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INTRODUC TION

Multiple sclerosis (MS) is an immune-mediated inflammatory and 
neurodegenerative disease affecting the central nervous system 
leading to chronic disability [1] Most cases initially present with a 

relapsing−remitting course (RR), characterized by acute relapses, 
which is almost inevitably followed by the secondary progressive 
phase (SP), leading to severe disability accumulation.

The conversion to SPMS is the key determinant of the long-term 
prognosis [2] but its prevention unfortunately remains an unmet 
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Abstract
Background: At the patient level, the prognostic value of several features that are known 
to be associated with an increased risk of converting from relapsing−remitting (RR) to 
secondary phase (SP) multiple sclerosis (MS) remains limited.
Methods: Among 262 RRMS patients followed up for 10 years, we assessed the probabil-
ity of developing the SP course based on clinical and conventional and non-conventional 
magnetic resonance imaging (MRI) parameters at diagnosis and after 2 years. We used a 
machine learning method, the random survival forests, to identify, according to their min-
imal depth (MD), the most predictive factors associated with the risk of SP conversion, 
which were then combined to compute the secondary progressive risk score (SP-RiSc).
Results: During the observation period, 69 (26%) patients converted to SPMS. The num-
ber of cortical lesions (MD = 2.47) and age (MD = 3.30) at diagnosis, the global cortical 
thinning (MD = 1.65), the cerebellar cortical volume loss (MD = 2.15) and the cortical 
lesion load increase (MD = 3.15) over the first 2 years exerted the greatest predictive 
effect. Three patients’ risk groups were identified; in the high-risk group, 85% (46/55) of 
patients entered the SP phase in 7 median years. The SP-RiSc optimal cut-off estimated 
was 17.7 showing specificity and sensitivity of 87% and 92%, respectively, and overall 
accuracy of 88%.
Conclusions: The SP-RiSc yielded a high performance in identifying MS patients with 
high probability to develop SPMS, which can help improve management strategies. These 
findings are the premise of further larger prospective studies to assess its use in clinical 
settings.
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therapeutic need [3] At the individual level, the MS clinical course 
is extremely unpredictable. The probability of becoming progres-
sive proportionally increases with the disease duration and with pa-
tients' age [4] mostly secondary to the failure of brain compensatory 
mechanisms [5] Several demographics, clinical, neuroradiological and 
environmental factors have been associated with a higher risk of con-
verting to SPMS. Older age at disease onset [4,6,7] and a florid early 
clinical [2,8–10] and magnetic resonance imaging (MRI) multifocal 
white matter (WM) inflammatory activity [11,12] distinguish patients 
more likely to develop severe disability in the future. However, the 
severity of the grey matter (GM) damage (cortical lesions and atro-
phy) explains the disease progression better than the WM damage 
and it is a good predictor of the long-term outcome [13–15] since the 
early stage of the disease. Despite extensive efforts collecting and 
validating prognostic information, the accurate identification early 
in the disease course of patients destined to have poor outcome re-
mains challenging, which hampers our ability to optimize the thera-
peutic approach before irreversible damage takes place.

By exploiting the flexibility of machine learning approaches, we 
developed the secondary progressive risk score (SP-RiSc), which in-
tegrates demographic, clinical and MRI data collected from a cohort 
of RRMS patients during the first 2 years after the disease diagnosis. 
The SP-RiSc may be a tool potentially applicable in specific clinical 
settings to objectively estimate the individual risk of transition from 
RRMS to the progressive phase.

METHODS

MS patient cohort and study design

The study was designed by retrospectively collecting demographic, 
clinical and MRI data (including measures of both focal and diffuse 
GM damage) at diagnosis and after the first 2 years of disease course, 
from 262 patients diagnosed with RRMS [16] who were recruited at 
the MS Specialist Centre of the University Hospital of Verona (Verona, 
Italy) between 2005 and 2010 and were followed up to 2018, for a 
mean of 9.55 (range 6.8–13.13) years. Each patient was treated initially 
with one of the licensed first-line disease-modifying therapies (DMTs) 
(interferon-β1a and glatiramer acetate) and clinically examined by MS 
neurologists every 6 months or when a relapse occurred. During the 
follow-up period, patients experiencing disease activity were switched 
to second-line therapies (fingolimod and natalizumab). Physical disabil-
ity was evaluated with the Expanded Disability Status Scale (EDSS) [17] 
A relapse was defined as the acute or subacute development of new 
or recurrent symptoms, lasting >24 h and not preceded by fever.[18]

The progressive course was defined by the occurrence of con-
tinuous disability accumulation independently of relapses and was 
confirmed 12 months later. Although transitory plateaus in the pro-
gressive course were allowed, steady progression was the rule [18] 
All procedures in this study were performed in accordance with the 
ethical standards of the institutional research committee and the 
2013 Helsinki Declaration.[19]

MRI acquisition protocol and analysis

MRI sequences were acquired by Philips Achieva 1.5T MRI scan-
ner (Philips Medical Systems), with 33 mT/m power gradient and a 
16-channel head coil. During the study period, the scanner under-
went a specific functioning test every 2  months to guarantee pa-
rameter stability. 3D magnetization-prepared rapid gradient-echo 
(MP-RAGE) [TR/TE = 25/4.6 ms], 3D fluid attenuated inversion re-
covery (FLAIR) [TR/TE = 10,000/120 ms] and 3D double inversion 
recovery (DIR) [TR/TE = 6500/265 ms, TI1/TI2 = 500 ms/2800 ms] 
sequences have been acquired to brain scan. Spinal cord sequences 
included dual-echo proton density and T2-weighted fast spin-echo, 
and short-tau inversion recovery. Patients were carefully positioned 
according to published guidelines for serial MRI studies in MS pa-
tients [20] T0 and T2 refer to RRMS diagnosis time and 2 years later, 
respectively (see Methods S1 for details).

Statistical analysis

The Akaike Information Criterion for Cox regression (AIC-Cox) with 
backward phasing out and the Cox proportional hazard (PHM) model 
were performed to compare these “traditional” approaches with a 
“more innovative” machine learning-based one (random survival for-
est [RSF]). Moreover, before performing the Cox regression models 
the variables were standardized (variables will be shifted to be zero 
centred and scaled to have unique variance).

Random survival forest model

The design of the study is summarized in Figure 1. The whole co-
hort was randomly split into a training set (80%, n  =  219), which 
was used to model both the RSF and the SP-RiSc, and a testing set 
(20%, n  =  43), on which the score was validated (Figure  1a). The 
populations in both sets shared similar features and similar propor-
tions of patients, who converted to SPMS during the observation 
period (Table S1). The RSF is a machine learning-ensemble method 
for the analysis of right-censored survival data (Figure 1b), which is 
based on the extension of Breiman's random forest [21] and pro-
vides flexibility in highly correlated complex data (Methods S2). The 
demographic, clinical and MRI data collected during the first 2 years 
of the disease have been included in the RSF model in order (i) to 
identify those variables with a strong impact on the risk of develop-
ing SPMS and (ii) to study the synergic cooperation of the selected 
risk factors. A total of 12 variables have been analyzed, including 
demographic (gender and age at T0) and clinical (EDSS score at T0 
and T2; the number of relapses over the first 2  years of disease) 
information; MRI data (the changes over the first 2 years of both 
global cortical thickness (CTh) and cerebellar cortical volume (CCV), 
cortical lesions (CLs) and WM lesions number at T0 and number of 
new lesions at T2; the presence of spinal cord lesion at T0). The 
model's results were adjusted for the treatment categorical variable, 
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indicating whether patients had been switched to second-line DMTs 
during the observation period.

The minimal depth (MD) is a dimensionless measure used to quan-
tify the predictive effect of each variable included in the model. The 
mean of the MD model distribution (MD mean distribution  =  4.21) 
was used as a reference threshold (Thr) to determine the size of the 
predictive effect of the variables included in the model [22] (Methods 
S2); variables with MD lower than Thr are those with the highest 

predictive power (Figure  1c1). The ensemble mortality (EM), which 
is the individual predicted outcome of RSF, was then calculated to 
identify three different SP risk groups (Methods S2). Finally, the EM 
and the MD parameters were combined to develop the SP-RiSc tool 
(Figure 1d1). Both the Brier score (BS) and the Harrell's Concordance 
Index (C-Index) were used to assess the prediction accuracy of the 
RSF.[23] The BS expresses the mean squared difference between the 
actual status and the predicted survival probability, while the C-Index 

F I G U R E  1  The overall study design. (a) Data split: The entire cohort was randomly split into training and testing set. (b) Model design: 
Random survival forest (RSF) modelling was performed on the training set. (c) Results: (1) The seven most predictive variables were selected, 
based on their minimal depth. (2) Risk groups were identified by ensemble mortality. (3) Receiver operating characteristic (ROC) analysis was 
used to identify the best score cut-off. (d) Secondary progressive risk score (SP-RiSc) design: (1) The Sp-RiSc tool was developed. (2) The Sp-RiSc 
performance specificity, sensitivity and overall accuracy were assessed on the testing set. [Colour figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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is a time-independent measure indicating how well the model discrimi-
nates between patients with and without the outcome. Higher C-index 
and lower BS indicate better prediction performance (Methods S2).

SP-RiSc implementation and evaluation

Based on EM measures, patients were stratified into three risk 
groups, using quartile distribution values: patients with EM lower 
than the 1st quartile and greater than the 3rd quartile are respec-
tively at low and high risk of converting to SPMS, while the remain-
ing patients belong to the medium-risk group (Figure 1c2).

The EM and the MD parameters were combined in order to design 
the SP-RiSc tool, which included only variables exerting the highest 
predictive effect (MD lower than 4.21) (Figure 2a). The score design 
procedure handles differently discrete (age, EDSS, CLs and WM le-
sion) and continuous (global CTh and CCV) variables. Continuous 
variables had to be transformed into discrete counterparts. The dis-
cretization was performed using the lower and the upper limits of the 
bootstrap confidence interval for each variable within each risk group. 
If we consider all the possible values for a variable, the three non-
overlapping intervals generate seven different classes (considering 

values lower than the lower limit of low-risk group, higher than the 
higher limit of high-risk group, and values in the middle of the disjoint 
intervals). A numerical weight value ranging from 0.5 to 3.5 (in steps 
of 0.5) was assigned to each class: a higher numerical value indicates a 
higher magnitude of the variable considered. Then, the value of each 
category was divided by the variable MD. For the discrete variables, 
the value was divided by its own MD value (Figure 2b). The final SP-
RiSc resulted from the sum of the risk factors weighted by the predic-
tive ability. The formal definition is reported in Methods S2.

The receiver operating characteristic (ROC) analysis (Youden 
index method) was used to identify on the training set the SP-RiSc 
cut-off that maximizes specificity and sensitivity of identifying 
patients at risk of entering the SP phase (Figure  1c3). Finally, this 
threshold was tested on the validation set (Figure 1d2).

RSF model and score including only WM parameters

The RSF model was also performed on the training set using de-
mographic, clinical and WM parameters collected during the two 
first years, therefore without considering information on GM 
damage. The most predictive variables were combined to develop 

F I G U R E  2  Secondary progressive risk score (SP-RiSc) design. (a) Variables are listed based on their minimal depth (MD) values; lower 
values indicate higher predictive accuracy. Predictive variables with MD lower than the estimated threshold (Thr) (4.21) are highlighted. (b) 
Discretization steps: Continuous and discrete variables were discretized and weighed for MD measure to be combined to build the SP-RiSc 
tool. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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a different version of the SP-RiSc which was validated on the test-
ing set. The comparison of the ROC curves of the SP-RiSc and 
the alternative score with only WM parameters is reported in 
Appendix S1.

RESULTS

Demographic, clinical and MRI data for the 262 RRMS patients, 
at diagnosis and after 2  years, are shown in Table  1. During the 
10 years follow-up period, 69 (26%) patients converted to SPMS; this 
subgroup, in comparison to those who remained in the RR phase, 
was distinguished at diagnosis by older age (p < 0.001) and higher 
number of CLs and WM lesions (p  <  0.001) and global CTh at T0 
(p < 0.01), and during the first 2 years by a larger number of relapses 
(p < 0.001), by a more significant accumulation of GM (new CLs, and 
CCV change; p < 0.001), and WM (new T2 lesions; p < 0.01) damage.

In the whole group, during the follow-up period 114 (43.5%) pa-
tients were switched to second-line DMTs (fingolimod and natali-
zumab), based on the occurrence of clinical and radiological disease 
breakthrough.

RSF model results

By applying the RSF, we have identified seven variables with MD 
lower than the estimated Thr (4.21) and therefore highly predictive 
of the risk of converting to SPMS. The strongest predictive effect 
was exerted by the cortical thinning (MD = 1.65) and by the cerebel-
lar cortical volume loss (MD = 2.15) during the two first 2 years of 
disease, and by the CLs load at diagnosis (MD = 2.47) and its increase 
(MD = 3.15) after 2 years; age (MD = 3.30), EDSS (MD = 4.10) and 
the WM lesions total number at RRMS diagnosis (MD = 4.17) had a 
moderate impact on the probability of converting to SP (Figure 2a). 
The number of WM lesions at T2 (MD  =  4.23), the EDSS at T2 
(MD = 4.66), the number of relapses during the two first years of dis-
ease (MD = 4.84), the presence of the spinal cord at T0 (MD = 6.25) 
and gender (MD = 6.87) were found to have an MD higher than the 
Thr (=4.21) and were consequently excluded from the SP-RiSc tool 
design.

Both the BS and C-Index measures confirmed the goodness 
of fit and the predictive accuracy of the statistical model at dif-
ferent follow-up time quartiles: the BS parameter decreased over 
time reaching a value close to 0 and the C-Index increased close 

TA B L E  1  Demographical, clinical and radiological features collected during the two first years of disease

Feature
Whole group of RRMS at T0
n = 262

RRMS at the end of 
follow-up
n = 193

SPMS at the end of 
follow-up
n = 69 p value

Age at diagnosis, mean (SD), y 33.5 (9.5) 31.6 (9.6) 38.9 (6.6) <0.001

Duration of follow-up, median 
(range)

9.55 (6.79–13.13) 9.26 (6.79–12.05) 10.16 (7.37–13.12) <0.001

Gender, female, n (%) 153 (58.4) 73 (37.8) 33 (47.82) 0.05

Number of relapses T0–T2, 
median (range)

1 (1–3) 1 (1–3) 2 (1–3) <0.001

EDSS T0, median (range) 1.5 (0–3.5) 1.5 (0–3) 1.5 (0–3.5) <0.01

EDSS T2, median (range) 2 (0–2.5) 2 (0–2) 2 (0–2.5) <0.05

CLs number T0, median (range) 2 (0–19) 1 (0–14) 6 (0–19) <0.001

New CLs T2, median (range) 0 (0–8) 0 (0–3) 2 (0–8) <0.001

WM lesion number T0, median 
(range)

8 (2–22) 7 (2–22) 10 (2–22) <0.001

New WM lesion number T2, 
median (range)

1 (0–4) 1 (0–4) 1 (0–4) <0.01

CCV T0, mean (SD), cm3 106.3 (2.2) 103.1 (2.0) 97.9 (2.4) <0.001

CCV change T0−T2, mean 
(SD), %

2.5 (1.99) 1.8 (1.3) 4.5 (2.07) <0.001

Global CTh T0, mean (SD), mm 2.46 (0.21) 2.39 (0.14) 2.27 (0.25) <0.01

Global CTh change T0−T2, 
mean (SD), %

1.3 (0.5) 1.16 (0.4) 1.8 (0.5) <0.001

Spinal cord lesion T0, yes, n (%) 58 (22) 34 (17.60) 24 (34.78) <0.01

Data were reported using mean and SD or median and range, based on their distribution. Dichotomous and categorical variables were described 
using proportions. Differences between groups were assessed using Mann−Whitney. Fisher's exact test was applied to test the contingency tables 
on categorical variables.
Statistical significance was considered at p < 0.05.
Abbreviations: CCV, cerebellar cortical volume; CL, cortical lesion; CTh, cortical thickness; EDSS, Expanded Disability Status Scale; RRMS, relapsing–
remitting multiple sclerosis; SD, standard deviation; SPMS, secondary progressive multiple sclerosis; WM, white matter.
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to 100%. At 7  years: BS  =  7.7%, confidence interval (CI) 6.4–10 
and C-Index  =  92.0%; at 8.5  years BS  =  8.9% CI 7.6–10.8 and C-
Index = 91.0%; at 9.5 years BS = 8% CI 5.9–11 and C-Index = 91.4%; 
at 10.5 years BS = 4.6% CI 2.9–5.6 and C-Index = 90%; at 13.5 years 
BS = 2.0% CI 0.61–3.4 and C-Index = 90.0%. Therefore, the model 
resulted in being suitable both in terms of predictive accuracy and 
SP event discrimination, and its predictive accuracy increased pro-
portionally with the disease duration. In contrast, when we applied 
the same predictive accuracy measures to the Cox PHM and AIC-
Cox we found a poor performance in predicting the occurrence of 
SP, as the BS scores of both Cox models reached very high values 
close to 60% at all different follow-up time quartiles. In addition, in 
the Cox regressions models the C-index measures remained close to 
80% and therefore lower than the RSF model (Table S4, S5 and S6).

SP-RiSc design and evaluation

According to the EM distribution, three groups of patients character-
ized by high (n = 55), medium (n = 54) and low (n = 110) risk to enter 
the SP phase were identified. Patients in the high-risk group had an 
EM higher than 16.35 (3rd quartile), while the low-risk group patients 
had an EM lower than 0.32 (1st quartile). In the high-risk group 46 
(85.5%) patients entered the SP phase during the follow-up period 
(median [IQR] time to reach the SP phase = 7 [2.35] years), while in 
the medium group only 9 (17.7%) became SP (median [IQR] time to 
reach the SP phase = 8.5 [1.9] years). All the patients in the low-risk 
group remained in the RRMS phase during the entire study period. 
Clinical and MRI features of each group are reported in Table 2.

By combining the seven most predictive variables (Figure 2a) we 
developed the SP-RiSc tool, which takes into account the different size 
of the predictive effect exerted by each variable (Figure 3a). In the 

training set, the optimal SP-RiSc cut-off value, estimated by the ROC 
curve analysis, was 17.7 and had a sensitivity of 0.91 (95% CI 0.82–1) 
and specificity of 0.83 (95% CI 0.73–0.95) (Figure 3b). Therefore, pa-
tients with a SP- RiSc≥ of 17.7 have a 91% probability of converting to 
SPMS within 10 years from the disease diagnosis. In contrast, patients 
with SP-RiSc <17.7 had an 83% probability of remaining in the relaps-
ing−remitting phase. The SP-RiSc predicted the individual risk of SPMS 
with an overall accuracy of 85% (95% CI 80%–92%); in the training set, 
the score was able to discriminate 50/56 SPMS patients (true posi-
tive, TP) and 136 of 163 patients as RRMS patients (true negative, TN), 
while 5 SPMS patients were incorrectly classified as RR (false negative, 
FN) and 27 RRMS patients were misclassified as SPMS (false positive, 
FP). Consequently, the positive predictive value (PPV), which indicates 
the probability of patients being classified as truly SP, was 65% (95% 
CI 55%–87%). On the contrary, the negative predicted value (NPV), 
which is the probability of patients being classified as truly RRMS, was 
97% (95% CI 93%–100%). Finally, to evaluate the generalization prop-
erty of the SP-RiSc, the threshold of 17.7 was applied on the testing 
set: the cut-off discriminated 12 of 13 as patients with SP condition 
(TP) and 26 of 30 as RR status (TN). The PPV was 75% (95% CI 48%–
93%) and the NPV was 96% (95% CI 81%–100%). Therefore, results 
from the independent test analyses confirmed the great accuracy 
(88%, 95% CI 75%–96%), high sensitivity (92%, 95% CI 70%–100%) 
and specificity (87%, 95% CI 70%–96%) of the SP-RiSc performance in 
identifying patients at higher risk of conversion to SPMS.

Evaluation of WM parameters effect on the 
SP conversion.

We evaluated a different version of the SP-RiSc, without includ-
ing GM damage variables, using only the age and the EDSS score at 

TA B L E  2  Descriptive statistics of the top seven predictive variables selected by random survival forest for each of the three risk groups

Significant predictive 
variable

High-risk group
N = 55
46 (85.5%) SPMS patients

Medium-risk group
N = 54
46 (17.7%) SPMS patients

Low-risk group
N = 110
0 (0%) SPMS patients p value

Global CTh change T0−T2, 
mean (SD), %

1.8 (0.3) 1.3 (0.4) 0.99 (0.1) <0.001

CCV change T0–T2, mean 
(SD), %

4.9 (2.2) 2.5 (1.6) 1.3 (0.5) <0.001

CLs number T0, median 
(range)

6 (1–18) 3 (1–8) 1 (0–5) <0.001

New CLs T2, median (range) 2 (1–8) 0 (0–4) 0 (0–8) <0.001

Age at diagnosis, mean 
(SD), y

37.7 (6.9) 33.5(11.1) 31. 3(10.2) <0.001

EDSS T0, median (range) 1.5 (0–3) 1.5 (0–3.5) 1.5 (0–3.5) <0.001

median (range) 10 (2–22) 7 (2–16) 7 (2–21) <0.001

Note: Data were reported using mean and SD or median and range, based on their distribution. Dichotomous and categorical variables were 
described using proportions. Differences between groups were assessed using analysis of variance (ANOVA). Statistical significance was considered 
at p < 0.05.
Abbreviations: CCV, cerebellar cortical volume; CL, cortical lesion; CTh, cortical thickness; EDSS, Expanded Disability Status Scale; SD, standard 
deviation; SPMS, secondary progressive multiple sclerosis.
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diagnosis and the number of T2 lesions and relapses during the first 
2 years (Table S2); this was validated on the testing set and showed 
an accuracy of 74% (CI 95% 59%–87%), a specificity of 67% (CI 95% 
47%–83%) and a sensitivity of 92% (CI 95% 64%–100%). The PPV 
and the NPV were 55% (CI 95% 32%–76%) and 75% (CI 95% 48%–
93%), respectively. Therefore, the exclusion of GM damage param-
eters resulted in developing both the model and the score with lower 
performance, compared to the standard SP-RiSc, as shown by the C-
Index and BS, and by the ROC curve analyses comparison (Table S3 
and Figure S2).

DISCUSSION

Despite extensive efforts collecting information on the natural his-
tory of MS and identifying features associated with poor prognosis, 
the long-term outcome of the disease remains extremely unpre-
dictable, especially at the individual level. The conversion to the SP 
phase is considered the key adverse event, leading to the accumula-
tion of severe disability, but its prevention is still an unmet therapeu-
tic target. The early and accurate identification of patients destined 
to experience a severe disease course is paramount to optimizing 
their management by implementing an aggressive therapeutic ap-
proach in a timely manner, before irreversible damage takes place. 
In this study, we propose the SP-RiSc as a reliable tool to estimate 
the risk of SP conversion, based on demographic, clinical and MRI 
measures (conventional and non-conventional) collected during the 
first 2 years of the disease.

We retrospectively assessed a cohort of 262 RRMS patients 
followed up for a mean of 10 years. As we previously reported,[4] 
patients who entered the SP phase were distinguished by older 
age at diagnosis, by a more significant accumulation of focal in-
flammatory WM and GM damage during the early phase of the 
disease, and by a larger number of early relapses. This is in line 
with previous predictive models, but unfortunately this informa-
tion has limited prognostic use when applied to a single individ-
ual. We addressed and overcame these limitations by using the 
Random Survival Forest, which is a machine learning approach, al-
lowing development of a non-parametric model. In comparison to 
the more traditional Cox regression approach, the RFS model re-
laxes the restrictive assumptions, such as the proportional hazard 
or the normal distribution, and as a result is reliable for handling 
cases of multicollinearity and of non-linear relationships between 
response variable and covariates. Indeed, the machine learning 
approach applied in this study has been already widely used in 
the clinical field to improve prediction accuracy in cardiovascular 
events,[17] to stage the esophageal cancer [24] to identify, with 
high performance, the disease-associated variables in metabolic 
genomic data [25] or to predict the mortality in rheumatoid ar-
thritis [26]

We demonstrated that the RSF provides higher prediction per-
formance, compared to both the Cox PHM and AIC-Cox model and 
to the “conventional” Cox regression model. Importantly, the RSF al-
lowed the selection and combination of only those variables more 
accurately distinguishing patients at higher risk of converting to 
SPMS. Our model highlighted the early accumulation of focal and 

F I G U R E  3  Secondary progressive risk score (SP-RiSc) visualization and receiver operating characteristic (ROC) analysis. (a) SP-RiSc tool 
visualization: The seven selected predictors are shown with different colours; the size of the predictive power on SP conversion is reflected 
by the size of the corresponding shape. Different white and black patterns for each significant variable were reported in the deepest circle. 
(b) ROC curve analysis: Detection of the optimal SP-RiSc cut-off on the training set. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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diffuse GM damage as the most important determinants of the con-
version to the progressive phase, supporting the crucial role played 
by the GM pathology in the development of late severe disability 
[13,15,27,28] In addition, older age at diagnosis was confirmed to 
independently predict a higher probability of becoming progressive 
[2,6,7] Interestingly, we also confirmed that male sex, high frequency 
of early relapses, and larger accumulation of T2 inflammatory lesions 
in the brain and in the cervical spine early in the disease course are 
predictors of poor prognosis [7–12] but their MD was found to be 
higher than the threshold (i.e., 4.21). This indicated a lower prediction 
ability, compared to other variables, which prevented their inclusion 
in the SP-RiSc. In line with recent findings from the UCSF cohort [29] 
this is explained by the strong predictive effect exerted by measures 
of cortical pathology, which plausibly overshadows the effect of WM 
damage variables on the outcome. Indeed, our alternative model, not 
including parameters of GM damage, confirmed the predictive value 
of early relapses and T2 lesions accumulation. However, by excluding 
GM variables, the model performed with much lower accuracy and 
specificity (Table  S3 and Figure  S2). Overall, the two models with 
and without using measures of cortical pathology, showed similar 
sensitivity, which, at least partially, is related to the intrinsic relation-
ship between the brain WM and GM damage load, with reciprocal 
influence from both pathological perspective and imaging-analysis 
methods. The predictive model, including only variables of WM pa-
thology, is suitable for being implemented and used in MS tertiary 
centres, where the GM damage is not routinely radiologically as-
sessed. However, our results demonstrated that measurement of the 
cortical pathology significantly improves the prediction of the long-
term outcome at individual level, and emphasizes the importance of 
evaluating the cortical damage, in addition to the focal inflammatory 
WM activity, in order to optimize the patients’ management. The 
early accumulation of GM damage stands out as an essential thera-
peutic target for maximising the chances of achieving a good control 
of the disease activity. Previous efforts led to the development of 
prognostic tools based on demographic and clinical features [29,30] 
The SP-RiSc provides an individual accurate estimate of the risk of 
conversion into the progressive phase and it has been innovatively 
designed by including measures of cortical pathology to improve the 
prognostic tool's performance. This was confirmed both by the BS 
and C-index, showing good predictive accuracy of the RSF at dif-
ferent time points, and by the high sensitivity and specificity of the 
SP-RiSc in both the training and testing sets. At an individual level, a 
SP- RiSc ≥ of 17.7 indicates a 92% probability of converting to SPMS 
within 10 years from the disease diagnosis. In contrast, patients with 
SP-RiSc <17.7 had 87% probability of remaining in the relapsing−re-
mitting phase.

We acknowledge some potential limitations. We did not include 
in our model the information on the type of symptoms at disease 
onset. However, the predictive role of the clinical features at presen-
tation has been widely debated, with some studies showing worse 
prognosis among patients presenting with brainstem symptoms 
[31] but others indicating no clear effect on the clinical outcome [8] 
In addition, our analyses results are based on the definition of the 

clinical onset of the progressive phase, which has an inevitable de-
gree of subjectivity. However, the long follow-up allowed confirma-
tion retrospectively after 1 year the occurrence of the progressive 
course unrelated to any relapsing activity in all patients, providing 
high reliability to our findings. We deliberately opted not to use any 
minimal level of disability for capturing progression, as this approach 
would allow the uncovering of more comprehensively an element 
of progressive disease even in the early stage. The occurrence of 
progression independent of relapsing activity (PIRA) has been re-
cently highlighted as an important component of the disability accu-
mulation since the early phase of the disease [32] We are aware of 
the potential overlapping between PIRA events and the SP course, 
which nevertheless plausibly share the same underlying pathological 
mechanisms. Finally, the relatively small sample size might represent 
an additional limitation of our study. However, the RSF is advan-
taged by providing a good performance even when applied to small 
size dimensional datasets [33,34] Our results have been validated in 
two independent homogeneous datasets, although we acknowledge 
that an additional validation, especially on a larger independent co-
hort with neuroimaging data from different field strength MRI scan-
ners, is important for confirming the score predictive properties and 
its application in the clinical setting.

Our tool could be implemented in the clinical context (Figure S1), 
especially in tertiary/academic centres where the use of non-routine 
GM damage MRI measures is widespread, mainly in the clinical tri-
als scenarios. This will provide a basis for developing in future an 
SP-RiSc online platform with a simple interface available for the 
neurologist. The score can be updated with other biological base-
line parameters, such as the CSF profile [35,36] in order to further 
improve the predictive tool's accuracy.

In conclusion, we propose the SP-RiSc as an implemented tool to 
reliably estimate early in the disease course the individual progno-
sis, which can be potentially helpful for optimizing the therapeutic 
strategies.

CONFLIC T OF INTERE S T
Massimiliano Calabrese received honoraria for research or speaking 
from Sanofi-Genzyme, Merck-Serono, Biogen Idec, Bayer, Novartis 
Pharma and funds for travel from Sanofi-Genzyme, Merck-Serono, 
Biogen Idec, Teva, Novartis Pharma, Roche and Bayer. Francesco 
Crescenzo received research support from Sanofi-Genzyme. All the 
other authors have nothing to disclose.

AUTHOR CONTRIBUTIONS
Anna Isabella Pisani: Data curation (lead); Formal analysis (lead); 
Methodology (lead); Software (equal); Writing-original draft (lead); 
Writing-review & editing (lead). Antonio Scalfari: Formal analysis 
(equal); Investigation (lead); Writing-original draft (lead); Writing-review 
& editing (lead). Francesco Crescenzo: Investigation (supporting); 
Writing-original draft (supporting); Writing-review & editing (equal). 
Chiara Romualdi: Data curation (supporting); Methodology (support-
ing); Supervision (lead); Writing-original draft (supporting); Writing-
review & editing (lead). Massimiliano Calabrese: Conceptualization 



    |  2511A NOVEL PROGNOSTIC SCORE TO ASSESS THE RISK OF PROGRESSION

(lead); Investigation (supporting); Supervision (lead); Writing-original 
draft (supporting); Writing-review & editing (lead).

DATA AVAIL ABILIT Y S TATEMENT
The data that support the findings of this study are available from 
the corresponding author upon reasonable request.

ORCID
Anna Isabella Pisani   https://orcid.org/0000-0002-1170-8296 
Massimiliano Calabrese   https://orcid.org/0000-0002-3362-7403 

R E FE R E N C E S
	 1.	 Koch-Henriksen N, Sørensen PS. The changing demographic 

pattern of multiple sclerosis epidemiology. Lancet Neurol. 
2010;9(5):520-532.

	 2.	 Scalfari A, Neuhaus A, Degenhardt A, et al. The natural history of 
multiple sclerosis: a geographically based study 10 : relapses and 
long-term disability. Brain. 2010;1914-1929.

	 3.	 Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 
study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 
2012;367(12):1087-1097.

	 4.	 Scalfari A, Neuhaus A, Daumer M, Ebers GC, Muraro PA. Age 
and disability accumulation in multiple sclerosis. Neurology. 
2011;77(13):1246-1252.

	 5.	 Feinstein A, Freeman J, Lo AC. Treatment of progressive multiple 
sclerosis: what works, what does not, and what is needed. Lancet 
Neurol. 2015;14(2):194-207. https://doi.org/10.1016/S1474​-​4422  
(14)70231​-5

	 6.	 Tutuncu M, Tang J, Zeid NA, et al. Onset of progressive phase is an 
age-dependent clinical milestone in multiple sclerosis. Mult Scler. 
2014;19(2):188-198.

	 7.	 Koch M, Mostert J, Heersema D, De Keyser J. Progression in mul-
tiple sclerosis: further evidence of an age dependent process. ​ 
J Neurol Sci. 2007;255(1-2):35-41.

	 8.	 Confavreux C, Vukusic S, Adeleine P. Early clinical predictors and 
progression of irreversible disability in multiple sclerosis: an amne-
sic process. Brain. 2003;126(4):770-782.

	 9.	 Tremlett H, Yousefi M, Devonshire V, Rieckmann P, Zhao Y. Impact 
of multiple sclerosis relapses on progression diminishes with time. 
Neurology. 2009;73(20):1616-1623.

	10.	 Leray E, Yaouanq J, Le Page E, et al. Evidence for a two-stage disabil-
ity progression in multiple sclerosis. Brain. 2010;133(7):1900-1913.

	11.	 Tintore M, Rovira À, Río J, et al. Defining high, medium and low 
impact prognostic factors for developing multiple sclerosis. Brain. 
2015;138(7):1863-1874.

	12.	 Brownlee WJ, Altmann DR, Prados F, et al. Early imaging predictors 
of long-term outcomes in relapse-onset multiple sclerosis. Brain. 
2019;142(8):2276-2287.

	13.	 Calabrese M, Romualdi C, Poretto V, et al. The changing clinical 
course of multiple sclerosis: a matter of gray matter. Ann Neurol. 
2013;74(1):76-83.

	14.	 Rocca M, Preziosa P, Copetti M, et al. Gray matter damage pre-
dicts the accumulation of disability and cognitive impairment 13 
years later in patients with multiple sclerosis (S51.005). Neurology. 
2012;78(Meeting Abstracts 1):S51.005.

	15.	 Scalfari A, Romualdi C, Nicholas RS, et al. The cortical damage, early 
relapses, and onset of the progressive phase in multiple sclerosis. 
Neurology [Internet]. 2018;90(24):e2107-e2118.Available from http://
www.neuro​logy.org/looku​p/doi/10.1212/WNL.00000​00000​005685

	16.	 Polman CH, Reingold SC, Edan G, et al. Diagnostic criteria for multi-
ple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 
2005;58(6):840-846. https://doi.org/10.1002/ana.20703

	17.	 Hsich E, Gorodeski EZ, Blackstone EH, Ishwaran H, Lauer MS. 
Identifying important risk factors for survival in patient with sys-
tolic heart failure using random survival forests. Circ Cardiovasc 
Qual Outcomes. 2011;4(1):39-45.

	18.	 Lublin FD, Reingold SC. Defining the clinical course of multiple scle-
rosis: results of an international survey. National Multiple Sclerosis 
Society (USA) Advisory Committee on Clinical Trials of New Agents 
in Multiple Sclerosis. Neurology. 1996;46(4):907-911.

	19.	 Association WM. World Medical Association Declaration of 
Helsinki: ethical principles for medical research involving human 
subjects. JAMA [Internet]. 2013;310(20):2191-2194. https://doi.
org/10.1001/jama.2013.281053

	20.	 Miller DH, Barkhof F, Berry I, Kappos L, Scotti G, Thompson AJ. 
Magnetic resonance imaging in monitoring the treatment of mul-
tiple sclerosis: concerted action guidelines. J Neurol Neurosurg 
Psychiatry. 1991;54(8):683-688.

	21.	 Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and 
regression trees. Classif Regres Trees. 2017;2000:1-358.

	22.	 Ishwaran H, Kogalur UB, Gorodeski EZ, Minn AJ, Lauer MS. High-
dimensional variable selection for survival data. J Am Stat Assoc. 
2010;105(489):205-217.

	23.	 Mogensen UB, Ishwaran H, Gerds TA. Evaluating random forests 
for survival analysis using prediction error curves. J Stat Softw 
[Internet]. 2012;50(11):1-23.Available from http://www.ncbi.nlm.
nih.gov/pubme​d/25317​082%5Cnht​tp://www.pubme​dcent​ral.nih.
gov/artic​leren​der.fcgi?artid​=PMC41​94196

	24.	 Ishwaran H, Blackstone EH, Apperson-Hansen C, Rice TW. A novel 
approach to cancer staging: application to esophageal cancer. 
Biostatistics. 2009;10(4):603-620.

	25.	 Dietrich S, Floegel A, Troll M, et al. Random Survival Forest in prac-
tice: a method for modelling complex metabolomics data in time to 
event analysis. Int J Epidemiol. 2016;45(5):1406-1420.

	26.	 Lezcano-Valverde JM, Salazar F, León L, et al. Development and val-
idation of a multivariate predictive model for rheumatoid arthritis 
mortality using a machine learning approach. Sci Rep. 2017;7(1):1-10.

	27.	 Filippi M, Preziosa P, Copetti M, et al. Gray matter damage pre-
dicts the accumulation of disability 13 years later in MS. Neurology. 
2013;81(20):1759-1767.Available from: http://n.neuro​logy.org/
conte​nt/81/20/1759.abstract

	28.	 Fisniku LK, Chard DT, Jackson JS, et al. Gray matter atrophy is 
related to long-term disability in multiple sclerosis. Ann Neurol. 
2008;64(3):247-254.

	29.	 Cree BAC, Hollenbach JA, Bove R, et al. Silent progression in 
disease activity–free relapsing multiple sclerosis. Ann Neurol. 
2019;85(5):653-666.

	30.	 Manouchehrinia A, Zhu F, Piani-Meier D, et al. Predicting risk of 
secondary progression in multiple sclerosis: a nomogram. Multiple 
Sclerosis Journal. 2019;25(8):1102-1112.

	31.	 Misicka E, Sept C, Briggs FBS. Predicting onset of secondary-
progressive multiple sclerosis using genetic and non-genetic fac-
tors. J Neurol. 2020;267(8):2328-2339. https://doi.org/10.1007/
s0041​5-020-09850​-z

	32.	 Kappos L, Wolinsky JS, Giovannoni G, et al. Contribution of relapse-
independent progression vs relapse-associated worsening to over-
all confirmed disability accumulation in typical relapsing multiple 
sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA 
Neurol. 2020;77(9):1132-1140.

	33.	 Biau G, Scornet E. A random forest guided tour. TEST [Internet]. 
2016;25(2):197-227. https://doi.org/10.1007/s1174​9-016-0481-7

	34.	 Schmid M, Welchowski T, Wright MN, Berger M. Discrete-time survival 
forests with Hellinger distance decision trees. Data Min Knowl Disc. 
2020;34(3):812-832. https://doi.org/10.1007/s1061​8-020-00682​-z

	35.	 Magliozzi R, Howell OW, Nicholas R, et al. Inflammatory intrathe-
cal profiles and cortical damage in multiple sclerosis. Ann Neurol. 
2018;83(4):739-755.

https://orcid.org/0000-0002-1170-8296
https://orcid.org/0000-0002-1170-8296
https://orcid.org/0000-0002-3362-7403
https://orcid.org/0000-0002-3362-7403
https://doi.org/10.1016/S1474-4422(14)70231-5
https://doi.org/10.1016/S1474-4422(14)70231-5
http://www.neurology.org/lookup/doi/10.1212/WNL.0000000000005685
http://www.neurology.org/lookup/doi/10.1212/WNL.0000000000005685
https://doi.org/10.1002/ana.20703
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.1001/jama.2013.281053
http://www.ncbi.nlm.nih.gov/pubmed/25317082%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4194196
http://www.ncbi.nlm.nih.gov/pubmed/25317082%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4194196
http://www.ncbi.nlm.nih.gov/pubmed/25317082%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4194196
http://n.neurology.org/content/81/20/1759.abstract
http://n.neurology.org/content/81/20/1759.abstract
https://doi.org/10.1007/s00415-020-09850-z
https://doi.org/10.1007/s00415-020-09850-z
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1007/s10618-020-00682-z


2512  |    PISANI et al.

	36.	 Magliozzi R, Scalfari A, Pisani AI, Ziccardi S, Marastoni D, Pizzini FB, 
The CSF profile linked to cortical damage predicts multiple sclero-
sis activity. Ann Neurol [Internet]. 2020. 88(3):562–573. https://doi.
org/10.1002/ana.25786

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Pisani AI, Scalfari A, Crescenzo F, 
Romualdi C, Calabrese M. A novel prognostic score to assess 
the risk of progression in relapsing−remitting multiple sclerosis 
patients. Eur J Neurol. 2021;28:2503–2512. https://doi.
org/10.1111/ene.14859

https://doi.org/10.1002/ana.25786
https://doi.org/10.1002/ana.25786
https://doi.org/10.1111/ene.14859
https://doi.org/10.1111/ene.14859

