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We describe a new method, PhenomeExpress, for the analysis of transcriptomic datasets to identify
pathogenic disease mechanisms. Our analysis method includes input from both protein-protein interaction
and phenotype similarity networks. This introduces valuable information from disease relevant phenotypes,
which aids the identification of sub-networks that are significantly enriched in differentially expressed genes
and are related to the disease relevant phenotypes. This contrasts with many active sub-network detection
methods, which rely solely on protein-protein interaction networks derived from compounded data of many
unrelated biological conditions and which are therefore not specific to the context of the experiment.
PhenomeExpress thus exploits readily available animal model and human disease phenotype information. It
combines this prior evidence of disease phenotypes with the experimentally derived disease data sets to
provide a more targeted analysis. Two case studies, in subchondral bone in osteoarthritis and in Pax5 in
acute lymphoblastic leukaemia, demonstrate that PhenomeExpress identifies core disease pathways in both
mouse and human disease expression datasets derived from different technologies. We also validate the
approach by comparison to state-of-the-art active sub-network detection methods, which reveals how it may
enhance the detection of molecular phenotypes and provide a more detailed context to those previously
identified as possible candidates.

T
ranscriptomics technologies such as RNA-Seq and microarray are invaluable in the study of human disease
by identifying differentially expressed genes between experimental groups1. Interpreting these large datasets
is time consuming, since many significantly differentially expressed genes may be detected. It is difficult to

identify the genes and biological pathways most relevant to the disease in an unbiased fashion to formulate a
biological hypothesis for further experiments. The simplest approach of ranking the genes by fold change between
experimental conditions or by statistical significance may miss lower ranked, but functionally critical genes.

Multiple gene prioritisation tools for expression data have been developed that focus on ranking genes with the
aid of integrated information such as protein interaction or gene ontology data2. A common approach is to
overlay the expression information onto a protein-protein interaction (PPI) network. One tool, PINTA, uses a
random walk with restart based algorithm to rank differentially genes on a protein interaction network by their
‘influence impact’ in the network3.

Another often used approach is to identify de novo sub-networks or pre-defined pathways that are enriched in
differentially expressed genes. Interacting differentially expressed genes can give stronger evidence of an altered
biological process, even if the individual genes are not statistically significant in isolation4. The tool
JActivemodules uses a simulated annealing approach to find these hotspots of differentially expressed genes,
while GIGA uses iterative addition of high scoring nodes to form sub-graphs5,6. BioNet transforms the problem to
that of the prize-collecting Steiner tree problem to find the best path to high scoring nodes and provides a heuristic
to identify the maximum scoring sub-network7.

These tools use a protein interaction network derived from many cell types and biological conditions. The
resulting generic PPI network therefore lacks biological context and contains interactions not relevant to the
biological condition under study. Integration of additional biological information to these generic PPI networks is
a powerful approach to regain lost biological context. For instance, construction of tissue specific PPI network by
removal of proteins whose encoding genes are not expressed in the tissue under study, has been shown to improve
network-based gene prioritisation algorithms8. Sub-network detection methods which utilise just the topology of
the PPI network and the overlaid expression data may not identify the regions of the interactome most relevant to
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a disease. Further integration of disease related information could
guide identification of the most biologically important regions of the
interactome with regards to a disease transcriptomics dataset.

One resource that has not been well utilised in transcriptomics
analysis is model animal phenotype information. Higher order ani-
mal models such as zebrafish and mouse are invaluable for studying
protein function in a complex in vivo environment, relevant to
human disease. Many genes have been knocked-out in a low
throughput manner and the resulting phenotypes reported in the
literature. More recently, consortiums have begun systematically
knocking out all genes in mouse and other model organisms for
phenotype screening in a high throughput manner. This will even-
tually lead to a complete resource of gene to phenotype associa-
tions9,10. The observed phenotypes are recorded in phenotype
ontologies with a controlled vocabulary that allow standardized
reporting11,12.

Orthologous genes that have a similar phenotype from mouse to
human have been invaluable for the study of rare monogenic human
disease13. The use of cross-species phenotypes increases the coverage
of gene to phenotype associations. It has been demonstrated that the
associated mouse phenotypes of a human gene ortholog are a better
predictor of perturbed human gene phenotypes than gene ontology
or pathway based measures14. In addition, if multiple species have a
similar phenotype upon gene perturbation this presents greater evid-
ence of a fundamental, conserved mechanism that may be of rel-
evance to disease. Therefore, it is valuable to translate cross-species
phenotypes to human by finding equivalent phenotypes between
species specific ontologies. A cross-species ontology has been con-
structed from species-specific ontologies though an automated rea-
soning approach, allowing the mapping of phenotypes across species,
thus facilitating the inference of disease related genes15. Approaches
are being developed to exploit these phenotype-gene association
resources to apply to human disease diagnostics and gene variant
prioritisation16.

Several informatics tools have previously used disease phenotype
information from Mendelian human disorders to add additional
power to generic gene to disease association and prioritisation. Li
et al. used a random walk based algorithm on a heterogeneous net-
work comprised of a human disease phenotype similarity network
connected to a protein interaction network by known disease to gene
associations17. This was used to prioritise a set of disease genes related
to a given phenotype. Similarly, another method MAXIF uses a
maximal flow propagation method to rank known gene disease asso-
ciations18. It was noted that highly ranked genes for a disease tend to
be in close proximity in the interactome, thus supporting the idea of
sub-networks of important disease genes. An important feature of
these algorithms is the inference of related phenotypes to the selected
seed phenotypes. In these studies, the phenotype interaction network
was derived from text mining of OMIM clinical synopsis free text
which uses an uncontrolled vocabulary, resulting in potentially
spurious interactions between phenotype terms. A more recent
approach, PhenomeNET used a cross-species phenome network to
rank candidate human disease genes19. These approaches, whilst
useful, do not show the predicted driver genes in the context of the
interactome and how they interact. Furthermore, these approaches
have not been applied to disease related transcriptomics data to
identify and visualise biologically important sub-networks of differ-
entially expressed genes.

In this work we aim to effectively combine these ideas to create a
tool that allows detection of sub-networks relevant to the disease of
interest. Our method, PhenomeExpress, utilises both the transcip-
tomics data being analysed and the prior knowledge of all cross-
species phenotype to gene associations, including those directly
related to the disease understudy. We adapt and combine existing
algorithms for node ranking and sub-network detection with a cross-
species phenome-interactome network to automatically detect sub-

networks of proteins from transcriptomics data that are relevant to
the disease of interest. We present two case studies with human
microarray and mouse RNA-seq data to show the utility of our tool
and compare the results to that of state-of-the-art sub-network
detection algorithms.

Results
Overview of the algorithm. Our algorithm aims to find sub-
networks of proteins that are enriched in differentially expressed
genes and genes that are directly/indirectly related to the known
phenotypes of the disease, so as to produce disease relevant sub-
networks specific to the transcriptomics experiment being analysed
(Figure 1A). We use a two stage algorithm where proteins in a PPI
network are first scored on the basis of their topology in the network
with regards to the differential expression and known/inferred
phenotype annotated. In the second stage of the algorithm, sub-
networks of highly scoring nodes are identified and assessed for
statistical significance.

Construction of the cross-species phenome to interactome hete-
rogeneous network. Prior to running the algorithm, a heterogeneous
network is constructed, comprised of a phenome (phenotype to
phenotype) network and a PPI network connected by known
phenotype to gene associations (Figure 1B). We use experimentally
derived PPI networks and remove all proteins not expressed above
the experimental background in the transcriptomics experiment in
order to create a context specific PPI network. This approach has
previously been shown to improve performance in gene prioriti-
sation approaches with random walk based algorithms8. The pheno-
me network allows the integration of phenotype information with
the PPI network. The phenome network was constructed from the
UberPheno cross-species ontology which includes human, mouse
and zebrafish phenotypes. Resnik semantic similarity between the
ontology terms was used as a measure of similarity between pheno-
types and was used to weight the edges in the resulting phenome
network. A semantic similarity threshold of 3 was used to keep only
those interactions that are relatively specific and more likely to be
biologically meaningful. The human disease and animal model
derived phenotype to human gene associations were retrieved from
UberPheno and used to connect the phenome and protein interac-
tion networks.

As a preprocessing step, the transcriptomics data is analysed to
produce the fold change for each expressed gene and the statistical
significance. An established approach of combining the fold change
and the statistical significance into one continuous score (p-Value)
which reflects both the biological significance (fold change) and the
statistical significance (multiple testing adjusted p-value) was used20.
Continuous scores have previously been shown to provide more
accurate results with random walk with restart based algorithms21.
This approach also avoids the need for an arbitrary cut-off of fold
change/statistical significance to define differentially expressed
genes.

Algorithm description. A random walk on a heterogeneous network
(RWHN) algorithm has been previously described in detail for use of
identifying novel disease genes by inference from known disease
associated genes. We use this approach to score proteins in the
context specific protein interactome using the entire topology of
the heterogeneous network. In the algorithm, a random walker
moves from node to node in the PPI or phenome networks with a
probability equal to the edge weight (interaction confidence or
semantic similarity score). With each movement between nodes,
there is a probability (a) of restart/teleporation to another node in
the network. Additionally, at a node where there is an edge between
the phenome and PPI network there is a probability (l) of
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transitioning from the phenome to PPI and 1- l from the PPI to the
phenome.

The probabilities of restarting on each node in the heterogeneous
network are given by a vector of probabilities. In the phenome net-
work, the probability of restarting is equal among the predefined
‘seed’ phenotypes, which reflect the known phenotypic characteris-
tics of the disease under study. For the PPI network, the restart can
occur on any protein in the network, with a probability that is pro-

portional to the p-value of the encoding gene from the transcrip-
tomics data. The relative weighting of the total phenotype and
protein restart probabilities in the teleportation vector is given by
the parameter g. We perform a random walk with restart on the
heterogeneous network over a range of parameters so as to maximise
the chance of finding relevant significant sub-networks downstream
of the scoring stage. The nodes are automatically scored with all
combinations of parameters within the range a 0.2–0.8, g 0.2–0.8

Figure 1 | Summary of Phenome Express. (A) Expression data is analysed to compute the p-value and to determine which genes are expressed. This is

overlaid onto a PPI network and connected to a phenotype-phenotype similarity network via phenotype to gene associations. The nodes in the PPI

network are scored by a random walk based method with multiple sets of parameters. High scoring sub-networks are then extracted from these scored

networks. Consensus sub-networks are generated and filtering is performed by FDR analysis with random sub-network sampling. (B) The heterogeneous

network consists of a protein-protein interaction network (PPI) and a phenotype-phenotype similarity network connected by known phenotype to gene

associations. Seed phenotypes (light blue) relevant to the disease under study are selected. Genes directely associated with these seeds phenotypes are

indicated with a black node border. The p-values from the expression data is overlain onto the PPI network (green gradient). The topology of the

phenome network and PPI allows inference and scoring of disease relevant genes from the transcriptomics study with the random walk based algorithm.

www.nature.com/scientificreports
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and l 0.5–0.8 with 0.1 steps. The parameters were chosen to avoid
extremes while covering a wide range, and were found empirically to
produce biologically informative sub-networks with a range of tran-
scriptomics disease datasets. The transition probability, l, was set to
be at least 0.5 to promote connectivity between the two networks.
The resulting scores of the proteins are used to produce a ranked list
of proteins for each combination of parameters. All 196 ranked lists
from the different parameter combinations are used in the second
stage of the algorithm.

Highly ranked proteins will tend to be differentially expressed or
related to the seed disease phenotypes. In the second stage of the
algorithm we therefore identify sub-networks of these highly ranked
proteins. For sub-network detection we employ the previously
described GIGA algorithm6. Briefly, GIGA takes a PPI network
and a ranked list of nodes as input. GIGA then identifies the locally
lowest ranked proteins in the PPI network and iteratively adds higher
ranked nodes that are directly connected and any surrounding nodes
of lower rank to the resulting sub-network. At each step the statistical
significance of the new sub-network is assessed. The iterations con-
tinue until the addition of a higher ranked node and any surrounding
nodes of lower rank no longer improves the significance of the sub-
network, or the sub-network reaches a pre-defined maximum size.
The most significant sub-networks are subsequently outputted.

GIGA is run on each ranked list from the first stage of the algo-
rithm to identify high-scoring sub-networks of a user defined max-
imum. Larger consensus sub-networks are generated by including
only those proteins that have complete co-occurrence in all sub-net-
works across the range of parameters. As a final step, empirical p-
values are calculated by sampling random sub-networks. This allows
filtering of those sub-networks significantly enriched in differentially
expressed genes. For each sub-network we sample 10000 random
networks of equal size and compare the sum of the p-values in the
sub-networks with those observed. The empirical p value is calcu-
lated by:

p~
rz1
nz1

ð1Þ

where r is the number of random sub-graphs with a total p-value
greater or equal to that of the extracted sub-graph and n is the total
number of random sub-graphs. This stage ensures that the resulting
consensus sub-networks are unlikely to be detected by chance and
also removes those sub-networks that are not strongly related to the
transcriptomics study.

Experimental Case Study 1 – Subchondral bone in osteoarthritis.
To demonstrate the utility of our method in finding disease relevant
sub-networks from transcriptomics data an osteoarthritis related
dataset was analysed. Osteoarthritis (OA) is a joint disease charac-
terized by degradation of the collagen/proteoglycan extracellular
matrix that comprises the articular cartilage, and structural
changes in the subchondral bone22. There is increasing evidence
that OA is a whole joint disease, with gene expression changes
observed in all components of the joints of OA patients, even in
visibly undamaged regions23,24. A change in phenotype of the
chondrocytes that regulate extracellular matrix metabolism in the
articular cartilage is thought to result in the observed cartilage
degradation25. Similarly, osteoblasts and osteoclasts that act to
control bone ossification and resorption in the subchondral bone,
respectively, have been shown to have altered phenotypes in OA, and
these changes are also thought to contribute to the disease
pathogenesis26.

An existing microarray dataset comparing macroscopically nor-
mal knee lateral tibial bone from healthy and OA patients was ana-
lysed23. The fold changes and statistical significance in genes between
the two groups were used to calculate the p-value for each gene.
Expressed genes in the dataset were identified by finding those genes

with corresponding probe intensity above the chip background
probes. The baseline protein interaction network derived from
HumanConsensusPathDB was then filtered to remove non-
expressed proteins and create a tissue specific protein interaction
network27.

The Phenomiser tool, which list phenotype annotations of OMIM
diseases, was used to aid the selection of the seed phenotypes that are
related to the observed bone phenotypes in OA and OA disease
terms28. From this and through manual searching of the ontology
for relevant terms, 8 bone/OA related phenotypes were selected,
which had a total of 238 associated proteins that were present in
the filtered network (Table 1). The tool was applied to score the
proteins in the network using a range of parameters, and identify
initial sub-networks of maximum 15 proteins. These small sub-net-
works were merged to form consensus sub-networks and subse-
quently filtered by a FDR of 5% with sampling of 10000 random
sub-networks to calculate empirical p-values, resulting in 11 sub-
networks summarised in Table 2.

The largest sub-network identified by our tool contains 145 pro-
teins of which 27 are directly associated with a seed phenotype
(Figure 2A). This sub-network is highly enriched in differentially
expressed genes with no random sub-network having a total p-value
equal or greater that our sub-network (Supplementary Figure S1).
Gene ontology annotation of this sub-network showed that it is
enriched in proteins related to immune function including
TNFRSF10C, ELANE and IL2RB. Several differentially expressed
genes are annotated to a seed phenotype. For instance, the proteins
TNFS10, SMAD3, ISG15 are annotated to increased susceptibility to
induced arthritis, knee OA and abnormal bone ossification pheno-
types respectively, suggesting the phenotype information comple-
ments the expression information. Interestingly, altered pro- and
anti-inflammatory processes have been reported in the subchondral
bone of a surgical mouse model of early OA29. This sub-network
supports the idea of an altered inflammatory process in OA subchon-
dral bone.

In this sub-network, several of the proteins annotated with OA
associated phenotypes, which are therefore of potential interest, are
not the most differentially expressed, implying they may be excluded
by simple fold change cut-off approaches. For instance, SOCS3,
which is not strongly differentially expressed (1.3 fold) is known to
regulate both pro-inflammatory signals and bone remodelling by
osteoblasts/osteoclasts and interacts with several more strongly dif-
ferentially expressed genes30,31. Therefore, by including the pheno-
type associated gene information additional relevant genes will be
considered for inclusion in the sub-networks.

Related to the inflammation sub-network, another significant sub-
network contained several cytokines and cytokine receptor proteins
(Figure 2B). Cytokines and their receptors act to recruit immune cells
to inflamed tissue32. These proteins are implicated in OA and have
been suggested to be potential therapeutic targets. CXCL1 expression
by osteoclasts has been shown to induce osteoclast precursor migra-

Table 1 | Phenotypes selected for osteoarthritic subchondral bone.
UberPheno phenotype terms selected for use in the sub-network
detection with the OA subchondral bone dataset

Phenotype ID Phenotype Name

HP:0005086 Knee osteoarthritis
MP:0003724 Increased susceptibility to induced arthritis
HP:0002829 Arthralgia
HP:0100777 Exostoses
MP:0004983 Abnormal osteoclast cell number
ZP:0006539 Abnormal(ly) decreased process quality ossification
MP:0002896 Abnormal bone mineralization
MP:0005006 Abnormal osteoblast physiology
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tion and differentiation via binding to its receptor CX3CR1, resulting
in bone remodelling33. In a transcriptomics study of site-matched
articular cartilage and underlying subchondral bone, expression of
CCL8 was found to be significantly correlated with severity of OA
cartilage degradation and subchondral bone remodelling, suggesting
it may be important in the pathogenesis of the disease34. The sub-
network contains no seed phenotype annotated proteins, suggesting
the method can find relevant sub-networks by inference and the
expression data alone. Several other sub-networks annotated to
inflammatory processes such as positive regulation of mast cell cyto-
kine production, and defense response to fungi were also identified.

Another sub-network identified by our method contains extracel-
lular matrix proteins including genes encoding Collagen II, Collagen
VI, Collagen IX (Figure 2C). Collagen II is a major component of the
extracellular matrix in articular cartilage which is degraded in OA. Its
expression is generally associated with chondrocytes, but it has been
suggested that mesenchymal cells in bone express Collagen II which
is then transported to the cartilage35. In the subchondral bone of a
surgical mouse model of early OA increased COL2A1 expression was
also observed29. The authors suggest a model where Collagen II
induces cytokine production and metalloprotease production in
the overlying cartilage. The cytokine signalling and collagen related
sub-networks described here are consistent with the idea of the
altered extracellular matrix and inflammatory processes in the sub-
chondral bone contributing to the pathogenesis of the disease.

To compare our results against methods that do not use phenotype
information, JActivemodules in simulated annealing mode, GIGA

and BioNet were used to generate sub-networks from the same pro-
cessed dataset and protein interaction network. BioNet finds the
largest maximum scoring sub-network given a FDR threshold. The
FDR was chosen to give the sub-network that was most similar in size
to the largest sub-network identified by our method. The resulting
sub-networks are summarised in Table 2. JActivemodules identified
7 sub-networks of at least 5 proteins, from three separate runs with
random seeds, while GIGA identified 5. Venn diagrams of all pro-
teins present in significant sub-networks revealed strong differences
in the results from the tools (Figure 3A). The majority of proteins
present in the sub-networks from BioNet, JActivemodules and our
method were not identified by another tool. GIGA mainly found
proteins covered by the other tools. For instance, GIGA identified
a small sub-network of extracellular matrix proteins (network 3)
which overlapped with our more complete ECM sub-network.
Despite the differences in the proteins identified, GIGA and
JActivemodules also identified sub-networks annotated to immune
process such as neutrophil aggregation and regulation of cytokine
mediated signalling pathway.

The inclusion of seed phenotype annotated proteins differed
between the tools with 3% (7/231) in BioNet, 3% (9/285) in
JActivemodules and 4% (7/165) in GIGA compared with 21% (52/
246) in our method. These results suggest, that as anticipated, our
method generates sub-networks enriched with the seed phenotype
annotated proteins compared to methods that do not use that
information. These directly annotated proteins are likely to be of
interest for identifying a potential disease mechanism from the

Table 2 | Summary of OA sub-networks generated by PhenomeExpress and other tools. PhenomeExpress GIGA, JActivemodules and
BioNet were used to detect OA related sub-networks from the subchondral bone expression dataset. The number of nodes in each identified
sub-network is indicated. For each tool the corresponding statistic value is shown. The most enriched gene ontology biological process
relative to the complete network background is shown to indicate the biological function of the sub-networks

PhenomeExpress Network No. No. of Nodes Empirical P value Top GO Biological Process Annotation

1 10 1.9E-2 Antigen processing and presentation of exogenous peptide antigen via class II
2 145 1.0E-4 Immune response
3 7 4.0E-4 Cell chemotaxis
4 27 1.0E-4 Defense response to fungi
5 7 3.0E-2 Lipoxin metabolic process
6 11 3.1E-3 Extracellular matrix organisation
7 5 1.4E-3 Regulation of hepatocyte differentiation
8 5 6.8E-3 Positive regulation of mast cell cytokine production
9 17 4.3E-2 Transcription DNA-templated

10 7 3.3E-2 Circadian regulation of gene expression
11 5 1.4E-2 N/A

GIGA Network No. No. of Nodes
Ranked based

P-value Top GO Biological Process Annotation

1 143 1.2E-205 DNA packing
2 6 3.6E-9 Neutrophil aggregation
3 6 2.4E-8 Cell adhesion
4 5 6.0E-7 Regulation of hepatocyte differentiation
5 5 1.1E-5 Peptide assembly with MHC protein complex

JactiveModules Network No. No. of Nodes Active Score Top GO Biological Process Annotation

1 32 3.1 Antigen processing and presentation of exogenous peptide antigen via MHC
class II

2 31 2.6 Regulation of chromosome segregation
3 44 3.5 Nucleobase metabolic process
4 163 5.4 Glyceraldehyde-3-phosphate metabolic process
5 7 2.4 N/A
6 8 2.7 Regulation of cytokine mediated signalling pathway
7 8 2.6 Antigen processing and presentation of exogenous peptide antigen via MHC

class II

BioNet Network No. No. of Nodes FDR Top GO Biological Process Annotation

1 231 1.0E-5 Negative regulation of cellular macromolecule biosynthetic process
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Figure 2 | Bone sub-networks in osteoarthritis. Visualization of selected sub-networks identified by PhenomeExpress with the subchondral bone dataset.

Proteins annotated with one of the seed phenotypes are indicated with a black node border. Nodes are coloured by their fold change relative to

healthy bone.
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SCIENTIFIC REPORTS | 5 : 8117 | DOI: 10.1038/srep08117 6



expression data. Our method therefore provides another important
angle for interpretation of the data.

Experimental case study 2 – The role of PAX5 in pre-B cell acute
lymphoblastic leukaemia. Mice are often used in disease mechanism
studies as a model organism. To demonstrate the use of our tool on
mouse data we took a recent RNA-Seq dataset examining the role of
the transcription factor PAX5 in pre-B cell acute lymphoblastic
leukemia (B-ALL)36. PAX5 is a master regulator of B-cell lineage
programs from progenitor cells and regulates expression of B cell
specific genes37. PAX5 is often mutated in B-ALL, resulting in loss of
function and therefore a blockage of differentiation during B-cell
development38. A mouse model with inducible suppression and
restoration of PAX5 expression in B-cells was used to examine if
rescue of endogenous PAX5, after loss of expression, is sufficient
to return mice to a normal phenotype. The authors observed a
rescue of B-ALL mice upon expression of PAX5, with recovery of
the differentiation process, normal B cell receptor development and
cell cycle/DNA replication suppression. Transcriptomics analysis of
this model was used to understand the transcription response to
PAX5 restoration in B-ALL leukaemia cells.

Differentially expressed genes were identified and the expressed
genes (FPKM . 2) were used to produce to a cell specific protein
interaction network. The phenotype- human gene annotations were
mapped to mouse orthologs to allow integration with the
STRINGDB derived mouse protein interaction network39. Five spe-
cific phenotypes which describe the key features of B-ALL were

selected as seed phenotypes, which are annotated to 188 genes pre-
sent in our network (Table 3).

Using a maximum initial sub-network size of 20 proteins, our tool
identified 8 significant sub-networks summarised in Table 4. We also
analysed the dataset with the other sub-network methods as before
(Table 4). The results were more similar between the tools than the
OA dataset, suggesting a stronger core biological signal (Figure 3B).
Sub-network 2 from our method has GO annotation of DNA meta-
bolic processes (Figure 4A). Sub-networks related to the cell cycle
were also identified by the other tools (Table 4). The strong down
regulation of proliferative genes was reported to be a major feature of
the rescue with PAX5 expression36. This suggests that multiple meth-
ods with distinct approaches can find sub-networks with similar
biological functions. As before our sub-networks contained many
more seed phenotype annotated genes than those method that do
not use that information with 25% (55/224) in PhenomeExpress,
10% (39/386) in JActivemodules, 16% (20/124) in BioNet and 12%
(24/195) in GIGA.

GO analysis of the largest sub-network (sub-network 1) revealed it
contains proteins annotated to immune response and the pre-BCR
receptor including CD22 which is a co-receptor that mediates sig-
nalling cascades upon BCR receptor ligation (Figure 4B)40. This sub-
network is consistent with the reported increased BCR receptor
assembly follow PAX5 expression. Those genes in this sub-network
annotated with seed phenotypes that are differentially expressed
include BLNK, which is highlighted in the dataset’s corresponding
publication, but not included in sub-networks from the other meth-
ods. BLNK is a central coordinator of signalling pathways down-
stream of the BCR receptor and important in B cell development41.
B-ALL spontaneously develops in BLNK-deficient mice as it has a
critical function in the pro-B cell to pre-B cell transition42. These
results suggest that including disease phenotype information focuses
the sub-network on regions of interest to the disease.

The BioNet sub-network contains only differentially expressed
genes with the exception of two; Crebbp and Notch1. Clearly, not
all components of biological pathway have to be differentially
expressed for that region of the interactome to be of interest. For
instance, in the largest sub-network is a group of proteins which
includes the non-differentially expressed BAD, BAX and BAK and
the differentially expressed BCL2L11, BCL2L1 and BMF. GO enrich-
ment analysis of this group showed the proteins are related to cellular
death. Apoptosis is a major factor in the maintenance of normal cell
count and modulators of this pathway are of therapeutic interest in
cancers43. PAX5 expression in vitro is known to induce cell death and
is a known regulator of p53, which influences cell death pathways44,45.
Several of the proteins in thus group are directly annotated to the
seed phenotypes and BCL2L1 is annotated to T cell related pheno-
types such as impaired T cell function which are semantically similar
to the seed phenotypes. This group of proteins was not identified by
the other methods, suggesting our method can provide additional
biological context for transcriptomics analysis. Analysis of this data-
set with our sub-network tool shows the key expression changes in
the driving pathways of B-ALL leukaemia and summarises the
altered cellular processes that were reported rescued by the express-
ion of PAX5.

Discussion
Transcriptomics is often used to identify differentially expressed
genes to help elucidate the mechanism of action in a disease and to
ultimately aid development of rational, targeted treatments. Existing
active sub-network detection tools do not take advantage of the
wealth of phenotype information available to improve the under-
standing of disease etiology. Mouse and zebrafish gene phenotype
resources are continuously growing, so there is a clear need for tools
that utilize this resource for transcriptomics analysis. To our know-
ledge this is the first tool for disease sub-network detection on the

Figure 3 | Comparison of active sub-networks identified by different
algorithms. The OA (A) and PAX5 (B) datasets was analysed with

PhenomeExpress, BioNet, GIGA, JActivemodules. The overlap of proteins

present in sub-networks between the tools is shown as a Venn diagram.
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basis of transcriptomics and cross-species phenotype data.
PhenomeExpress automatically extracts the relevant regions of the
protein interactome, utilising the transcriptomics data and the prior
knowledge of existing disease related phenotype associated genes, as
well as those inferred from the topology of the heterogeneous network.

Our method has an important advantage over existing methods in
allowing injection of biological context into the sub-network iden-
tification process, by integration of prior knowledge. Therefore, it
increases the likelihood of detection of biologically relevant sub-
networks of interest to the researcher. This is an improvement on
‘‘unbiased’’ approaches, where the inclusion of various annotated
evidence, based on unfiltered sources of mainly irrelevant origin,

Table 3 | Phenotypes selected for B-ALL. UberPheno phenotype
terms selected for use in the sub-network detection with the PAX5
expression dataset

Phenotype ID Phenotype Name

HP:0004812 Pre-B-cell acute lymphoblastic leukemia
MP:0012431 Increased lymphoma incidence
HP:0012191 B-cell lymphoma
MP:0008211 Decreased mature B cell number
MP:0008189 Increased transitional stage B cell number

Table 4 | Summary of B-ALL sub-networks generated by PhenomeExpress and other tools. PhenomeExpress GIGA, JActivemodules and
BioNet were used to detect B-ALL related sub-networks from the PAX5 expression dataset. The number of nodes in each identified sub-
network is indicated. For each tool the corresponding statistic value is shown. The most enriched gene ontology biological process relative to
the complete network background is shown to indicate the biological function of the sub-networks

PhenomeExpress Network No. No. of Nodes Empirical p-value Top GO Biological Process Annotation

1 106 1.0E-4 Immune system process
2 47 1.0E-4 DNA metabolic process
3 14 1.2E-2 Steroid metabolic process
4 11 2.6E-2 Protein processing
5 22 7.4E-3 Protein glycosylation
6 7 2.7E-2 Complement activation, classical pathway
7 6 3.4E-2 Polyamine metabolic process
8 11 1.4E-3 Muscle contraction

GIGA Network No. No. of Nodes Rank based p-value Top GO Biological Process Annotation

1 93 4.0E-137 DNA replication
2 19 2.6E-27 Positive regulation of immune system process
3 13 1.5E-19 G-protein coupled receptor signaling pathway
4 14 8.0E-16 Activation of immune response
5 8 9.5E-10 Marcomolecule glycosylation
6 10 1.8E-9 Marcomolecule glycosylation
7 11 3.8E-7 Cation transport
8 8 3.9E-7 Pyroptosis
9 11 2.5E-6 Cholesterol metabolic process

10 8 2.0E-5 Protein localization

JactiveModules Network No. No. of Nodes Active Score Top GO Biological Process Annotation

1 151 9.3 Cell Cycle
2 18 2.2 Sphingolipid metabolic process
3 9 2.4 Pyroptosis
4 8 3.8 Cell Cycle
5 6 3.8 Mitotic cell cycle process
6 6 3.9 DNA replication
7 7 3.9 Mitotic nuclear division
8 6 3.3 N/A
9 5 3.6 DNA repair

10 10 1.8 G-protein coupled receptor signalling pathway
11 102 5.5 Mitotic cell cycle
12 8 4.0 N/A
13 15 4.5 DNA repair
14 12 5.0 Ribonucleoprotein complex biogenesis
15 42 5.8 DNA metabolic process
16 5 2.6 DNA replication
17 8 7.0 Ribosome biogenesis
18 6 2.1 Mitotic cell cycle phase transition
19 109 3.5 Cell cycle
20 9 3.6 DNA repair
21 5 3.6 DNA unwinding involved in DNA replication
22 5 3.5 Chromatin assembly
23 7 3.6 Intracellular transport
24 12 3.7 Ribosome biogenesis

BioNet Network No. No. of Nodes FDR Top GO Biological Process Annotation

1 124 1.0E-25 DNA replication
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would seem more likely to cloud the analysis and make a high thresh-
old for the discovery of relevant nodes/pathways. It is important to
note that the genes annotated to the observed seed phenotypes are
not necessarily annotated as been involved in the disease under
study, for example, if the original study reporting the phenotype

examined another disease. In addition, even though the disease dis-
plays a phenotype, not every gene annotated to the phenotype will be
directly involved in the disease, as there are possibly multiple path-
ways controlling the same phenotype, which can be perturbed in
disease. The phenotype-gene association information helps guide

Figure 4 | PAX5 related sub-networks in B-ALL. Visualization of selected sub-networks identified by PhenomeExpress with the PAX5 B-ALL dataset.

Proteins annotated with one of the seed phenotypes are indicated with a black node border. Nodes are coloured by their fold change relative to before

PAX5 expression.
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the algorithm to the regions of the interactome that are likely to be
perturbed and the expression data helps score the most relevant
genes.

In the distinct case studies presented, PhenomeExpress clearly
highlights sub-networks of interest that are suitable for critical evalu-
ation and experimental exploration. As opposed to a method which
just uses the direct phenotype related proteins as seeds to be explicitly
included in sub-networks, our method avoids this bias and allows the
topology of the phenome to identify related phenotypes from the
phenotype seeds and thus infer the most relevant proteins for inclu-
sion in the sub-networks. Results from existing sub-network
methods can be integrated with phenotype information by post-
identification overlay, but this does not take advantage of the asso-
ciations of related phenotypes in the initial identification of the
sub-networks. In our method, genes that are only moderately differ-
entially expressed, but directly/indirectly associated to the seed phe-
notypes can potentially be high scoring, thus likely to be included in a
sub-network. It is important to note that PhenomeExpress did not
cover all disease relevant sub-networks found by the other tools. For
example, in the cation transport related network 7 from GIGA, in the
B-ALL dataset, several V-type ATPases are included which are
potential drug targets to increase sensitisation of cancer cells to
chemotherapeutics46. We therefore recommend the use of Phenome-
Express as an additional tool to gain a different perspective for ana-
lysis using the awareness of the phenotypic information. One
drawback of using a PPI network approach is the reliance on accurate
interaction information. The PPI network could be replaced with a
co-expression networks derived from the transcriptomics data which
may allow for more complete coverage of the proteome.

Our method can ease translation of transcriptomics data into
biological hypotheses which is a key, challenging step. We show
the method generates biologically significant sub-networks which
are enriched in disease phenotype associated genes. In our two case
study datasets we demonstrate that PhenomeExpress can extract
sub-networks relevant to the core disease processes, that include
proteins associated with the known disease phenotypes and are sup-
ported by the literature. This tool can be used in conjunction with
examining the most highly ranked genes by fold change, other sub-
network detection methods, as well as using predefined pathways
and GO enrichment analysis.

Methods
Phenome network construction. The UberPheno ontology and annotated human
genes were downloaded from 29/04/1447. The Java OWL API was used to parse the
ontology and calculate the lowest common submer between ontology terms48.
Subsequently, the information content was calculated from the gene to phenotype
annotations and the semantic similarity calculated as the highest information content
of the lowest common submer.

Transcriptomics Dataset Preprocessing. The gene expression case study datasets
GSE51588 and GSE52870 were downloaded from the Gene Expression Omnibus
(GEO)49. The microarray data was normalised and analysed with the Bioconductor
packages lumi and limma50,51. The RNA-Seq counts previously mapped and
quantified by the authors with subread and featureCounts respectively were
used to detect differentially expressed genes with DESeq252–54. For the microarray
data genes that had an intensity of .5 in more than half the samples were regarded as
been expressed. For the RNA-seq dataset a cutoff of FPKM (using effective gene
length) of .2 was used (chosen from the binomial distribution of the FPKM
values).

Random walk on a heterogeneous network. The transition matrix for scoring the
heterogeneous network in the first stage of the algorithm was constructed similarly to
previously described17. The transition matrix of the heterogeneous network (M) is
comprised of the sub-graph transition matrix of the PPI network (MG) and the
Phenome network (MP), as well as the inter-sub-graph transition matrices (MGP and
MPG):

M~
MG MGP

MPG MP

� �
ð2Þ

The inter-sub-graph matrices of transition probability from the i-th gene to the j-th
phenotype, and vice-versa, are calculated as:

(MGP)i,j~
lBi, j=

P
j

Bi,j, if
P

j
Bi,j=0

0, otherwise

(
ð3Þ

(MPG)i,j~
lBj,i=

P
j

Bj,i, if
P

j
Bj,i=0

0, otherwise

(
ð4Þ

where B is the bipartite graph of gene to phenotype associations and l is the
probability of movement between the PPI and phenome networks.

MG gives the probability of transition between the genes at the i-th row and the j-th
column and is the calculated from the confidence weighted adjacency matrix of the
protein-protein interactions (AG):

(MG)i,j~

(AG)
i,j
=
P

j
(AG)

i,j
, if
P

j
Bi,j~0

(1{l)(AG)
i,j
=
P

j
(AG)

i,j
, otherwise

8><
>: ð5Þ

Similarly, the phenome transition matrix MP gives the probability of transitioning
between phenotypes at the i-th row to the j-th column of the sematic similarity
weighted phenotype adjacency matrix (AP):

(MP)i,j~

(AP)
i,j
=
P

j
(AP)

i,j
, if
P

j
Bj,i~0

(1{l)(AP)
i,j
=
P

j
(AP)

i,j
, otherwise

8><
>: ð6Þ

where AP is the phenome adjacency matrix weighted by the semantic similarity
between the phenotype terms.

The initial probability vector for the PPI network gives the starting probability of
finding the random walker at each node. This is set to be proportional the p-value for
each gene such that the total probabilities sum to g. The initial probability vector for
the phenome network is given equal among the seed phenotype nodes such that the
total probability sums to 1-g. The two probability vectors are combined to give the
initial probability vector p0. The probability of finding the random walker at each
node in the steady state is calculated using the iterative equation:

Psz1~(1{a)MT PszaP0 ð7Þ

where ps is the probability of finding the random walker at node i at step s, MT is the
transpose of transition matrix M and a is the probability of restart. The iterations
continue until the difference between Ps and Ps11 is less than 10E-6.

Protein interaction data. Protein interaction networks were derived from
HumanConsensusPathDB (v28) and StringDB (v9.1) for human and mouse
respectively27,39. The STRINGDB dataset was filtered to exclude low confidence (score
,0.7) interactions, since it includes potentially spurious text mining derived results.
To create tissue specific versions of the protein interaction networks the proteins that
were not identified as being expressed were removed. The giant connected
component was used as the tissue specific network.

Validation of sub-networks. Bingo was used to assess significantly enriched
pathways using the Uniprot Gene Ontology annotations for mouse and human
(release 08/07/14)55. Networks were visualised in Cytoscape56. JActivemodules (v1.8)
in simulated annealing mode was used with the expression datasets p-values and
default settings in three runs with random seeds5. On each run the largest network was
analysed recursively until it reach a size comparable to the largest sub-network
detected by our method. BioNet (v1.23.2) was used with the fastHeinz approximation
method with a FDR of 1E-5 and 1E-25 for the human and mouse datasets to generate
similar sized modules to the other tools for more direct comparison7. Similarly, GIGA
was used with the calculated p-values and with the maximum size of the sub-networks
set to the largest sub-network identified by our tool6.

Availability. The R source code of PhenomeExpress and scripts used for the analysis
of the case studies are available at https://github.com/soulj/PhenomeExpress
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