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Autogenous vein grafts remain the gold standard conduit 
for arterial bypass, particularly for the treatment of critical 
limb ischemia. Vein graft adaptation to the arterial environ-
ment, i.e., adequate dilation and wall thickening, contrib-
utes to the superior performance of vein grafts. However, 
abnormal venous wall remodeling with excessive neointimal 
hyperplasia commonly causes vein graft failure. Since the 
PREVENT trials failed to improve vein graft outcomes, new 
strategies focus on the adaptive response of the venous 
endothelial cells to the post-surgical arterial environment. 
Eph-B4, the determinant of venous endothelium during 
embryonic development, remains expressed and functional 
in adult venous tissue. After surgery, vein grafts lose their 
venous identity, with loss of Eph-B4 expression; however, ar-
terial identity is not gained, consistent with loss of all vessel 
identity. In mouse vein grafts, stimulation of venous Eph-B4 
signaling promotes retention of venous identity in endothe-
lial cells and is associated with vein graft walls that are not 
thickened. Eph-B4 regulates downstream signaling path-
ways of relevance to vascular biology, including caveolin-1, 
Akt, and endothelial nitric oxide synthase (eNOS). Regula-
tion of the Eph-B4 signaling pathway may be a novel thera-
peutic target to prevent vein graft failure.
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Introduction
Arterial stenoses and occlusions contribute to ischemic 
cardiovascular diseases, the leading cause of death world-
wide. Bypass surgery using vein grafts as a conduit around 
these lesions has developed as the mainstay approach to 
reperfuse the ischemic organs and tissues ever since Kunlin 
first described the use of autogenous veins as grafts for 
arterial repair in the 1940’s.1–5) Besides autologous veins, 
numerous alternative prosthetics such as Dacron and 
polytetrafluoroethylene have been developed and used as 
alternative conduits when vein grafts are not available. 
However, the mid- and long-term patency rates of pros-
thetic grafts are inferior to autogenous vein grafts, and 
therefore, autogenous saphenous vein grafts remain the 
gold standard for bypass surgery, particularly in the treat-
ment of critical limb ischemia.6–8)

During surgical creation of the vein bypass, the saphe-
nous vein is separated from its physiological environment, 
necessarily inducing injury.9,10) After harvest of a reversed 
vein graft, the vein loses blood flow and pressure within 
its lumen, and then typically is given a stretch injury as it is 
checked for leaks by manual application of high pressure for 
dilation. The harvested vein is also exposed directly to cold 
temperature of the air-conditioned operating room. Mark-
ing dye is often used on the outer surface to prevent twisting 
of the vein, which injures the vein wall and is associated 
with altered venous cell migration and proliferation.11,12) 
In situ vein grafts require valve destruction with a valvulo-
tome, directly producing intimal injury. Most importantly, 
the implanted vein is then exposed to arterial flow, with 
pressure, shear stress, and oxygen content distinctly differ-
ent from that within the venous environment, effectively 
producing an injury similar to an ischemia-reperfusion 
mechanism. The vein graft responds to the surgical injury 
and the arterial environment by integrating these multi-
phasic stimuli, typically resulting in favorable adaptation; 
however, in 20–30% of cases the vein graft cannot adapt 
successfully, with poor clinical consequences (Fig. 1).
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Peripheral artery bypass failure can be classified into 
early, intermediate, and late failure. Early failure occurs 
within 6 months after implantation, and most commonly 
within one month, mainly due to technical factors, hyper-
coagulability, and compliance mismatch.13) Intermediate 
failure occurs between 6–24 months after surgery and is 
mainly caused by neointimal hyperplasia (NIH); it is the 
most common etiology of vein graft failure. Late failure 
generally occurs after 24 months and is typically associ-
ated with progressive atherosclerosis (Fig. 1). To reduce 
the incidence of vein graft failure and thus achieve im-
proved long-term outcomes after vein graft implantation, 
we need to understand the vein graft’s response to the 
arterial environment.

Vein Graft Adaptation
In the first report of vein graft bypass for arterial repair, 
Kunlin observed venous wall thickening after an initial 
phase of progressive dilation, calling this adaptive process 
“arterialization”.2) Dilation of vein grafts is described as 
a shear-dependent early response that occurs in the first 
month after implantation14); the endothelial cells are criti-
cally important in transducing the shear stress signal to 
the rest of the vessel wall.15) The thickening of the vein 
graft wall is characterized by accumulation of smooth 
muscle cells (SMC) and extracellular matrix components, 
similar in mechanism to the neointimal hyperplasia that 
forms after injury of arterial intima.16–18) Outward re-
modeling, e.g., increased diameter, and wall thickening are 
considered to be essential in clinically successful human 
vein grafts.14,19,20)

It is likely that all arterial bypass grafts will develop 
NIH, given enough time,9,10) not just vein grafts, but even 
prosthetic grafts that necessarily lack an antithrombotic 

endothelium.21) Vein grafts are deprived of their vasa va-
sorum during surgical harvest, leading to relative hypoxia 
and possibly reduced energy source; this adventitial injury 
induces the release of the inflammatory cytokines from 
SMC.22) Immediately after transplantation into the arte-
rial environment, the venous wall is exposed to pulsatile 
flow with higher magnitudes and altered patterns of shear 
stress, injuring the vein graft endothelium; the responses 
to these environmental changes initiate vein graft adapta-
tion, and may ultimately initiate NIH. Subsequent platelet 
aggregation, recruitment of the surrounding cells, and 
leukocyte migration with inflammatory responses contrib-
ute to the adaptive process.23) Vessel wall thrombus after 
endothelial injury also induces SMC proliferation.17) Later 
in the adaptive process, SMC migration and proliferation 
as well as extracellular matrix deposition directly contrib-
ute to remodeling but may eventually progress to NIH; the 
difference between wall thickening as a necessary adapta-
tion process and the progressive pathological NIH that 
results in graft failure remains uncertain.24)

Since SMC play an essential role in vein graft adapta-
tion as well as formation of NIH, the initial approach used 
to overcome vein graft failure in the seminal PREVENT 
trials was by regulation of SMC accumulation in the vein 
graft wall. Since the transcription factor E2F plays a piv-
otal role in the coordinated transactivation of cell cycle-
regulatory genes that ultimately regulate SMC prolifera-
tion, double-stranded DNA with high affinity for E2F was 
introduced in vivo as a decoy to bind E2F and block the 
activation of genes mediating cell cycle progression and 
intimal hyperplasia; E2F decoy successfully inhibited vas-
cular SMC proliferation in a rat carotid injury model.25) In 
a single center randomized controlled trial, intraoperative 
gene therapy using E2F decoy was tested in 41 patients 
undergoing infrainguinal arterial bypass with vein grafts; 

Fig. 1 Time-course of vein graft adaptation. After a harvested autologous vein graft is surgical-
ly implanted into the arterial environment, vein graft adaptation with positive remodeling 
and wall thickening leads to successful clinical results. In some cases, vein graft failure 
occurs in early, intermediate, and late periods with distinct temporal patterns of patho-
genesis. EC: endothelial cell; SMC: smooth muscle cell; NIH: neointimal hyperplasia.
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in those patients receiving the E2F decoy, there were fewer 
graft occlusions, revisions or critical stenosis compared to 
the control group at 12 months.26,27)

Despite these promising initial results, the subse-
quent multicenter randomized trials, PREVENT-III and 
PREVENT-IV, resulted in disappointing failure. The 
PREVENT-III study, in patients with critical limb isch-
emia, showed no significant difference between the groups 
in the primary end points, time to nontechnical index 
graft reintervention or major amputation due to graft 
failure.8) The PREVENT-IV study, in patients having iso-
lated coronary arterial bypass graft (CABG) surgery with 
at least two vein grafts, also failed; the primary end point, 
angiographic vein graft failure (≥75% vein graft steno-
sis) occurring 12 to 18 months after surgery, showed no 
significant difference between the groups.28) These results 
suggest that mechanisms of vein graft failure are more 
complex than just SMC proliferation,8,28,29) warranting 
further exploration.

Several preclinical studies have manipulated various 
intracellular signaling pathways that regulate vein graft 
NIH (Table 1). ERK is an important member of the 
MAPK pathway that plays an essential role during vein 
graft adaptation, and ERK inhibition decreased medial 
cell proliferation in canine vein grafts.30,31) Statins inhibit 
Rho that, with pulsatile stretch, accelerates eNOS expres-
sion; pravastatin treatment reduced NIH in rabbit vein 
grafts.32,33) Cyclic adenosine monophosphate response-
element binding protein (CREB), a nuclear transcription 
factor, regulates the expression of genes essential for cell 
proliferation and differentiation, and is activated by a wide 
range of extracellular stimuli through distinct signaling 
pathways34); CREB dominant negative plasmid (KCREB) 
significantly repressed NIH in a mouse model.35) Mito-
gen Activated Protein Kinase Activated Protein Kinase II 

(MAPKAP2, MK2) is an intracellular kinase that stimu-
lates CREB transcriptional activity; MMI-0100, MK2 in-
hibitor peptide, prevented murine vein graft thickening.36) 
Similarly, administration of Nogo-B also reduced NIH in 
a porcine model.37) Although these studies were successful 
in animal models, no strategy has translated into clinical 
use for patients; issues with translation include unknown 
and species-specificity of the mechanisms.38)

Molecular Fingerprints of Arteries and Veins
A novel strategy to combat vein graft failure focuses on 
membrane-bound signaling of venous endothelial cells in 
response to the arterial environment. Arteries and veins 
are anatomically distinguishable in the mature circulatory 
system. Arteries have a large diameter with a thick wall, 
exposed to high pressure and pulsatile flow of the highly 
oxygenated blood transported from the heart to periph-
eral tissues. Veins, on the other hand, work as a blood 
reservoir exposed to low pressure and relatively continu-
ous flow towards the heart. The flexible thin wall of veins 
contributes to the adaptation to variable blood volume 
and their valves act to avoid blood reflux.

Histologically, all blood vessels have the same three-
layer wall morphology: an internal intima, a media, and 
an external adventitia. These three layers are separated 
by the internal and external elastic laminae, at least in hu-
mans. Both the arterial and venous intima similarly consist 
of a single layer of endothelial cells lining the lumen of 
the vessel; however, the venous media has a significantly 
thinner layer of cellular and fibrous components, includ-
ing circular smooth muscle cells that may contain collagen 
and some fibroblasts.

During embryogenesis, differentiation of undifferenti-
ated cells into arterial or venous fate is regulated by the 
VEGF-delta-notch-Ephrin-Eph pathway (Fig. 2). Arterial 
differentiation of endothelial cell progenitors is initiated 
by activation of sonic hedgehog (Shh), a transcription fac-
tor that induces VEGF signaling; VEGF then stimulates its 
receptor VEGFR and co-receptor NP-1, which stimulate 
the Delta-Notch pathway in the endothelium,39,40) with 
delta-like ligand 4 (Dll4) ligand being one the first identi-
fied arterial markers.41) Dll-Notch then stimulates the ar-
terial fate pathway by causing increased ephrin-B2 expres-
sion with simultaneous suppression of Eph-B4 expression; 
thus, Dll-Notch prevents acquisition of a venous fate.42) 
Interestingly, venous differentiation is not just a “default” 
pathway, but is also under active control; in cells destined 
to become veins, chicken ovalbumin upstream promoter 
transcription factor 2 (COUP-TFII) suppresses Notch and 
ephrin-B2,43) allowing expression of Eph-B4 and thus ac-
quisition of venous identity.

Eph, named after its overexpression in a human 

Table 1 Preclinical studies manipulating intracellular signaling 
to control neointimal hyperplasia in vein graft models

Mechanism Treatment
Vein graft model  

(references)

ERK-1/2 ERK-1/2 inhibitor Dog30,31)

PTEN PTEN adenovirus Dog84)

mTOR Rapamycin Mouse85,86)

Rho Statin Rabbit32,33)

CREB KCREB Mouse35)

MAPKAP2 MMI-0100 Mouse36)

Nogo-B Nogo-B adenovirus Pig37)

PTEN: phosphatase and tensin homolog; CREB: cAMP respon-
sive element-binding protein; KCREB: a CREB dominant protein; 
MAPKAP2: mitogen activated protein kinase activated protein ki-
nase II; MMI-0100: MAPKAP2 inhibitor peptide; Nogo-B: neurite 
outgrowth inhibitor protein B
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erythropoietin-producing hepatocellular carcinoma cell 
line, was first discovered in a human cDNA library screen 
for sequences homologous to the tyrosine kinase domain 
of a viral oncogene.44) Eph receptors constitute the largest 
of the 14 families of tyrosine kinase receptors. Ephs, acti-
vated by their plasma-membrane-bound ligands ephrins, 
have many important functions during development and 
adulthood.45) Unlike the majority of receptor tyrosine ki-
nases, bidirectional signaling can originate from both the 
ephrin ligand and the Eph receptor. Since both the ephrin 
ligand and the Eph receptor are tethered to the plasma 
membrane, the Eph-ephrin system seems to mediate cell-
to-cell interactions directly, rather than via long-range 
communication.46–48) For example, the Eph-ephrin system 

contributes to vascular development, axon guidance, cell 
migration and tissue boundary formation.45,47) Ephrins 
can be divided into two subclasses, ephrin-A and ephrin-B, 
depending on their structural characteristics. Correspond-
ingly, Eph receptors can be divided into Eph-A and Eph-B 
subclasses, based on their binding affinity to ephrins.49)

Members of the Eph-B subclass are transmembrane 
proteins.49,50) Remarkably, ephrin-B2 is specifically ex-
pressed by arteries while Eph-B4, one of its receptors, 
shows specific expression in veins.48,51) Ephrin-B2 acts 
both as a ligand and simultaneously as a receptor for 
Eph-B4. These reciprocal Eph-ephrin signaling pathways 
are active in endothelial cells at the arterial-venous capil-
lary interface, and are critical for angiogenic remodeling 
and vessel development in the embryo.52,53) Endothelial 
cells expressing the arterial marker ephrin-B2 have limited 
ability to migrate ventrally, whereas those expressing the 
venous marker Eph-B4 preferentially move into the car-
dinal vein.54) Eph-B4 is also a critical regulator of early 
lymphatic vascular development, mutations in which can 
cause lymphatic dysplasia.55)

This specific expression pattern in arterial and venous 
endothelial cells persists into adulthood.56) Interestingly, 
as development proceeds, ephrin-B2 expression progres-
sively extends from the arterial endothelium to surround-
ing SMC and pericytes, suggesting that ephrin-B2 may 
play an important role in adult neovascularization.57,58)

Venous Identity is Lost in Vein Grafts
Vein graft adaptation to the arterial environment involves 
wall thickening, fibrosis and subendothelial prolifera-
tion.59) Venous adaptation has been called, historically, “ar-
terialization” of the vein.2,60) However, during rat vein graft 
adaptation, both Dll4 and Notch4 expression are down-
regulated, suggesting that “arterialization,” e.g., acquisition 
of arterial markers, is not the correct terminology.20,61)

To determine how vessel identity is regulated during 
vein graft arterialization, we analyzed the pattern of 
ephrin-B2 and Eph-B4 expression in veins implanted into 
the arterial environment.20) Patent human saphenous vein 
grafts explanted from cardiac donors or limbs needing 
amputation showed reduced expression of Eph-B4 com-
pared with native veins; Ephrin-B2, typically expressed at 
low levels in saphenous veins, was not induced in patent 
vein grafts. Similarly, in a rat vein graft model, which used 
jugular veins reversely interposed into carotid arteries, 
there was diminished Eph-B4, without increased ephrin-
B2, compared with the native vein. A mouse vein graft 
model also showed similar findings, with reduced Eph-B4 
expression and lack of ephrin-B2 induction.61) Similar re-
sults were also demonstrated in ex vivo studies examining 
human saphenous veins exposed to increased magnitudes 

Fig. 2 Current model of arterial-venous specification in the em-
bryo. Arterial differentiation (red): Shh regulates arterial 
differentiation by inducing VEGF expression in endothelial 
cells; notch signaling acts downstream of VEGF, induc-
ing expression of arterial-specific marker ephrin-B2 with 
simultaneous inhibition of the venous-specific marker 
Eph-B4. Venous differentiation (blue): COUP-TFII actively 
blocks expression of the VEGFR; subsequent inhibition 
of the notch cascade prevents expression of ephrin-B2 
while simultaneously stimulates Eph-B4 expression. Shh: 
sonic hedgehog; COUP-TFII: chicken ovalbumin upstream 
promoter transcription factor 2; VEGFR: VEGF receptor; 
NP-1: neuroplilin-1; Dll: delta-like ligand.
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of shear stress.62,63)

These consistent results, in 3 in vivo models and an ex 
vivo model, demonstrate that vein graft adaptation results 
in loss of venous identity, but not in a gain of arterial iden-
tity (Fig. 3). Moreover, these studies imply that embryonic 
markers of vessel identity are plastic in adults and selective 
regulation of those markers may be capable of modifying 
the course of vein graft adaptation.

Manipulation of Vessel Identity
Based on these observations, we hypothesized that Eph-B4 
regulates vein graft adaptation by inhibiting venous wall 
thickening; we also speculated that successful inhibi-
tion of wall thickening might reduce or delay neointimal 
hyperplasia and thus might be a reasonable strategy for 
clinical translation to improve the long-term outcome of 
vein grafts.

To test this hypothesis, we examined the effects of 
altered Eph-B4 signaling in a mouse model of vein graft 
adaptation.61) In this mouse model a thoracic IVC is trans-
planted into an infrarenal abdominal aorta of another 
mouse; vein graft wall thickness increased gradually up to 
6 weeks after implantation with late positive remodeling 
by 12 weeks, recapitulating human vein graft adaptation. 
Mouse vein grafts also showed decreased Eph-B4 and no 
change in ephrin-B2, for both gene expression and pro-
tein, in the same pattern with human vein grafts. Admin-
istration of ephrin-B2/Fc, the soluble ligand of Eph-B4, in-
duced Eph-B4 phosphorylation in venous endothelial cell 
(EC) in vitro, e.g., ephrin-B2/Fc activates Eph-B4. In vivo, 
stimulation of Eph-B4 signaling in vein grafts promoted 
retention of Eph-B4 in EC and, to a lesser extent in SMC, 
and maintained thin venous walls. Conversely, vein grafts 
derived from Eph-B4 heterozygous mice, e.g., with geneti-
cally diminished Eph-B4 signaling, had thicker walls, with 
increased layers of SMC. These results show that Eph-B4 

is active in adult veins and that Eph-B4 regulates vein 
graft remodeling; in addition, these results suggest that 
vein graft failure might be prevented by stimulation or 
retention of venous identity, a novel therapeutic strategy. 
To further understand mechanisms of Eph-B4-dependent 
venous remodeling during vein graft adaptation, we ex-
amined some of the downstream pathways that mediate 
Eph-B4 functions.

Downstream Effectors of Eph-B4 Signaling
Caveolin-1
Caveolae are distinct flask-shaped invaginated structures 
that are located along the plasma membrane. They are rec-
ognized in the surface of many cell types including endo-
thelial cells, and serve as signaling platforms. For example, 
Eph receptors enhance their signaling within caveolae. Ca-
veolin-1 (Cav-1) is a major structural protein of caveolae 
in EC and is involved in mechanotransduction of dynamic 
shear stress changes by interacting with several signaling 
proteins, such as eNOS, ERK 1/2, and Eph receptors.64–66)

To determine a mechanism of how Eph-B4 limits vein 
graft wall thickness, we examined Cav-1 and Eph-B4 in-
teraction during vein graft adaptation. Eph-B4 stimulated 
phosphorylation of Cav-1 in EC, and phosphorylation of 
Cav-1 in vein grafts was correlated with Eph-B4 phos-
phorylation status; after activation of Eph-B4, colocaliza-
tion and interaction of Eph-B4 and Cav-1 was detected. 
EC derived from Cav-1 knockout mice showed reduced 
Eph-B4-induced cell migration, and the thickened vein 
grafts derived from Cav-1 knockout mice were unre-
sponsive to Eph-B4 stimulation. Vein grafts derived from 
mice with Cav-1 specifically reconstituted in their EC 
had greatly reduced thickness compared with those from 
Cav-1 knockout mice. These results suggest that Cav-1 
mediates Eph-B4 signaling during venous adaptation, and 
that Eph-B4 regulation of vein graft thickening depends 
on endothelial Cav-1.

Akt
Phosphoinositide 3-kinases (PI3Ks) are protein and lipid 
kinases activated by different classes of membrane recep-
tors; Akt is a major downstream effector of PI3K signal-
ing.67) Akt activates by phosphorylation, and phospho-
Akt regulates a network of downstream effectors, such 
as eNOS; the PI3K–Akt pathway has critical roles in 
regulating diverse cellular functions, such as cell survival, 
proliferation, and metabolism. PI3K is a potential Eph-
receptor binding partner; in particular, PI3K binds to the 
EphA2 receptor.68) Migration and proliferation of human 
endothelial cells induced by activated Eph-B4 was inhib-
ited in the presence of PI3K or Akt-inhibitors, suggesting 
that the PI3K–Akt pathway plays one of the central roles 

Fig. 3 The adapting vein graft dilates and thickens with de-
creased Eph-B4 expression and unchanged ephrin-B2 
expression.
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in Eph-B4 signaling in endothelial cells and vascular re-
modeling.69) In vitro, decreased Eph-B4 leads to activation 
of Akt; however, vein grafts had increased expression of 
both phosphorylated and total Akt compared with na-
tive veins but no change in Akt phosphorylation.70) These 
results suggest that the PI3K–Akt pathway also regulates 
vein graft remodeling but the differences between in vitro 
and in vivo results need additional study; juxtacrine and 
paracrine interactions between EC and SMC during vein 
graft adaptation complicate the interpretation of the data. 
In addition, Cav-1 and Akt have interactions that also 
require additional study.71,72)

eNOS
Endothelial nitric oxide synthase (eNOS) is the nitric 
oxide synthase isoform by which nitric oxide (NO) is 
produced to regulate systemic blood pressure, vascular 
remodeling and angiogenesis.73) Impairment of eNOS-
derived NO accelerates smooth muscle cell proliferation 
and migration that result in NIH.74,75) Eph-B4 regulates 
NO release in endothelial cells; after ephrin-B2/Fc stimu-
lation, eNOS phosphorylation and NO production are 
increased in human endothelial cells,76) while mouse endo-
thelial cells derived from heterozygous Eph-B4 mice have 
less NO release compared with WT EC.70)

Since NO is a known regulator of vein graft wall thick-
ness,77) we used our mouse vein graft model to determine 
if eNOS is a downstream mediator of Eph-B4 signaling 
during vein graft adaptation.78) Activation of Eph-B4 with 
ephrin-B2/Fc stimulated eNOS phosphorylation and cell 
migration in vitro, which was abolished with eNOS inhi-
bition. In vivo, the decreased Eph-B4 expression that oc-
curs during vein graft adaptation correlates with increased 

eNOS activity; in eNOS knockout vein grafts, venous 
remodeling is reduced and Eph-B4 activity is enhanced. 
These data suggest that Eph-B4 regulates endothelial cell 
functions mediated by eNOS phosphorylation and that 
eNOS mediates venous remodeling during vein graft ad-
aptation.

However, the discordance of eNOS regulation by 
Eph-B4 between the in vitro and in vivo studies remains 
unresolved. Diverse mediators such as Src79) and Rho 
kinase80) may play a role in regulating the Eph-B4–eNOS 
pathway in vivo, inducing a more complex interaction 
or additional responses in different cell types. In addi-
tion, Akt directly mediates eNOS activation, leading to 
increased NO production in EC.81) Increased eNOS-Cav1 
interaction negatively regulates eNOS phosphorylation.79) 
Co-immunoprecipitation studies show that nearly all the 
eNOS in endothelial cells is associated with Cav-1.82) The 
Cav-1 scaffolding domain serves as an endogenous nega-
tive regulator of eNOS function.83)

Other signaling associated with Eph-B4–eNOS path-
way were manipulated to regulate NIH (Table 1, Fig. 4). 
PTEN, a downstream inhibitor of PI3K, prevented Akt 
phosphorylation and limits NIH by decreasing SMC pro-
liferation.84) Rapamycin, an mTOR inhibitor, regulated 
NIH via PI3K–Akt signal suppression.85,86) Interestingly, 
Eph-B4 regulates the Ras/ERK pathway in EC87) (Fig. 4).

Manipulation of Eph-B4 in Human Saphe-
nous Veins
Autologous saphenous vein remains the most commonly 
used and durable conduit for arterial bypass. To deter-
mine whether Eph-B4 is functional in human veins, as it 

Fig. 4 Arterial hemodynamics inhibit Eph-B4 expression, leading to endothelial nitric oxide 
synthase (eNOS) activation. A subset of molecules interacting with Eph-B4–eNOS path-
way may be therapeutic targets to regulate vein graft adaptation. Green arrows show 
changes with vein graft adaptation. *Discordant data between in vitro and in vivo models.
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is in adult murine veins, we stimulated discarded human 
saphenous veins with ephrin-B2/Fc.62,76) Eph-B4 activa-
tion was associated with reduced neointimal thickening 
in a human saphenous vein ring assay. Stimulation of 
Eph-B4 in human endothelial cells induced phosphoryla-
tion of Eph-B4 and Cav-1, and release of NO. Moreover, 
adventitial delivery of ephrin-B2/Fc followed by 24 hours 
of arterial shear stress increased endothelial Eph-B4 phos-
phorylation. These results show that human saphenous 
veins have Eph-B4 and that it is functional; this data also 
supports the concept that regulation of Eph-B4 may be 
a strategy of translational potential for human patients 
needing vein grafts.

Conclusions
Eph-B4, the venous determinant expressed during embry-
onic development, remains expressed and functional in 
adults. Although the normal functions of Eph-B4 in adult 
veins are not yet clear, loss of Eph-B4 expression dur-
ing vein graft adaptation suggests that Eph-B4 regulates 
venous wall thickness. Strategies to alter Eph-B4 activity, 
or its downstream effectors such as caveolin-1, Akt, and 
eNOS, may be translatable as a strategy to inhibit NIH 
that is currently the most important mechanism of vein 
graft failure. However, better understanding of the factors 
that distinguish favorable and unfavorable venous remod-
eling is needed before designing the next clinical trial to 
prevent vein graft failure.
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