =
√

2µ2
2 − µ4 (7)

N = µ2 − S. (8)

Then, by using the sample moments

µ̂2 =
1
K

K−1

∑
k=0
|yk|2 (9)

µ̂4 =
1
K

K−1

∑
k=0
|yk|4 (10)
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in place of the true moments in Equations (7) and (8), we obtain the following estimators
for S and N

Ŝ =
√∣∣2µ̂2

2 − µ̂4
∣∣ (11)

N̂ = µ̂2 − Ŝ, (12)

where we apply the modulus to ensure that the estimates are always real and positive.
Finally, the above estimators are then used to form the M2M4 SNR estimator

ρ̂ =
Ŝ
N̂

. (13)

Not surprisingly, the estimator takes on the same form as the M2M4 estimator
proposed for phase modulated signals [2]. However, it is important to note that when
it comes to deriving asymptotic performances, as we show in the following section, we
cannot assume a random nature for the deterministic signals, and results obtained under
such an assumption cannot in principle be readily extended to the signal model (1).

3. Asymptotic Performances

Analytical performances in terms of squared biases and variances of moment-based
estimators can only be derived asymptotically for sufficiently large number of observed
samples, i.e., K → ∞. A method based on a first-order approximation analysis is suggested,
for example, in [9], with the purpose of overcoming the mathematical intractability of
the method that uses the transformation of random variables to obtain the pdf of the
estimator. Alternatively, performances of the moment-based estimators may be obtained
by estimating squared biases and variances through Monte Carlo simulations. We adopt
both approaches, and we will show that, as expected, the analytical results confirm what
we obtain through numerical simulations.

Let us start by defining the sample moment estimator over K observations as

Tm(y) =
1
K

K−1

∑
k=0
|yk|m (14)

and g(T) is the function that maps the sample moments to the estimate, and T is the
vector of the sample moments. More specifically, we define for the estimator Ŝ, the function

g(T) =
√

2T2
2 − T4 , with T = (T2, T4), as we use the second and fourth moments; the

estimator N̂ is defined by the function h(T) = T2 − g(T); the estimator ρ̂ is defined by the
function f (T) = g(T)/h(T).

In general, from the first-order Taylor expansion of g(T) about the point T = E(T) = µ,
we know that the mean of the estimator g(T) is equal to g(µ), and by simple substitution
using Equations (5) and (6), it can be shown that the estimators are asymptotically unbiased.
The same applies to the other estimators defined by h(T) and f (T), respectively.

We now turn our attention to variances. The first-order approximation of the variance
of the estimator Ŝ is given by

var
(
Ŝ
)
' ∂g

∂T

∣∣∣∣T
T=µ

CT
∂g
∂T

∣∣∣∣
T=µ

, (15)

where CT is the covariance matrix of T that by definition is equal to

CT = E
[
(T − µ)(T − µ)T

]
. (16)
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In general, for random signals xk in Equation (1), it is already known that each element
of the covariance matrix is given by

[CT ]ij =
1
K

(
µ2(i+j) − µ2iµ2j

)
, (17)

where µ2m is the true even-order moment. However, in the case of generic deterministic
signals xk, Equation (17) cannot be readily applied. Nevertheless, for the specific signal
under consideration, i.e., the complex exponential signal with a deterministic unknown
phase, it turns out that the elements of the covariance matrix can still be expressed by
Equation (17), which is valid for any K, even for a small K. Details of derivation are shown
in Appendix A.

In Equation (15), we also need the partial derivatives of g(T), i.e.,

∂g
∂T2

=
2T2

g(T2, T4)
(18)

and

∂g
∂T4

= −1
2

1
g(T2, T4)

. (19)

Similarly, we know that the first-order approximation of the variance of the estimator
N̂ is given by

var
(

N̂
)
' ∂h

∂T

∣∣∣∣T
T=µ

CT
∂h
∂T

∣∣∣∣
T=µ

(20)

where

∂h
∂T2

= 1− ∂g
∂T2

(21)

∂h
∂T4

= − ∂g
∂T4

. (22)

Finally, we have that the variance of the estimator ρ̂ is well approximated by

var(ρ̂) ' ∂ f
∂T

∣∣∣∣T
T=µ

CT
∂ f
∂T

∣∣∣∣
T=µ

, (23)

where

∂ f
∂T2

=
∂g
∂T2

1
h
− g

∂h
∂T2

1
h2 (24)

∂ f
∂T4

=
∂g
∂T4

1
h
− g

∂h
∂T4

1
h2 . (25)

Based on the same approach, it is possible to derive asymptotic performances for the
sample moment estimators of order m. Let g2m(T2m) = T2m, the function that maps the
sample moments to the sample moment estimate, and from Equation (15), we have

var(µ̂2m) '
∂g2m

∂T2m

∣∣∣∣T
T2m=µ2m

CT2m

∂g2m

∂T2m

∣∣∣∣
T2m=µ2m

, (26)

where
∂g2m

∂T2m

∣∣∣∣
T2m=µ2m

=
∂

∂T2m
(T2m)

∣∣∣∣
T2m=µ2m

= 1 (27)



Sensors 2021, 21, 4950 6 of 20

and the covariance matrix is
CT2m =

1
K

(
µ4m − µ2

2m

)
. (28)

Putting it all together

var(µ̂2m) '
1
K

(
µ4m − µ2

2m

)
. (29)

For convenience, we conclude this section by providing the Cramer–Rao lower bounds
(CRLB) for all the estimators under analysis because they provide a significant benchmark
for the performances of all corresponding estimators.

CRLBs for Ŝ and N̂ are immediately given by the Fisher information matrix as derived
in [1]. Note that in the derivation of the CRLB, the phases φk should be regarded as nuisance
parameters. Thus, the true Fisher Information Matrix (FIM) has size (K + 2)× (K + 2).
However, since φk’s are uncoupled with S and N, the FIM turns out to be diagonal, and the
final result does not change. The CRLBs are as follows:

I(S, N) =

(
K

2SN 0
0 K

N2

)
(30)

and we have

var(Ŝ) ≥ 2SN
K

(31)

var(N̂) ≥ N2

K
. (32)

For ρ̂ expressed in dB, i.e., ρ̂dB, we have

var(ρ̂dB) ≥
1
K

(
10

ln 10

)2(
2

N
S
+ 1
)

dB2. (33)

CRLBs for µ̂2m, with m = 1, 2, . . . , are derived in Appendix B and can be written as

var(µ̂2m) ≥
(

∂µ2m

∂S

)2 2SN
K

+

(
∂µ2m

∂N

)2 N2

K
, (34)

where

∂

∂S
µ2m(S, N) =

m

∑
n=0

(m!)2n
(m− n)!(n!)2 Sn−1N(m−n) (35)

and

∂

∂N
µ2m(S, N) =

m

∑
n=0

(m!)2(m− n)
(m− n)!(n!)2 SnN(m−n−1). (36)

4. Numerical Examples

In this section, we present some examples that show the performances of the proposed
moment-based estimators for S and N and signal-to-noise ratio ρ in terms of squared
bias and variance. We report estimated squared biases and variances obtained through
Monte Carlo simulations, and we show that numerical results confirm the asymptotic
performances derived in Section 3. We also compare them to the corresponding CRLBs,
and we make some comments on the property of efficiency of the estimators.
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For all estimators under study, we have estimated the squared bias and variance by
averaging over L = 213 = 8192 estimates on a varying number of observations K. The mean
of each estimator is estimated by means of a standard sample mean estimator, e.g., for Ŝ

E[Ŝ] ≈ µ̂S =
1
L

L

∑
l=1

Ŝl , (37)

where Ŝl is a single estimate of S with K observations. The squared bias is then obtained by
using the estimated mean in place of the true mean, e.g., b2(Ŝ) = [E[Ŝ]− S

]2. The variance
of estimators is estimated by means of the standard sample variance estimator, e.g., for Ŝ.

var(Ŝ) ≈ σ̂2
S =

1
L− 1

L

∑
l=1

(Ŝl − µ̂S)
2. (38)

The estimation of squared bias and variance of estimators has been performed at
different SNRs that, without loss of generality, are obtained by varying the power of the
complex sinusoid S while maintaining the noise power fixed at N = 4. The instantaneous
phase of the complex exponential has been chosen to be φk = 2πν0k, where k is the discrete-
time index and ν0 = 0.1234. Note that the results do not depend on the specific form of the
instantaneous phase, and other choices are possible, such as the phase used in [1].

In the following, we report results not only for the SNR estimator ρ̂ but also for
estimators of the second and fourth moments and for estimator of the signal power Ŝ and
the noise power N̂.

4.1. Performances of µ̂2

The sample moment estimator µ̂2 is, under first order approximation, unbiased. On the
other hand, our focus is on the variance of µ̂2, which has been estimated for several
SNRs obtained by varying S with N = 4. We report the results in Figure 1, where the
corresponding CRLB and asymptotic performances are shown as well. For all the SNRs
under consideration, we see that we have complete superposition of the three curves even
for a small number of observations K and that the sample moment estimator is, then,
always consistent and efficient. Though performances are always optimal, the variance
tends to increase as the SNR increases.

4.2. Performances of µ̂4

The sample moment estimator µ̂4 is, under first order approximation, unbiased.
The performances in terms of variance of µ̂4 are shown in Figure 2, where estimated
variance, CRLB and asymptotic variance are shown at different SNRs obtained by varying
S with N = 4. In all cases under consideration, the estimated variance and the asymptotic
variance are superimposed even for a small numbers of observation K, confirming, also in
this case, the validity and usefulness of the asymptotic analysis carried out above. While
in all cases the sample estimator µ̂4 results are consistent, we see that at low SNRs, the
estimator can be regarded as nearly efficient because the variance of µ̂4 is not superimposed
on the CRLB, though it is very close (as shown, for example, in Figure 2a–f). Note that the
variance of the estimator increases to significantly large values as the SNR becomes larger
by increasing the power S.
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Figure 1. Asymptotic and estimated variances of the moment estimator µ̂2 versus the number of observations K. Each sub
figure (a–l) shows results for a given nominal value of SNR obtained by changing the signal power S and with noise power
N = 4.
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Figure 2. Asymptotic and estimated variances of the moment estimator µ̂4 versus the number of observations K. Each sub
figure (a–l) shows results for a given nominal value of SNR obtained by changing the signal power S and with noise power
N = 4.

4.3. Performances of Ŝ

In Figure 3, we report the results of the estimation of the squared bias of Ŝ at different
SNRs obtained by setting N = 4 and varying S. We see that in all reported cases, the
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squared bias is sufficiently small even for a small number of observed samples K, and then
we find that Ŝ is practically (asymptotically) unbiased.
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(Ŝ
)

Squared bias of Ŝ
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Figure 3. The estimated squared bias b2(Ŝ) of signal power estimator Ŝ versus the number of observations K. Each sub
figure (a–l) shows results for a given nominal value of SNR obtained by changing the signal power S and with noise power
N = 4.

Estimates of the variance of Ŝ are shown in Figure 4 together with the corresponding
asymptotic variances and CRLBs. First, the results confirm the derivation of the asymptotic
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performances obtained in Section 3. Though valid only for K → ∞, it is interesting to note
that the asymptotic results are achieved also for a small number of samples in most of the
cases under consideration. In all cases, with K = 218, the variance of Ŝ is well approximated
by the asymptotic variance that shows that the estimator is consistent. It is not always
efficient, especially at a relatively small SNR. Consider, for example, Figure 4a, which
shows the variance for S = 1 and N = 4, corresponding to the SNR equal to −6.0206 dB.
The asymptotic variance, which is achieved by the estimator with at least K = 212 samples,
cannot achieve the corresponding CRLB. This is also true in Figure 4b,c. On the other
hand, starting from Figure 4d, we see that the asymptotic variance is superimposed to the
corresponding CRLB, and then the estimator becomes efficient. For a sufficiently large
SNR, the asymptotic variance is able to predict the effective variance of the estimator Ŝ
even for a very small number of samples K.
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Figure 4. Cont.
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Figure 4. Asymptotic and estimated variances of the signal power estimator Ŝ versus the number of observations K. Each
sub figure (a–l) shows results for a given nominal value of SNR obtained by changing the signal power S and with noise
power N = 4.

4.4. Performances of N̂

In Figure 5, the estimated squared bias of the estimator N̂ at different SNRs with
varying S and N = 4 is shown. As for Ŝ, we find that, in practice, we can consider N̂ as an
unbiased estimator, as expected by the first-order approximation analysis.

Under the same setup, we have obtained the estimation of the variance of N̂, and we
show the results in Figure 6 together with the asymptotic variances and the corresponding
CRLBs obtained in Section 3. Note that we maintain the noise power fixed while varying
the signal power S, and therefore, we have the same CRLB on all the figures.
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Figure 5. The estimated squared bias b2(N̂) of the noise power estimator N̂ versus the number of observations K. Each sub
figure (a–l) shows results for a given nominal value of SNR obtained by changing the signal power S and with noise power
N = 4.

In all cases, the estimated variances achieve the corresponding asymptotic variances,
confirming the analytical results obtained in Section 3 and showing that the estimator
is consistent.

In general, the asymptotic variance describes the current variance of N̂ very well, even
for a small number of samples, with the exception of some cases at low SNRs, as shown in
Figure 6a–c. Furthermore, the variance never achieves the corresponding CRLB, and then
the estimator is not efficient.

4.5. Performances of ρ̂

The estimated squared biases and variances of the SNR estimator ρ̂ have been obtained for a
number of different SNRs with Monte Carlo simulations run with N = 4 and varying the signal
power S, as conducted previously with Ŝ and N̂. The results are reported in Figures 7 and 8.

From the plots in Figure 7, we have confirmation that the estimator is practically unbiased.
In Figure 8, we report the estimated variances along with the corresponding asymptotic
variances and CRLBs as derived in Section 3. First, the results confirm once again the
validity of the analysis carried out in Section 3. In all cases, the estimated variances achieve
the corresponding asymptotic variances, showing that the estimator is consistent. Note that
the asymptotic variance is achieved with a small number of samples, with the exception of
small SNRs, as we have already seen for the estimator of noise power N̂. Clearly, the limits
of the noise power estimator are also reflected in the performances of the SNR estimator as
the SNR estimator is obtained as the ratio of Ŝ and N̂. For the same reason, the estimator ρ̂
cannot achieve the performances given by the CRLB, and then it is not efficient, though the
difference between the variance of ρ̂ and the corresponding CRLB is very small, especially
at high SNRs.
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Figure 6. Asymptotic and estimated variances of the noise power estimator N̂ versus the number of observations K. Each
sub figure (a–l) shows results for a given nominal value of SNR obtained by changing the signal power S and with noise
power N = 4.
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Figure 7. The estimated squared bias b2(ρ̂) of the SNR estimator ρ̂ versus the number of observations K. Each sub figure
(a–l) shows results for a given nominal value of SNR obtained by changing the signal power S and with noise power N = 4.
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Figure 8. Asymptotic and estimated variances of the SNR estimator ρ̂ versus the number of observations K. Each sub figure
(a–l) shows results for a given nominal value of SNR obtained by changing the signal power S and with noise power N = 4.

The results obtained in this paper do not confirm what had been concluded in [1],
where the authors stated that the same estimator was not only efficient, but in some cases, it
was also super-efficient, i.e., with the variance of the estimator below the CRLB. The authors
in [1] admit that the conclusion is based only on numerical results obtained in the case of
S = 100 and N = 4 that corresponds to ρ = 13.9794 dB and reported in Figure 4 in [1].
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Specifically, in Figure 8e, it is shown that we have obtained in this paper the variance of
ρ̂ both numerically and mathematically with the same parameters used in Figure 4 in [1].
We have proven that the asymptotic value, which represents with very good approximation
the variance of ρ̂ even for a small number of samples, is always above the CRLB, and
therefore, even in this specific case, the estimator is neither efficient or super-efficient.

5. Conclusions

The M2M4 SNR estimator for unknown deterministic complex phase signals proposed
in [1] represents a useful tool for blind estimation of SNR. However, its performances,
while acceptable in many applications of interest, are not those stated in [1]. In fact, through
detailed analytical and numerical analysis of the performances presented in this paper, we
could not confirm the finite sample super-efficiency or (asymptotically) efficiency of the
M2M4 SNR estimator claimed in [1], which was based on numerical examples only.

In this paper, we have also derived analytical asymptotic performances for all the
intermediate estimators that are used to form the M2M4 SNR estimator, namely even-order
sample moments, signal and noise power. The results show that though the second and
fourth sample moment estimators are efficient, as well as the estimator of the signal power
for sufficiently high SNRs, the noise power estimator is not efficient. Consequently, the SNR
is not efficient though its performances are close to the corresponding CRLB. In contrast to
the case of signal and noise power, the performances of the SNR estimator do not degrade
as the true SNR increases.

The derivation of analytical asymptotic performances revealed that, in general, it
is not possible to readily extend the results obtained for random signals to the case of
deterministic signals. More specifically, the covariance matrix required to compute the
asymptotic variances needs to be explicitly derived. Nevertheless, in the specific case
considered in this paper, i.e., complex sinusoid with deterministic phase, it turns out that
the covariance matrix has the same form as that in the random case.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Derivation of Covariance Matrix

In this section, we provide details of the derivation of Equation (17). Let us start from
the definition of the covariance matrix, where each element is given by

[CT ]ij = cov
(
T2i,T2j

)
(A1)

, E

[
1
K

K−1

∑
k=0
|yk|2i 1

K

K−1

∑
p=0
|yp|2j

]
− E

[
1
K

K−1

∑
k=0
|yk|2i

]
E

[
1
K

K−1

∑
p=0
|yp|2j

]
. (A2)

Now, consider the first term of the right-hand side. We get

E

[
1
K

K−1

∑
k=0
|yk|2i 1

K

K−1

∑
p=0
|yp|2j

]
=

1
K2

K−1

∑
k=0

K−1

∑
p=0

E
[
|yk|2i∣∣yp

∣∣2j
]

(A3)

=
1

K2

K−1

∑
k=0

E
[
|yk|2(i+j)

]
+

1
K2

K−1

∑
k=0

K−1

∑
p=0,p 6=k

E
[
|yk|2i∣∣yp

∣∣2j
]

(A4)

=
1

K2

K−1

∑
k=0

E
[
|yk|2(i+j)

]
+

1
K2

K−1

∑
k=0

K−1

∑
p=0,p 6=k

E
[
|yk|2i

]
E
[∣∣yp

∣∣2j
]

(A5)

Similarly, we obtain that the second term on the right-hand side of (A2) is



Sensors 2021, 21, 4950 18 of 20

E

[
1
K

K−1

∑
k=0
|yk|2i

]
E

[
1
K

K−1

∑
p=0
|yp|2j

]
=

1
K2

K−1

∑
k=0

E
[
|yk|2i

]
E
[
|yk|2j

]
+

1
K2

K−1

∑
k=0

K−1

∑
p=0,p 6=k

E
[
|yk|2i

]
E
[
|yp|2j

]
. (A6)

Putting it all together, we have that each element of the covariance matrix is

[CT ]ij =
1

K2

K−1

∑
k=0

E
[
|yk|2(i+j)

]
− 1

K2

K−1

∑
k=0

E
[
|yk|2i

]
E
[
|yk|2j

]
. (A7)

The first term can be written explicitly as

1
K

E

[
1
K

K−1

∑
k=0
|yk|2(i+j)

]
=

i+j

∑
p=0

((i + j)!)2

(i + j− p)!(p!)2

(
1
K

K−1

∑
k=0
|xk|2p

)
SpN(i+j−p), (A8)

while the second term becomes

1
K2

K−1

∑
k=0

E
[
|yk|2i

]
E
[
|yk|2j

]
=

=
1
K

K−1

∑
k=0

i

∑
p=0

(i!)2

(i− p)!(p!)2 |xk|2pSpN(i−p)
j

∑
q=0

(j!)2

(j− q)!(q!)2 |xk|2qSqN(j−q) =

=
1
K

K−1

∑
k=0

i

∑
p=0

j

∑
q=0

(i!)2

(i− p)!(p!)2
(j!)2

(j− q)!(q!)2 |xk|2p|xk|2qSpSqN(i−p)N(j−q) =

=
i

∑
p=0

j

∑
q=0

(i!)2

(i− p)!(p!)2
(j!)2

(j− q)!(q!)2

(
1
K

K−1

∑
k=0
|xk|2p|xk|2q

)
SpSqN(i−p)N(j−q). (A9)

For xk = ejφk , we have an exact expression valid even for small K (we do not need to
assume K → ∞), and we obtain

1
K

K−1

∑
k=0

E
[
|yk|2(i+j)

]
=

i+j

∑
p=0

((i + j)!)2

(i + j− p)!(p!)2 SpN(i+j−p) = µ2(i+j).

and

1
K

K−1

∑
k=0

E
[
|yk|2i

]
E
[
|yk|2j

]
=

i

∑
p=0

j

∑
q=0

(i!)2

(i− p)!(p!)2
(j!)2

(j− q)!(q!)2 SpSqN(i−p)N(j−q) (A10)

= µ2iµ2j. (A11)

In summary, we have that, for signals in the form of complex exponential with
deterministic phase sequence, the elements of the covariance matrix are given by

[CT ]ij =
1
K

(
µ2(i+j) − µ2iµ2j

)
. (A12)

Note that we obtain the same result as in the general random signal case and that
Equation (A12) holds for all K. This is not true in all cases, as it represents a specific
result due to the specific form of the deterministic signal xk. In general, the elements of
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the covariance matrix in the case of deterministic signal is not given by Equation (A12)
because clearly

1
K

K−1

∑
k=0
|xk|2p|xk|2q 6=

(
1
K

K−1

∑
k=0
|xk|2p

)(
1
K

K−1

∑
k=0
|xk|2q

)
. (A13)

It is still possible to write the covariance matrix in the general case, but its expression
requires derivation of the terms

1
K

K−1

∑
k=0
|xk|2p (A14)

and
1
K

K−1

∑
k=0
|xk|2p|xk|2q (A15)

that depends obviously on signal xk and typically is only possible under the assumption
that K → ∞. For an example, see [10], where the covariance matrix for deterministic real
sinusoids has been derived.

Appendix B. Derivation of CRLBs for µ̂2m

The CRLBs for µ̂2m can be derived from the expression of even-order moments given
above through the derivatives of µ2m with respect to S and N. We have for random signals

∂

∂S
µ2m(S, N) =

∂

∂S

(
m

∑
n=0

(m!)2

(m− n)!(n!)2 E[|xk|2n]SnN(m−n)

)
(A16)

=
m

∑
n=0

(m!)2

(m− n)!(n!)2 E[|xk|2n]
∂

∂S
(Sn)N(m−n) (A17)

=
m

∑
n=0

(m!)2

(m− n)!(n!)2 E[|xk|2n]nSn−1N(m−n) (A18)

=
m

∑
n=0

(m!)2n
(m− n)!(n!)2 E[|xk|2n]Sn−1N(m−n) (A19)

Analogously, we have

∂

∂N
µ2m(S, N) =

∂

∂N

(
m

∑
n=0

(m!)2

(m− n)!(n!)2 E[|xk|2n]SnN(m−n)

)
(A20)

=
m

∑
n=0

(m!)2

(m− n)!(n!)2 E[|xk|2n]Sn ∂

∂N

(
N(m−n)

)
(A21)

=
m

∑
n=0

(m!)2

(m− n)!(n!)2 E[|xk|2n]Sn(m− n)N(m−n−1) (A22)

=
m

∑
n=0

(m!)2(m− n)
(m− n)!(n!)2 E[|xk|2n]SnN(m−n−1) (A23)

The CRLB is obtained as

var(µ̂2m) ≥
(

∂µ2m
∂S

∂µ2m
∂N

)
I−1(S, N)

(
∂µ2m

∂S
∂µ2m
∂N

)T
(A24)

that can be written as

var(µ̂2m) ≥
(

∂µ2m

∂S

)2 2SN
K

+

(
∂µ2m

∂N

)2 N2

K
. (A25)
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