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Although inter-regional phase synchrony of neural oscillations has been proposed as
a plausible mechanism for response control, little is known about the possible effects
due to normal aging. We recorded multi-channel electroencephalography (EEG) from
healthy younger and older adults in a Go/NoGo task, and examined the aging effects
on synchronous brain networks with graph theoretical analysis. We found that in both
age groups, brain networks in theta, alpha or beta band for either response execution
(Go) or response inhibition (NoGo) condition showed prominent small-world property.
Furthermore, small-world property of brain networks showed significant differences
between different task conditions. Further analyses of node degree suggested that
frontal-central theta band phase synchrony was enhanced during response inhibition,
whereas during response execution, increased phase synchrony was observed in beta
band over central-parietal regions. More interestingly, these task-related modulations on
brain networks were well preserved and even more robust in older adults compared
with younger adults. Taken together, our findings not only suggest that response control
involves synchronous brain networks in functionally-distinct frequency bands, but also
indicate an increase in the recruitment of brain network resources due to normal
aging.
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INTRODUCTION

Response inhibition, the ability to inhibit a prepotent tendency of behavioral response,
is a core component of human cognitive control functions (Diamond, 2013). Previous
electroencephalography (EEG) studies regularly focused on the event-related potentials (ERPs)
evoked by Go and NoGo (or Stop) stimuli in Go/NoGo (or Stop-Signal) response control paradigm.
Two ERP components, i.e., N2 and P3, were consistently identified in the ERP waves elicited by
the NoGo (or Stop) stimuli compared with the Go stimuli, typically observed over frontal-central
cortex after ∼200 ms and ∼300 ms post-stimulus onset, respectively. Such ERP components were
usually interpreted as the neural markers of response inhibition (Falkenstein et al., 1999; Albert
et al., 2013; Huster et al., 2013), and were also shown to be sensitive to normal aging (Hong et al.,
2014).

Besides the analysis of ERP, frequency or time-frequency domain analysis on oscillatory
EEG power during Go/NoGo tasks has also been reported in several studies. For example,
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states or tasks that require an increased level of cognitive
control, i.e., NoGo condition, always evoked higher power of
theta oscillations during 200–600 ms post-stimulus period over
the frontal-central scalp (Kirmizi-Alsan et al., 2006; Huster
et al., 2013; Ergen et al., 2014). As a widely replicated finding,
frontal theta activity was recently proposed to be a plausible
mechanism for cognitive control functions (Cavanagh and
Frank, 2014). While during movement execution tasks (Go
condition), decreased power of alpha and beta oscillations over
the sensorimotor areas was a common finding in the literature
(Leocani et al., 1997; Pfurtscheller and Lopes da Silva, 1999).

Although ERP and frequency-domain analyses have been the
dominating techniques in previous EEG research on Go/NoGo
tasks, recent studies began to focus on the neural oscillations
from the perspective of inter-regional phase synchrony in
different frequency bands, and suggested an important role
of large-scale neural synchrony in response inhibition (Serrien
et al., 2005; Moore et al., 2008; Tallet et al., 2009; Brier
et al., 2010; Muller and Anokhin, 2012; Anguera et al.,
2013b; Cavanagh and Frank, 2014). For example, one recent
study suggested that the effective inhibition of a prepotent
response should be associated with an increase of the theta-
band phase synchrony between the frontal and parietal cortices
in a Go/NoGo task (Muller and Anokhin, 2012), and another
study reported inhibition-specific changes in beta-band phase
coherence between cerebral motor areas in a stop task (Tallet
et al., 2009).

In spite of accumulating studies reporting the role of
phase synchrony among healthy young adults, the influences
of normal aging during an active inhibitory state have been
scarce in the literature. Nonetheless, there have been phase
synchrony studies that mainly focused on the pathological aging
population, i.e., Alzheimer’s disease, showing the reduced phase
synchrony during either the resting state (Uhlhaas and Singer,
2006; Stam et al., 2007, 2009; Knyazeva et al., 2010) or task
states such as working memory (Pijnenburg et al., 2004)
compared with normal elders. More interestingly, a recent
study showed an increase of frontal-posterior theta-band phase
coherence in healthy older adults following cognitive training
that resulted in performance benefits (Anguera et al., 2013a).
However, although such findings consistently implied a close
relationship between cognitive control and neural synchrony
during cognitive aging, a comprehensive and direct comparison
of neural synchrony between healthy young and old adults
from the perspective of large-scale neural synchrony is still
lacking.

We inferred that there might be different possibilities on
the results. On one hand, inspired by previous findings that
the decline in cognitive ability was always accompanied with
reduced neural synchrony during pathological aging (Uhlhaas
and Singer, 2006), one may infer that the cognitive decline
during normal aging would implicate a reduction in the
ability to modulate neural synchrony for older adults compared
with younger adults. Yet alternatively, from the perspective of
compensatory mechanisms of cognitive aging, older adults might
recruit additional brain activation to partially compensate the
cognitive decline (Cabeza et al., 2002; Rajah and D’Esposito,

2005; Park and Reuter-Lorenz, 2009; Grady, 2012), which would
lead to the enhancement of the neural synchrony in older
adults. Nonetheless, in either case, investigating the effects of
normal aging on neural synchrony during a cognitive control
tasks would provide valuable insights for understanding the
age-related changes in neural mechanisms of cognitive control
functions.

In this study, we aimed to study the influence of normal
aging on neural synchrony during response control. To this
end, we recorded multi-channel EEG from healthy younger and
older adults in a Go/NoGo response control task. Frequency-
domain analysis was performed to examine task-related
modulations on oscillatory EEG power, which could provide
useful information for the comparison with existing literature.
After that, functional brain networks were constructed based on
phase synchrony analysis (Sun et al., 2012). Graph theory was
then used to analyze the topological organizations of oscillatory
brain networks during Go and NoGo conditions (Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010). We expected
to observe the task-related modulations on brain networks
between response execution (Go) and response inhibition
(NoGo) conditions in functionally-distinct frequency bands,
i.e., theta, alpha and beta bands (Tallet et al., 2009; Brier
et al., 2010; Muller and Anokhin, 2012; Anguera et al., 2013b).
Furthermore, we compared the task-modulated brain networks
between younger and older adults to investigate age-related
differences in neural synchrony during response inhibition and
execution.

MATERIALS AND METHODS

Participants
We recruited 23 healthy younger (mean ± standard deviation;
age: 21.4 ± 2 years; range: 18–25 years; 7 females; all right-
handed) and 18 healthy older adults (mean ± standard
deviation; age: 61 ± 6 years; range: 50–70 years; 11 females;
all right-handed) as participants. All participants reported
normal or corrected-to-normal vision, without a history of
neurological or psychiatric disorders. All older participants
went through the Mini-Mental Status Examination (mean
score: 28/30; range: ≥26; Folstein et al., 1975) with normal
cognition. A minimum of 9 years of school education was
required for each participant. All participants gave their written
informed consents before the experiment, and were financially
compensated for the experiment regardless of their performance.
The experimental protocols were approved by the institutional
Ethical Committee of Shanghai Jiao Tong University, complying
with the Declaration of Helsinki.

Stimuli and Procedures
A modified visual Go/NoGo task was adopted in this study.
Before each trial, a black central crosshair (1.38◦ by 1.38◦)
and two lateral black location markers (2.39◦ by 2.39◦,
located 9.05◦ from the vertical meridian, and 7.2◦ below the
horizontal meridian) were constantly presented on a white
background. Participants were instructed to always maintain
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fixation on the crosshair whenever it was displayed. Each trial
began with a 200ms central black arrow cue pointing to either the
left (50%) or the right (50%). Subjects were required to covertly
attend the left or the right location according to the cue and
ignore the other location. The target stimulus (1.67◦ by 1.67◦),
either a plus sign (50%) or the letter ‘‘x’’ (50%), was presented
for 200 ms inside either the left (50%) or the right (50%)
location marker after a random cue-target interval (CTI: jittered
between 1000–1200 ms). Subjects were required to respond only
to the plus sign presented in the attended location (Go trials) as
quickly and accurately as possible with the right index finger,
and refrain from responding to the letter ‘‘x’’ presented in the
attended location marker (NoGo trials). Targets presented in the
unattended location marker were to be ignored completely. A
fixed inter-trial interval of 2600 ms was presented between the
target offset and the cue onset of the next trial. For the Go trials,
responses within 1600 ms after the target offset were recorded as
valid trials.

Participants were comfortably seated in a sound attenuated
room during the experiment. All stimuli were presented on a
19 inch LCD display (Dell: P190SB) placed 60 cm in front of
the participant. The experimental paradigm was implemented
in E-Prime (Version: 2.0, Psychology Software Tools, Inc.,
Sharpsburg, PA, USA), and behavioral responses were recorded
with the Serial Response BoxTM included in the E-Prime
toolkit. Each block consisted of 60 trials lasting for about
5 min. To minimize subject fatigue, a short (2–3 min) break
was included between two successive blocks. All subjects went
through a training block to get familiar with the experimental
procedures. After the training, all younger subjects completed
eight blocks of formal experiment trials and older subjects
completed six blocks, considering the fact that the elders are
more likely to develop mental fatigue that could affect the brain
activity (Sun et al., 2014). To eliminate potential differences
due to unequal trial numbers in the two groups, further EEG
analyses only included data from the first six blocks in the
younger group.

EEG Recording and Preprocessing
Continuous EEG signals were recorded from 32 scalp electrodes
(30 recording channels: Fp1, Fp2, F3, F4, F7, F8, Fz,
FC1, FC2, FC5, FC6, C3, C4, Cz, T7, T8, CP1, CP2,
CP5, CP6, P3, P4, P7, P8, 171 Pz, O1, O2, Oz, TP9,
TP10; recording reference: FCz; ground: AFz) using the
BrainAmp MR Plus amplifier and EasyCapTM (Brain Products
GmbH, Gilching, Germany). Two additional electrodes were
placed on the outer left canthus and above the right eye
to record horizontal electrooculogram (HEOG) and vertical
electrooculogram (VEOG), respectively. EEG signals were
amplified and sampled at 1000 Hz with 0.016–100 Hz online
band-pass filtering. Impedance of each electrode was maintained
below 10 k� during the recording.

EEG preprocessing was performed in the Matlab-based
(MathWorks, MA, USA) EEGLAB (Delorme and Makeig, 2004)
and ERPLAB toolboxes (Lopez-Calderon and Luck, 2014). Raw
continuous EEG data first went through a two-way, zero phase

shift, Butterworth filter (band-pass: 0.1–40 Hz; roll-off slope:
12 dB/oct), followed by a Parks McClellan notch filter to
eliminate remaining noise at 50 Hz. Independent component
analysis was performed to remove the ocular artifacts (Jung
et al., 2000). Continuous EEG data were then re-referenced to
the average of bilateral mastoid electrodes (TP9 and TP10),
and segmented into epochs from −200 to 800 ms referring
to the target onsets. Epochs with physical artifact in any EEG
channel were marked as bad epochs according to the following
criteria: (1) the maximal absolute value of voltage difference
within a moving window (width: 200 ms; step: 50 ms) exceeding
150 µV; and (2) the maximal absolute value of voltage at any
time point exceeding 100 µV. Furthermore, EEG epochs with
overt eye movements or blinks that might prevent subjects from
recognizing the targets were marked as bad epochs according to
the following criteria: (1) the maximal absolute value of voltage
difference in theHEOG channel within amoving window (width:
400 ms; step: 10 ms) exceeding 40 µV; and (2) the maximal
absolute value of voltage difference in the VEOG channel at any
time point around the target (−200 to 200 ms post-stimulus)
exceeding 50 µV. After that, all EEG epochs were further visually
inspected and all bad epochs were excluded in subsequent
analyses.

In this study, the 200–700 ms post-stimulus period was
chosen for the following analysis of EEG spectral power and
phase synchrony, considering that: (1) our previous study
has shown that this window covers the processes related to
response inhibition, as suggested by the ERP components
(N2 and P3) observed during this window (Hong et al.,
2014); (2) from the computational perspective, our previous
research based on surrogate tests has shown that an epoch
of 500 ms yields optimal results for phase synchrony analysis
in EEG theta, alpha and beta bands (Sun et al., 2012).
For the sake of comparison, the last 500 ms of inter-trial
interval (−500 to 0 pre-cue) was selected as the Baseline
condition, which was included in the following analysis as
reference.

It has been widely agreed that the event-related EEG includes
both evoked and induced activities (Pfurtscheller and Lopes
da Silva, 1999; Bastiaansen and Hagoort, 2003). The evoked
activity, directly driven by the stimulus and both time- and
phase-locked to it, can be extracted from the ongoing EEG by a
straightforward averaging of EEG epochs, resulting in the ERP.
The induced activity, on the other hand, is largely rhythmic
(oscillatory) in nature, refers to oscillations caused or modulated
by stimuli or state changes that do not directly drive the
rhythm, so that they are time-locked, but not necessarily phase-
locked, to the eliciting event. Moreover, previous studies have
suggested to remove evoked activity when analyzing induced
activity (Dietl et al., 1999; Doppelmayr et al., 2000; Gruber
et al., 2002; Deiber et al., 2009). In this study, we are only
interested in induced activity, because evoked activity (ERP,
N2 and P3 components) has been analyzed and reported in
our previous study (Hong et al., 2014). Therefore, ERP activity
from each task condition (Go, NoGo) was subtracted from EEG
epochs of the same condition for each subject to eliminate the
contributions from evoked activity before subsequent analyses of
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FIGURE 1 | The schematic diagram for the brain network analysis. (A) Electroencephalography (EEG) epochs after preprocessing steps. (B) The event-related
potentials (ERPs) were computed by averaging the same type of EEG epochs (Go, NoGo), which was reported in our previous study (Hong et al., 2014). (C) ERP
activity was subtracted from EEG epochs. (D) Frequency-domain analysis of oscillatory power using Fourier analysis. (E) Phase synchronization (PS) index was
computed for each pair of channels in each trial, and the connectivity matrix was averaged across the same type of EEG epochs (Baseline, Go, NoGo). (F) Different
thresholds were applied on the connectivity matrix to construct brain networks, which were then analyzed using graph theoretical metrics.

induced activity. The flowchart of EEG analysis was illustrated in
Figure 1.

EEG Spectral Power Analysis
To analyze the modulation of EEG band power during the
Go/NoGo task, we computed fast Fourier transform for the
200–700 ms post-stimulus period with Hamming window
for each electrode, and then averaged the spectra across all
trials of the same experimental condition (Baseline, NoGo,

Go). To eliminate the inter-subject variance, task-related
power change was computed as the percentage change of
spectral power between different task conditions (Hong et al.,
2013).

Phase Synchronization Analysis
Phase synchronization (PS) has been successfully used to analyze
rhythmic synchrony in oscillatory neural signals (Sun et al.,
2012; Hong et al., 2013; Yan et al., 2013). The strength of phase
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synchrony can be quantified by PS index (PSI), which is based
on the instantaneous phase (IP) of oscillations. For an epoch of
real-value narrow-band EEG signal s(t), its IP can be defined as:

φ(t) = arg[z(t)] = arctan
s̃(t)
s(t)

(1)

where,
z(t) = s(t)+ js̃(t) (2)

is the analytic signal of s(t), and

s̃(t) =
1
π
P.V.

∫
∞

−∞

s(τ )
t − τ

dτ (3)

is the Hilbert transform of s(t) (P.V. denotes that the integral
is taken in the sense of Cauchy principal value). Let φ1(t) and
φ2(t) denote the IPs of two narrow-band EEG waves from two
EEG channels during the same period. If the IP difference, i.e.,
|mφ1(t)− nφ2(t)|, is bounded by a constant, this pair of EEG
waves are deemed to be in m:n PS, where m and n are positive
integers (Tass et al., 1998;Wacker andWitte, 2011). In this study,
we followed the approach adopted in recent studies of phase
synchrony and only focused on the 1:1 PS (Sun et al., 2012; Hong
et al., 2013; Yan et al., 2013). In this case, the PSI (ρ) can be
quantified as the mean phase coherence of the IP difference, i.e.,

ρ =

√
〈cos [φ1(t)− φ2(t)]〉2t + 〈sin [φ1(t)− φ2(t)]〉

2
t (4)

where 〈·〉t denotes the average over time. The value of PSI (ρ) is
in the range of [0 1], with ρ = 0 indicating no PS at all and ρ = 1
indicating perfect PS.

In this study, the PS analysis for each EEG epoch was
performed as follows: (1) filtering the EEG epochs into different
frequency bands (theta: 4–8 Hz; alpha: 8–13 Hz; beta: 13–30 Hz);
(2) computing the IP of the sub-band EEG signals according to
Eq (1) for each epoch; (3) computing the PSI between each pair
of electrodes using Eq (4); and (4) assigning the PSIs into an
association matrix (28 × 28 in this study), with element in the
ith row and jth column, ρij, representing the PSI between channel
i and channel j. Finally, we averaged PSI matrices from all epochs
under the same experimental conditions (Baseline, Go, NoGo)
for each subject and obtained three PSI matrices (Baseline, Go,
NoGo) in each frequency band for each subject.

Graph Theoretical Analysis
In graph theoretical analysis, each channel is defined as a node,
and the connectivity strength between two nodes is designated as
the edge that connects them. The association matrix ({ρij}) was
converted into a weighted graph ({wij}) by applying a threshold
(T) to eliminate those weak and spurious connections, i.e.,

wij =

{
ρij, if ≥ T
0, otherwise. (5)

where wij denotes the connectivity strength between node
i and node j. The threshold value T was determined via

a commonly used approach which explores the brain
graph as a function of the changing threshold (Bullmore
and Bassett, 2011; Hong et al., 2013; Yan et al., 2013).
Previous studies have shown that the efficient organization
of brain networks is typically observed in relatively sparse
networks with network densities (the ratio between the
existing edge number and maximal possible edge number)
being less than 0.5, and that the maximal cost-efficiency
of brain networks are typically reached at a network
density of around 0.3 (Achard and Bullmore, 2007; Bassett
et al., 2009; Bullmore and Bassett, 2011; Bullmore and
Sporns, 2012; Jin et al., 2012). Therefore, in this study,
we constructed connectivity graphs under a series of edge
numbers (K) ranging from 60–180 with a step of 20.
Specifically, for a given edge number K, the threshold (T)
was assigned as the Kth largest value among all PSIs. The
corresponding network density hence ranged approximately
from 0.16 to 0.48.

The degree of a node, defined as the total connectivity strength
of the corresponding node, was used to describe the importance
of that node in the graph. Nodes with high degrees are regarded
as hubs and are likely to play an important role in network
communications (Bullmore and Sporns, 2009; Bullmore and
Bassett, 2011). For weighted networks, the degree of node i (Di)
is quantified as:

Di =
∑
j∈N

wij (6)

where N denotes the set of all nodes in the network.
Recent research has shown that brain networks typically

exhibit the so-called ‘‘small-world’’ property, which is
thought to reflect an efficient organization with an
optimal compromise between local segregation and global
integration (Bassett et al., 2006; Achard and Bullmore,
2007; Jin et al., 2012). In this study, we will compare
the small-world property of functional brain networks
between young and old adults within different frequency
bands to explore age-related reorganizations during the
response inhibition task. Generally, small-world networks
are characterized as networks with significantly greater
local segregation but approximately the same level of
global integration compared with random networks (Watts
and Strogatz, 1998; Rubinov and Sporns, 2010; Bullmore
and Sporns, 2012). Clustering coefficient is a measure
indicating the level of local segregation of a network
(Rubinov and Sporns, 2010). For a weighted network, the
clustering coefficient is defined as the average clustering
coefficient between all nodes in the network (Onnela et al.,
2005),

C =
1
n

∑
i∈N

Ci =
1
n

∑
i∈N

 1
Di(Di − 1)

∑
j,h∈N

(
wijwihwjh

)1/3 (7)

where n is number of nodes in the graph and Di is the degree
for node i as defined in Eq (6) Characteristic path length, on the
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other hand, describes the level of global integration of a network
(Rubinov and Sporns, 2010). It is defined as the average shortest
path length between all pairs of nodes (Latora and Marchiori,
2001),

L =
1

1
n(n−1)

∑
i 6=j∈N

1
dij

(8)

where dij denotes the shortest path length between node i and
node j.

To examine the small-world property of functional brain
networks, the clustering coefficient and characteristic path
length were compared with those from 20 size-matched
random networks generated from randomly rewiring the
original brain networks (Maslov and Sneppen, 2002). This
procedure yielded the normalized clustering coefficient
γ = C

/
Crand and characteristic path length λ = L

/
Lrand,

where Crand and Lrand denote the average clustering coefficient
and characteristic path length of the 20 random networks,
respectively. The small-world property can then be quantified
by the small-worldness index (Humphries and Gurney,
2008),

σ =
γ

λ
(9)

For a typical small-world network, σ is greater than 1 (γ > 1,
λ≈ 1). Note that the graph theoretical analysis was performed in
Matlab with Brain Connectivity Toolbox (Rubinov and Sporns,
2010).

Statistical Analysis
For the analysis of C and L, we used the normalized
values, i.e., γ and λ, to eliminate possible influences from
connectivity strength (Rubinov et al., 2009), and performed
the statistical analysis under different network density levels.
It should be noted that: (1) the purpose of constructing
brain graphs under a series of network density levels was to
cover the real network density level that has been suggested
to be located in the pre-defined range as much as possible;
(2) the brain graphs under different network density levels
are far from independent graphs, and thus the correction
for multiple comparisons, i.e., Bonferroni correction, is not
appropriate here (Stam et al., 2007; Rubinov et al., 2009; Jin
et al., 2012; Hong et al., 2013; Li et al., 2015). Instead of
the correction for p-values, in this study, we did not treat
the results as significant unless the p < 0.05 significance
level was observed under at least 3 (out of 7) different
network density levels. For the statistical analysis of node
degree, we chose a specific threshold around the median edge
density of 0.3 (120 edges; network density: 120/378 = 0.3175)
that is typically regarded as the most economical network
density level (Achard and Bullmore, 2007; Bassett et al., 2009;
Bullmore and Bassett, 2011). Statistical significance of network
measures were assessed by the repeated-measures analysis of
variance (ANOVA), independent-samples t-test and paired-
samples t-test (two-tailed). Statistical analysis was performed in
SPSS 16.0.

RESULTS

Behavioral Performance
The behavioral results have been reported elsewhere (Hong
et al., 2014). Briefly, the overall accuracy including both Go
and NoGo trials was marginally higher for younger adults
compared with older adults (younger: 99.52% ± 0.08% vs.
older: 98.91% ± 0.31%; t(18.027) = 1.893, p = 0.074). Older
adults responded more slowly to Go targets than younger adults
(younger: 477.56 ± 10.74 ms vs. older: 556.49 ± 28.46 ms;
t(20.582) = −2.595, p = 0.017). Furthermore, the analysis
of false alarm rate (FAR) to NoGo-targets at the attended
location showed no significant differences between the two
groups (younger: 0.52% ± 0.13% vs. older: 1.17% ± 0.50%;
t(18.115) = −1.250, p > 0.2). Taken together, behavioral
results suggested that although the response was slower due
to aging, both younger and older adults showed satisfactory
and comparable inhibitory performances in the Go/NoGo
task.

EEG Spectral Power Modulation
As shown in Figure 2, both younger and older adults
showed increased frontal-central theta power during NoGo
condition than Baseline condition and Go condition. In alpha
and beta band, there were power decreases over central-
parietal areas during Go condition than Baseline condition
and NoGo condition, and such decreases were stronger in
the older group than the younger group. Overall, our results
replicated previous studies on EEG band power modulation
during Go/NoGo tasks (Leocani et al., 1997; Pfurtscheller
and Lopes da Silva, 1999; Kirmizi-Alsan et al., 2006; Huster
et al., 2013; Cavanagh and Frank, 2014; Ergen et al.,
2014).

Brain Network Results
Small-World Property
The normalized clustering coefficient (γ ), characteristic path
length (λ) and small-worldness index (σ ) for younger and older
adults within the theta, alpha and beta frequency bands are
illustrated in Figure 3. Statistical significance was tested by two-
way repeated-measures ANOVA with Task (Baseline, Go and
NoGo) as a within-group factor and Age (younger, older) as
a between-group factor. The statistical results for γ , λ and σ
are included in Tables 1–3, respectively. The major findings
include:

1. Theta band: Main effect of Task was observed for γ

(p < 0.05 under all 7 network density levels), λ (p < 0.05
under 3 network density levels) and σ (p < 0.05 under
all 7 network density levels). Follow-up analysis suggested
that both age groups showed larger γ (p < 0.05 under all
7 network density levels), smaller λ (p< 0.05 under 5 network
density levels) and larger σ (p < 0.05 under all 7 network
density levels) during Go condition than NoGo condition.
Furthermore, the difference in σ between Go condition and
NoGo condition was larger in older adults than that in
younger adults, as indicated by significant interaction between
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FIGURE 2 | Group-averaged task-related oscillatory power changes in different frequency bands for the younger group (A) and older group (B).

Task (Go, NoGo) and Age (younger, older; p < 0.05 under
4 network density levels). In addition, older adults showed
larger γ and σ than younger adults during both Go and
NoGo conditions (p < 0.05 under all 7 network density
levels).

2. Alpha band: Main effect of Task was observed for γ (p< 0.05
under all 7 network density levels) and σ (p < 0.05 under
all 7 network density levels). Follow-up analysis suggested
that both age groups showed smaller γ (p < 0.05 under
4 network density levels) and σ (p < 0.05 under 3 network
density levels) during Go condition than NoGo condition.
However, there were no stable main effects or interactions
related to Age under different network density levels in the
alpha band.

3. Beta band: Main effect of Task was observed for γ (p < 0.05
under all 7 network density levels) and σ (p < 0.05 under
all 7 network density levels). Follow-up analysis suggested
that both age groups showed smaller γ (p < 0.05 under all
7 network density levels) and smaller σ (significant under
6 network density levels) during Go than NoGo condition.
Furthermore, older adults showed smaller λ than younger
adults during both Go and NoGo conditions (p < 0.05 under
all 7 network density levels).

In summary, both younger and older adults showed
stable task-related modulations of functional brain networks
in theta, alpha and beta bands during the Go/NoGo task.
Furthermore, age-related differences were observed in both
theta and beta band brain networks. Older adults showed
stronger task-related modulations of theta band brain networks
than younger adults. In alpha band, however, no stable
age-related differences were observed between the two age
groups.

Node Degree Distribution
The differences in node degree between different task conditions
(Baseline, Go, NoGo) were tested by paired-samples t-test in
each age group separately. The statistical t-maps under the
edge number of 120 (31.75% network density) are presented
in Figure 4. Consistent with the small-world property, task-
related modulations on node degree could also be clearly
observed in theta, alpha and beta bands. In theta band, the
frontal-central nodes showed an increase of degree during
NoGo condition than Go condition. In beta band, higher
node degree was observed during Go condition than NoGo
condition among the central-parietal nodes. While in alpha
band, such difference between Go condition and NoGo
condition was much smaller than that in theta and beta
bands.

To quantitatively analyze the task- and age-related effects
on node degree in theta and beta band brain networks, we
defined two regions of interest (ROIs) based on the t-maps in
Figure 4: (1) the frontal-central ROI (channels Fp1, Fp2, F3,
F4, C3, C4, F7, F8, Fz, Cz, FC1, FC2, FC5, FC6); and (2) the
central-parietal ROI (channels C3, C4, P3, P4, Cz, Pz, CP1, CP2,
CP5, CP6). The node degree within each ROI was averaged
in theta and beta bands, respectively. The ROI-averaged node
degree was then subject to a three-way ANOVA with Task
(Baseline, Go, NoGo) as a within-group factor and Age (younger,
older) as a between-group factor (Figure 5A). In theta band,
we observed a main effect of Task (F(2,76) = 9.736, p < 0.001)
on frontal-central node degree. Follow-up analysis suggested
that for younger adults, the task-modulated effects on frontal-
central node degree were marginally significant (Go vs. NoGo:
t(22) = −2.004, p = 0.058). For the older adults, in contrast,
such task-modulated effects were highly significant (Go vs.
Baseline: t(16) = −2.725, p = 0.015; Go vs. NoGo: t(16) = −5.174,
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FIGURE 3 | Group-averaged normalized clustering coefficient (γ ), characteristic path length (λ) and small-worldness index (σ ) of the brain networks
for all task conditions (Baseline, Go, NoGo) in the younger group (A) and older group (B) under different network density levels. Error bars indicate the
standard error of the mean (SEM).

p < 0.001). In beta band, there was a main effect of Task
(F(2,76) = 52.488, p< 0.001) and a significant interaction of GNG
× Age (F(2,76) = 10.217, p < 0.001) on the central-parietal node
degree. Follow-up analysis suggested that the task-modulated
effects on central-parietal node degree were significant in either
the younger (Go vs. Baseline: t(22) = 4.604, p < 0.001; NoGo

vs. Baseline: t(22) = 2.632, p = 0.015; Go vs. NoGo: t(22) = 2.307,
p = 0.031) or the older (Go vs. Baseline: t(16) = 7.674, p < 0.001;
NoGo vs. Baseline: t(16) = 4.404, p < 0.001; Go vs. NoGo:
t(16) = 5.205, p< 0.001) group.

To further characterize the age-related differences in
task-modulated effects on node degree, we calculated
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TABLE 1 | Results of two-way repeated-measures ANOVA (Task: Baseline vs. Go vs. NoGo; Age: younger vs. older) on normalized clustering coefficient
(observed/random).

Factors

Frequency band Edge number Task Age Task × Age

Theta (4–8 Hz) 60 F = 10.019, p < 0.001 F = 8.262, p = 0.007 F = 4.057, p = 0.021
80 F = 11.458, p < 0.001 F = 8.367, p = 0.006 F = 2.045, p = 0.136

100 F = 4.609, p = 0.013 F = 4.258, p = 0.046 F = 0.966, p =0.385
120 F = 8.959, p < 0.001 F = 7.485, p = 0.009 F = 1.565, p = 0.216
140 F = 11.839, p < 0.001 F = 6.873, p = 0.013 F = 1.198, p = 0.307
160 F = 10.436, p < 0.001 F = 11.981, p = 0.001 F = 0.316, p = 0.730
180 F = 5.444, p = 0.006 F = 12.504, p = 0.001 F = 0.878, p = 0.420

Alpha (8–13 Hz) 60 F = 6.712, p = 0.002 F = 3.883, p = 0.056 F = 2.640, p = 0.078
80 F = 9.112, p < 0.001 F = 2.568, p = 0.083 F = 1.182, p = 0.284

100 F = 7.107, p = 0.003 F = 0.940, p = 0.339 F = 0.537, p = 0.587
120 F = 4.966, p = 0.013 F = 0.361, p = 0.551 F = 1.402, p = 0.252
140 F = 10.138, p < 0.001 F = 0.832, p = 0.367 F = 0.267, p = 0.767
160 F = 7.474, p = 0.001 F = 0.225, p = 0.638 F = 0.185, p = 0.831
180 F = 5.794, p = 0.007 F = 0.671, p = 0.418 F = 0.058, p = 0.944

Beta (13–30 Hz) 60 F = 9.988, p < 0.001 F = 0.702, p = 0.407 F = 2.320, p = 0.105
80 F = 9.379, p = 0.001 F = 1.363 p = 0.250 F = 1.129, p = 0.329

100 F = 18.344, p < 0.001 F = 1.960, p = 0.170 F = 5.175, p = 0.008
120 F = 14.281, p < 0.001 F = 1.449, p = 0.236 F = 4.024, p = 0.022
140 F = 14.111, p < 0.001 F = 1.062, p = 0.309 F = 1.502, p = 0.229
160 F = 23.374, p < 0.001 F = 0.588, p = 0.448 F = 1.599, p = 0.209
180 F = 16.803, p < 0.001 F = 0.179, p = 0.675 F = 5.812, p = 0.004

Significant results are marked as bold.

TABLE 2 | Results of two-way repeated-measures ANOVA (Task: Baseline vs. Go vs. NoGo; Age: younger vs. older) on normalized characteristic path
length (observed/random).

Factors

Frequency band Edge number Task Age Task × Age

Theta (4–8 Hz) 60 F = 3.390, p = 0.039 F = 3.583, p = 0.066 F = 0.746, p = 0.478
80 F = 0.435, p = 0.649 F = 3.324, p = 0.076 F = 1.175, p = 0.314

100 F = 0.472, p = 0.626 F = 6.299, p = 0.016 F = 0.261, p = 0.771
120 F = 6.260, p = 0.003 F = 3.153, p = 0.084 F = 0.195, p = 0.823
140 F = 3.030, p = 0.071 F = 2.075, p = 0.158 F = 0.757, p = 0.472
160 F = 2.570, p = 0.095 F = 0.803, p = 0.376 F = 1.145, p = 0.324
180 F = 7.533, p = 0.002 F = 0.944, p = 0.337 F = 1.041, p = 0.358

Alpha(8-13 Hz) 60 F = 0.510, p = 0.602 F = 13.099, p = 0.001 F = 0.404, p = 0.669
80 F = 0.874, p = 0.421 F = 10.463, p = 0.003 F = 0.038, p = 0.962

100 F = 3.224, p = 0.059 F = 4.034, p = 0.052 F = 0.886, p = 0.417
120 F = 2.228, p = 0.115 F = 1.567, p = 0.218 F = 0.889, p = 0.415
140 F = 0.241, p = 0.692 F = 1.516, p = 0.226 F = 0.504, p = 0.606
160 F = 0.499, p = 0.532 F = 0.291, p = 0.592 F = 1.344, p = 0.267
180 F = 0.044, p = 0.957 F = 1.215, p = 0.277 F = 1.061, p = 0.351

Beta (13–30 Hz) 60 F = 0.151, p = 0.860 F = 11.322, p = 0.002 F = 0.747, p = 0.477
80 F = 0.196, p = 0.822 F = 9.128, p = 0.004 F = 0.014, p = 0.986

100 F = 2.905, p = 0.061 F = 8.689, p = 0.005 F = 0.262, p = 0.770
120 F = 1.815, p = 0.170 F = 8.787, p = 0.005 F = 0.017, p = 0.983
140 F = 3.998, p = 0.039 F = 6.597, p = 0.014 F = 2.248, p = 0.113
160 F = 0.480, p = 0.561 F = 5.083, p = 0.030 F = 2.580, p = 0.082
180 F = 0.504, p = 0.579 F = 4.710, p = 0.036 F = 1.525, p = 0.224

Significant results are marked as bold.

the relative changes of ROI-averaged node degree
between Go condition and NoGo condition, and then
compared the relative changes between the two groups
using independent-samples t-test. Older adults showed
significantly larger relative changes of node degree
than younger adults in both the theta (frontal-central

ROI, t(38) = 2.228, p = 0.032) and the beta (central-
parietal ROI, t(38) = −2.540, p = 0.015) bands. Figure 5B
illustrates the main connections that have different
strengths between different task conditions. Apparently,
in theta band brain network, NoGo condition evoked
stronger cortical connections than Go condition within
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TABLE 3 | Results of two-way repeated-measures ANOVA (Task: Baseline vs. Go vs. NoGo; Age: younger vs. older) on small-worldness index.

Factors

Frequency band Edge number Task Age Task × Age

Theta (4–8 Hz) 60 F = 13.507, p < 0.001 F = 13.344, p = 0.001 F = 5.809, p = 0.004
80 F = 9.625, p < 0.001 F = 10.069, p = 0.003 F = 3.175, p = 0.047

100 F = 4.505, p = 0.014 F = 6.705, p = 0.014 F = 1.215, p = 0.302
120 F = 9.402, p < 0.001 F = 7.839, p = 0.008 F = 1.403, p = 0.252
140 F = 12.770, p < 0.001 F = 7.145, p = 0.011 F = 1.741, P = 0.182
160 F = 11.397, p < 0.001 F = 10.748, p = 0.002 F = 0.540, p = 0.585
180 F = 5.956, p = 0.004 F = 12.059, p = 0.001 F = 1.101, p = 0.338

Alpha (8–13 Hz) 60 F = 5.778, p = 0.005 F = 0.787, p = 0.381 F = 1.460, p = 0.239
80 F = 7.094, p = 0.003 F = 0.069, p = 0.794 F = 2.152, p = 0.123

100 F = 7.320, p = 0.002 F = 0.140, p = 0.711 F = 0.253, p = 0.777
120 F = 4.774, p = 0.015 F = 0.068, p = 0.796 F = 0.823, p = 0.443
140 F = 9.117, p = 0.001 F = 0.357, p = 0.554 F = 0.146, p = 0.865
160 F = 6.219, p = 0.003 F = 0.135, p = 0.716 F = 0.048, p = 0.954
180 F = 5.470, p = 0.010 F = 0.874, p = 0.356 F = 0.069, p = 0.934

Beta (13–30 Hz) 60 F = 9.399, p < 0.001 F = 3.040, p = 0.089 F = 2.955, p = 0.058
80 F = 10.485, p < 0.001 F = 3.289, p = 0.078 F = 1.314, p = 0.275

100 F = 15.622, p < 0.001 F = 4.638, p = 0.038 F = 5.972, p = 0.004
120 F = 10.008, p < 0.001 F = 4.010, p = 0.052 F = 3.300, p = 0.042
140 F = 11.703, p < 0.001 F = 3.106, p = 0.086 F = 0.900, p = 0.411
160 F = 20.484, p < 0.001 F = 2.518, p = 0.121 F = 0.520, p = 0.597
180 F = 13.819, p < 0.001 F = 2.815, p = 0.066 F = 1.714, p = 0.198

Significant results are marked as bold.

frontal-central area (Figures 5Bk,l), while in beta
band brain network, Go condition evoked stronger cortical
connections than NoGo condition within central-parietal area
(Figures 5Bm,n).

DISCUSSION

We present a thorough analysis on the task-related modulations
on induced EEG activities as well as the effects caused by
normal aging during a Go/NoGo task. Behaviorally, both
younger and older adults showed high accuracy and negligible
FARs in the Go/NoGo task, suggesting a sufficient level of
inhibitory performance. Fourier analysis revealed an increase
in frontal-central theta power during NoGo condition, and
decreased central-parietal alpha and beta power during Go
condition, which replicated previous findings in the literature.
For the graph theoretical analysis on oscillatory brain networks,
both age groups showed classic small-world brain networks in
theta, alpha and beta bands, and older adults showed stronger
task-modulated effects on small-world property than younger
adults. Meanwhile, such frequency-specific modulation of brain
networks were spatially segregated, indicating the differences
of brain network between response inhibition and response
execution. Specifically, theta-band brain network showed larger
frontal-central node degree in NoGo condition than that in
Go condition, whereas beta-band brain network showed larger
central-parietal node degree in Go condition than that in
NoGo condition. Moreover, these task-related modulations on
node degree were also stronger in older adults than younger
adults. Taken together, our findings indicate that the topological
organization of oscillatory brain networks in theta and beta bands
might serve as a hallmark for response inhibition and execution,

which might become stronger and more robust due to normal
aging.

Task-Related Effects on Oscillatory Brain
Networks
It is commonly agreed that small-worldness implies both high
local clustering and short path length, which reflects an optimal
balance between local segregation and global integration of brain
networks (Watts and Strogatz, 1998; Bassett and Bullmore, 2006;
Rubinov and Sporns, 2010). Several studies have documented
the small-world organization of oscillatory brain networks in
simple motor tasks, i.e., finger or foot movements, and resting
state (Bassett et al., 2006; De Vico Fallani et al., 2008; Jin
et al., 2012). In this study, we further demonstrated the small-
worldness of brain networks in a Go/NoGo task that requires
high-level cognitive computations. More importantly, we found
that the index of small-worldness (σ ) was significantly different
between Go condition and NoGo condition. Although previous
research failed to observe significantly different small-worldness
index between simple motor tasks and the resting state, there
seemed to be an overall trend of decreasing small-worldness
indices during a finger-tapping task compared with resting state
in the beta band network (Jin et al., 2012). These results were in
line with our findings of the decreased small-worldness index
in Go condition than Baseline condition and NoGo condition
in beta band network. In theta band, however, we observed an
increase of small-worldness index in Go condition than NoGo
condition. These findings indicate that the theta and beta band
brain networks play different functional roles in the Go/NoGo
task, which is concordant with the literature, that is, the theta-
band phase synchrony is more likely to be involved in inhibitory
process (NoGo; Brier et al., 2010; Muller and Anokhin, 2012;
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FIGURE 4 | Topographic maps for t-values of the node degree between different task conditions for the younger group (A) and older group (B) in
different frequency bands. The results are illustrated under the network density level of 120 edges.

Anguera et al., 2013b), while the beta-band phase synchrony
plays a major role in motor production (Go; Aoki et al., 2001;
Brovelli et al., 2004; Jin et al., 2012).

The quantitative analysis of node degree further
supported that theta- and beta-band phase synchrony
played different functional roles in the Go/NoGo task. In
theta band brain network, response inhibition significantly
enhanced the frontal-central node degree (Figure 5A). This

finding coincides well with the current understanding of
theta oscillations, that is, frontal theta phase synchrony
is commonly enhanced when more cognitive control
is required (Cavanagh and Frank, 2014). On the other
hand, in beta band brain network, response execution
significantly enhanced the central-parietal node degree
(Figure 5B), indicating that motor response is associated
with the increase of beta-band synchrony which enhances
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FIGURE 5 | (A) Group-averaged node degree within the frontal-central (theta band) and central-parietal (beta band) regions of interest (ROIs). Error bars indicate
SEM. (B) Group-averaged differences of connectivity strength between different task conditions. Only the connections with absolute differences greater than 0.05 are
shown in the figure. The results are illustrated under the network density level of 120 edges.

cortical connections with or within the sensorimotor
areas (Mima et al., 2000; Bassett et al., 2006; Jin et al.,
2012).

In theta band network, task-modulated effects on small-
worldness manifested in significantly decreased clustering

coefficient and increased characteristic path length in NoGo
condition than that in Go condition. In the beta band
network, however, the task-modulated effects on small-
worldness index was only presented in the significant changes
in clustering coefficient (Figure 3). Given that clustering
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coefficient and characteristic path length represent local
segregation and global integration of complex networks,
respectively (Watts and Strogatz, 1998; Rubinov and Sporns,
2010; Bullmore and Bassett, 2011), our findings suggest that
theta band brain network involved more distant cortical
connections than beta band brain network. Furthermore,
this inference was also supported by the differences in
connectivity strength between Go condition and NoGo
condition. Specifically, task-related changes (NoGo > Go)
in theta band brain network involved relatively large-scale
cortical connections, including the frontal, central and parietal
areas (Figures 5Bk,l), whereas in beta band brain network,
task-related changes (Go > NoGo) in cortical connections
were primarily concentrated around the sensorimotor area
(Figures 5Bm,n).

Aging Effects on Oscillatory Brain
Networks
Compared with younger adults, the small-worldness as well
as task-modulated effects were well preserved in older
adults. Furthermore, the task-modulated effects on node
degree distribution in theta and beta band brain network
were more prominent in older adults than younger adults
(Figure 5A). There have been neuroimaging evidences
that older adults could recruit more frontal activation than
younger adults in cognitive control tasks, i.e., the Go/NoGo
task, reflecting a functional compensation (Rajah and
D’Esposito, 2005; Park and Reuter-Lorenz, 2009; Spreng
et al., 2010; Heilbronner and Münte, 2013; Hong et al.,
2014). Therefore, it could be inferred that normal aging not
only increases the functional activation in specific regions,
but also enhances the brain functional connections, which
might indicate the recruitment of additional resources,
and such findings are consistent with recent functional
connectivity study based on functional magnetic resonance
imaging (fMRI; Geerligs et al., 2014). Collectively, our
findings clearly show that normal aging does not reduce,
but rather enhances the neural synchrony during cognitively
demanding tasks, which could shed new light on the neural
mechanisms of cognitive aging when combined with the
previously reported decrease in neural synchrony due
to pathological aging (Pijnenburg et al., 2004; Uhlhaas
and Singer, 2006; Stam et al., 2007, 2009; Knyazeva et al.,
2010).

An attention-cueing Go/NoGo task with cue-target design,
rather than a simple Go/NoGo task was used in this
study. In such cue-target paradigm, Go/NoGo stimuli were
always preceded by an instructive cue that led to increased
response preparation in order to get a fast response to
Go-stimulus. In this case, a prepared response had to be
aborted when a NoGo-stimulus appeared at the cued location,
which led to a robust response inhibition process (Bruin
et al., 2001; Smith et al., 2006, 2007). Consistently, significant
inhibition-related ERP components had been reported in our
previous study (Hong et al., 2014). Moreover, since this study
focused on response inhibition and execution, attention-related

cognitive process and brain activity was not included here,
which though, had been reported elsewhere (Hong et al.,
2015).

In this study, the averaged ERP activity was subtracted
from EEG signals before PS analysis to eliminate the
effects from evoked activities that are phase-locked to the
stimulus onset, i.e., N2 and P3 components. The N2 and
P3 components have been widely reported to be the neural
marker of response inhibition (Falkenstein et al., 1999; Albert
et al., 2013; Huster et al., 2013; Hong et al., 2014). Since
the ERP waves have subtracted before phase synchrony
and brain network analysis, our findings suggest that task-
modulated brain network constructed from induced (non-
phase-locked) EEG activity could serve as another possible
neural marker that is independent of conventional ERP
markers. Moreover, such marker of brain network could
be well preserved and even become stronger during normal
aging.

One limitation in this study should be noted. Following
a common approach in the literature (Dietl et al., 1999;
Doppelmayr et al., 2000; Gruber et al., 2002; Deiber et al., 2009),
we subtracted the averaged ERP from EEG epochs to eliminate
the effects from evoked activity in this study. Such approach is
based on the assumption that the same ERP is present in each
single trial, which however, may be problematic. Unfortunately,
extracting precise ERP activity at single trial level is still a
highly challenging task, and currently there is still lack of widely
accepted method in this field. Future work is required to address
this limitation.

To conclude, by employing graph theoretical analysis,
we thoroughly investigated the age-related differences in
synchronous neural network within functionally-distinct
frequency bands in a Go/NoGo task. This study explicitly
demonstrated a close relationship between the frequency-
specific neural synchrony and response inhibition as well
as response execution. Our findings could also provide
important implications into the current understanding of
the neural mechanisms of cognitive aging from the perspective
of synchronous brain networks.
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