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Toward the accurate estimation 
of elliptical side orifice discharge 
coefficient applying two rigorous 
kernel‑based data‑intelligence 
paradigms
Masoud Karbasi1, Mehdi Jamei2, Iman Ahmadianfar3 & Amin Asadi4,5*

In the present study, two kernel‑based data‑intelligence paradigms, namely, Gaussian Process 
Regression (GPR) and Kernel Extreme Learning Machine (KELM) along with Generalized Regression 
Neural Network (GRNN) and Response Surface Methodology (RSM), as the validated schemes, 
employed to precisely estimate the elliptical side orifice discharge coefficient in rectangular channels. 
A total of 588 laboratory data in various geometric and hydraulic conditions were used to develop 
the models. The discharge coefficient was considered as a function of five dimensionless hydraulically 
and geometrical variables. The results showed that the machine learning models used in this study 
had shown good performance compared to the regression‑based relationships. Comparison between 
machine learning models showed that GPR (RMSE = 0.0081, R = 0.958, MAPE = 1.3242) and KELM 
(RMSE = 0.0082, R = 0.9564, MAPE = 1.3499) models provide higher accuracy. Base on the RSM model, 
a new practical equation was developed to predict the discharge coefficient. Also, the sensitivity 
analysis of the input parameters showed that the main channel width to orifice height ratio (B/b) has 
the most significant effect on determining the discharge coefficient. The leveraged approach was 
applied to identify outlier data and applicability domain.

Water diversion structures comprised of side weirs, side intakes, side orifices, and sluice gates are the most crucial 
and widespread devices in sewerage, irrigation, and agricultural systems which controllably divert and transfer 
the flowing water from the main channel to a tributary  channel1. The flow regime in water diversion devices is 
categorized into the spatially varied flow with decreasing flow  discharge2,3. In the past four decades, numerous 
investigations have been conducted on hydraulic characteristics side structures, including side  wires1,4–8, and 
Side Sluice  Gate9–12.

As one of the most important diversion structures, the side orifices are usually placed on the side of the open 
channel, at a specific height from the bed, to distribute the flow discharge to outside the channel in the aim of 
irrigation and drainage systems and wastewater treatment  plants13. The importance of measuring the lateral 
flow through the orifices in hydraulic systems has led to considerable research efforts devoted to laboratory 
investigations on various shapes of side orifice in open  channels14. Ramamurthy et al.15, as a pioneer researcher, 
studied the flow mechanism through a rectangular lateral orifice in a rectangular open channel. Besides, they 
theoretically and experimentally analyzed the characteristics of flow through the lateral weir-orifice  unit16.  Gill17 
and Ojha and  Subbaiah18 presented the theoretical analysis of flow characteristics through various side slots in 
free-surface and pressure flow conditions.

Moreover,  Swamee19 studied discharge coefficient estimation for flow through weir-orifice units under free-
flow conditions. Recently, Hussain et al.20 experimentally and theoretically accomplished the sharp-crested 
circular side orifices in open rectangular channels under free-flow conditions. Besides, they extended their 
investigation on the lateral circular orifice under both free and submerged flow conditions. They derived various 
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discharge coefficient relationships with acceptable accuracy, which usually were depended on upstream hydraulic 
 characteristics21. Also, Hussain et al.22 reported an analytical and laboratory study on the hydraulic characteristics 
of flow-through side square orifices in rectangular open channels. They provided a new discharge coefficient 
relationship based on the approach flow Froude number and ratio of orifice and channel width. Hussain et al.23 
conducted extensive laboratory and theoretical research on the performance of sharp-crested rectangular side 
orifice under the free-flow condition compared to square and circular side orifice. They found that the circular 
orifice is more efficient to divert flow than square side orifice by the same opening area. Besides, they developed 
their research in the aim of modifying the concept used by  Ramamurthy15 in the derivation of discharge coef-
ficient relationship for flow through lateral side rectangular orifice.

More recently, Vatankhah and  Mirnia13 conducted an experimental and analytical study to predict the dis-
charge coefficient of sharp-crested side triangular orifices based on 750 laboratory experiments under free-flow 
conditions. They proposed different discharge coefficient relationships for two scenarios: the approach Froude 
number and the absence of one. Furthermore, Vatankhah and  Rafeifar3 assessed the operation of the elliptical 
sharp-crested side orifices for diverting flow from the horizontal open channel. This research examined both 
small and large elliptical side orifices for deriving the regression-based discharge coefficient relationships in two 
scenarios depending on Froude’s approach and without it. In the current research, it should be mentioned that 
588 laboratory experiment tests for data-driven based assessment of elliptical side orifice discharge coefficient.

Artificial intelligence and machine learning models in different engineering problems such as  hydraulic24–26, 
 geotechnical27–31, and  mechanical32 engineerings have become very popular. In two recent decades, laboratory 
equipment and human errors, on the one hand, the complexity and nonlinear behavior of spatially varied flow 
through these facilities and the insufficient accuracy of classical regression-based methods, on the other hand, 
has caused several researchers to turn their attention to the data-driven and machine learning  techniques33–36. 
Numerous attempts focus on the application of conventional artificial intelligence (AI), such as an artificial 
neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS), to measure the coefficient of dis-
charge through the side lateral weirs and side orifices. For instance, the mentioned approaches implemented 
to predict the discharge coefficient for rectangular sharp-crested  weirs37–40; for measuring the discharge capac-
ity of rectangular sharp-crested side weirs in sewer  systems41; to assess the discharge coefficient of triangular 
and trapezoidal labyrinth side weirs; for estimating the discharge coefficient for a semi-elliptical labyrinth side 
 weirs42; to accurate determination of the discharge coefficient for a triangular side weir under subcritical flow 
 conduction26,43, and predict the discharge of rectangular and circular side orifices in a rectangular  channel44. 
The bedside, Gene expression programming (GEP) paradigm has been employed to determine the discharge 
coefficient of rectangular side weirs in various flow regimes along the rectangular and trapezoidal  channels45,46. 
In other cases, a support vector machine (SVM) model was employed to model the discharge coefficient of a 
side weir in a  rectangular47 and trapezoidal  channel48; multivariate adaptive regression splines (MARS) and the 
group method of data handling (GMDH) have been utilized to predict the discharge coefficient of Weir-Gat49.

Furthermore, More recently, the self-adaptive extreme learning machine (SAELM) as a novel ML approach 
has been employed to model the side weirs discharge on converging  channels50 and circular and rectangular side 
orifices along the open  channel51–53. Jamei et al. applied three data-driven approaches, multiple linear regression 
with interaction (MLRI), locally weighted learning regression (LWLR), and multiple linear regression (MLR), 
to estimate the discharge coefficient of a triangular side orifice. Their results demonstrated the high capability 
of LWLR and MLRI models to estimate discharge  coefficient54.

Literature review inferred that different ML-based methods had been used to model the discharge coefficient 
of hydraulic diversion devices. However, some structures have the complexity of hydraulic characteristics due 
to their particular shape. The accurate estimation of the discharge coefficient in them requires applying robust 
and efficient data-driven approaches.

In this research, the estimation of discharge coefficient in elliptical side orifice under free flow conduction, for 
the first time, has been assessed using two kernel-based data-intelligence paradigms, namely, Gaussian process 
regression (GPR) and kernel extreme learning method (KELM). Here, the response surface methodology (RSM), 
generalized regression neural network (GRNN), and empirical methods were adopted to validate the provided 
schemes. To the best of our knowledge, the proposed data-driven approaches have not yet been used for discharge 
measuring the hydraulics structures. Furthermore, the applicability domains of the provided paradigms were 
examined using the leverage approach, and a sensitivity analysis was performed to identify the most influen-
tial variables. Models were evaluated based on statistical indices, and the results were presented as tables and 
figures. This paper describes the experimental data and machine learning models in the second part (materials 
and methods). Results and discussion are presented in the third part, and at last, the conclusions are offered.

Need for research. Determining the lateral flow in the side orifices is essential for water management, 
water pricing, and environmental engineering objectives. In the present study, to increase the accuracy of flow 
determination, using machine learning methods, GPR, KELM, GRNN, and RSM, models and relationships were 
developed to determine the flow coefficient of the elliptical side orifice.

Material and methods
Dimensional analysis and data preparation. Factors affecting the elliptical side orifices are (1) Dimen-
sion of the elliptic orifice ( a is horizontal semi-axis and b is vertical semi-axis) (2) orifice crest height (the dis-
tance between the channel bed and the orifice) ( W ) (3) velocity in the main channel ( V1 ) which is calculated 
as V1 = Q/A1 (4) orifice upstream (y1) and downstream ( y2 ) depths (5) Main channel width ( B ) (6) Gravity 
acceleration ( g ) (7) Water surface tension ( σ ) (8) Water dynamic viscosity ( µ ) and (9) Water density ( ρ)3. Fig-
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ure 1 shows an elliptical side orifice and the geometric parameters used in it. According to the variables affecting 
the discharge coefficient of elliptical side orifice, a relation can be written as follows:

Using Buckingham’s π theory, effective dimensionless parameters can be obtained as follows:

Given that in open channels, the most critical effective force is gravity, the effect of viscosity and surface ten-
sion can be  ignored5,55, so Reynolds and Weber numbers can be removed from the above equation.

In the present study, Vatankhah and  Rafeifar3 laboratory data, which includes 588 series of data, were used. 
They studied the effect of different geometrical and hydraulic parameters on the elliptical side orifice discharge 
coefficient. A horizontal rectangular channel (12 m length, 0.25 m width, and 0.5 m height) was used to perform 
experiments. Two types of rectangular and triangular weirs were used to measure the flow through the orifice 
(Qs) orifice and the upstream flow of the orifice (Qu). Two different lengths of orifice (a = 15, 20 cm), three heights 
(b = 2,3,4 cm) and 2 crest heights (w = 5, 10 cm) were used. In total, 12 different geometric shapes were created. 
(Qu) values ranged from 13.8 to 39.6 l/s, Qs ranged from 3.66 to 21.41 l/s, and the Froude number in the main 
channel ranged from 0.22 to 0.77. Finally, the discharge coefficient can be calculated as Cd = Q/πab

√

2ghc  
where hc = y1 −W − b . 588 laboratory data were randomly divided into two parts: training (75%) and test 
(25%). Table 1 shows the statistical specifications of training and test datasets.

Figure 2 shows the relationship between the output variable ( Cd ) and independent variables for the dataset 
used in this study. The numbers in the figure represent the linear relationship between variables using the Pearson 
correlation coefficient. The value of this coefficient varies from −1 to 1. Positive values indicate a direct connection 
between variables, and negative values indicate an inverse relationship between variables. According to Fig. 2, 
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Figure 1.  Schematic view of elliptic side orifice and its geometrical parameters.

Table 1.  Statistical specifications of train and test datasets.

Data Statistic W/b B/a B/b b/y1 Fr1 Cd

Train data

Mean 2.665 1.463 9.047 0.172 0.484 0.518

Std 1.212 0.208 2.611 0.039 0.121 0.026

Min 1.25 1.25 6.25 0.093 0.219 0.405

Max 5 1.667 12.5 0.252 0.777 0.569

Test data

Mean 2.837 1.446 8.971 0.168 0.472 0.517

Std 1.246 0.209 2.576 0.039 0.108 0.027

Min 1.25 1.25 6.25 0.093 0.273 0.426

Max 5 1.667 12.5 0.256 0.731 0.562
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the two variables b/y1 ( rp = 0.39) and Fr1 ( rp = 0.10) directly affects the discharge coefficient, which means that 
as they increase, the discharge coefficient increases. The three variables W/b ( rp = −0.48) , B/a ( rp = −0.42) 
and  B/b ( rp = −0.55) have the inverse effect on the discharge coefficient, and as they increase, the discharge 
coefficient decreases. According to Fig. 2, the variables B/b and W/b have the highest absolute correlation with 
the elliptical side orifice discharge coefficient.

Machine learning technics. Gaussian process regression (GPR). The Gaussian process regression (GPR) 
model falls into the category of supervised machine learning  methods56. GPR is a kernel-based non-parametric 
based on Bayes, with high computational efficiency and accuracy which its operation is easy for  users57. This 
approach can solve classification and regression problems. This method has a high capability in modeling com-
plex nonlinear  issues58. A Gaussian process is expressed by the mean function m(x) and the covariance function 
k
(

xi , xj
)

 as  follows59,60:

In the regression problem, y is defined as observations and ε as noise. This noise has an average of zero and 
σ 2
n variance. As a result, the Gaussian process regression model can be expressed as follows:

In the above equation, x is the input data matrix, y is the output data vector, and f  is the values of the GPR 
function. The joint distribution is defined by the kernel function as follows:

where K(x∗,X) is equal to

X is the training input matrix X = [x1, x2, . . . , xn]
T , y is the training output vector y =

[

y1, y2, . . . , yn
]T , x∗ is 

the test input vector and f∗ is the output for the test input data vector.
Finally, the predictor distribution is expressed by the following equation:

where f∗ and cov
(

f∗
)

 are defined as follows:

The covariance function is used to measure the effect of data points on each  other57. This function shows 
the number of coordinated changes between the two variables. The proper selection of kernel function (covari-
ance) is one of the essential factors affecting the performance of the GPR model. Numerous kernel functions 
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Figure 2.  Correlation matrix of input(independent) variables and output (dependent) variable.
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are defined for use in the GPR  model59. In the present study, ten types of kernels were examined and evaluated. 
Table 2 shows the kernel equations used in the present study.

Kernel extreme learning machine (KELM). ELM is a developed version of the single-layer feed-forward net-
work (SLFN) with a random nature presented by Huang et al.63. The ELM consists of three layers: input, hidden, 
and output layers. The main advantages of this method are (1) easy implementation, (2) fast training speed, and 
(3) powerful generalization capability (Huang et al. 2012).

The mathematical formulation of the ELM for a dataset including M samples, by considering the number of 
hidden layer nodes equal to H, can be expressed as,

where ρj denotes the output weight vector, which connects the jth hidden layer node and output layer node. g(x) 
represents the ELM activation function (AF), bj is the weight of the input dataset, and cj is the bias value for the 
jth hidden layer node. Equation (8) can be defined as,

where Y  denotes the model output, G is the matrix of hidden layer output, which is expressed as,

The ELM uses a fitness function to determine the optimum value for the ρ , which is given as,

where T is the target vector.
Based on the generalized inverse theory, the solution of Eq. (12) is defined as,

where G† refers to the Moore–Penrose inverse matrix (MPIM) of G . Regarding the orthogonal projection tech-
nique and theory of ridge  regression64, the regularization factor (RF) was applied in the process of optimization 
so that the ρ can be achieved as,
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H
∑
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Table 2.  List of Kernel functions used for GPR model. Where σf  is the signal standard deviation (Std), σl  is 
the characteristic length scale, r is the Euclidean distance between xi and xj which is defined by 
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where I denotes the identity matrix. Accordingly, the ELM output function is defined as,

Notwithstanding the suitable efficiency of the ELM, but because this method is random, it may be trapped in 
the local optima. Therefore, the kernel extreme learning machine (KELM) was presented by Huang et al.65. The 
main structure of the KELM is displayed in Fig. 3. In this method, a kernel matrix (KM) ( KM(x, xj) ) is employed 
instead of the AF ( g(x) ). The KM can be formulated based on Eq. (18).

The output function of the proposed KELM is expressed as,

In this work, the radial basis function (RBF) is utilized as a KM, which can be obtained as,

where µ is a constant number.

Generalization regression neural network (GRNN). Generalized regression neural network (GRNN) is a kind 
of radial basis function network (RBFN) that is based on kernel  regression66. Unlike the conventional neural 
networks (CNN), the GRNN does not need a repetitive training process like the back-propagation technique. 
The GRNN does not stick to local  solutions67–69. This method comprises four layers: input, pattern, summation, 
and output layers.

The input layer receives the input dataset ( x ). In this layer, the number of neuros is equal to the dimension 
of the input dataset. In the pattern layer, neurons using a nonlinear function transform the input dataset ( x ) to 
pk (i.e., the output of the pattern layer) based on the following equation:

where  xk denotes the training sample of the kth neuron in the input layer. ρ is the spread factor.
The third layer (i.e., summation layer) consists of two types of neurons: (1) one simple neuron and (2) m 

weighted neurons, which are specified by So and St . These kinds of neurons are defined as,
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Figure. 3.  KELM structure.
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where yk is the target dataset.
The output layer (i.e., output layer) divides the summation layer results to achieve the output predicted result, 

which is expressed as,

Surface response methodology (RSM). In the present study, RSM was used to investigate the effect of independ-
ent variables (geometric and hydraulic conditions) on the output (response) variable (side orifice discharge coef-
ficient) and also to provide an optimal regression relationship for the elliptical side orifice discharge coefficient 
prediction. The RSM method is a statistical tool for modeling and analyzing the behavior of the process (input) 
variables on the response (output)  variable70. Using RSM, most information can be obtained with a minimum of 
experimental data. The 2nd order RSM model includes linear, quadratic, and the interaction of input variables 
sentences. The RSM model for the above case can be expressed as  follows71,72:

where X is the input data matrix, y is the output data estimation vector, ε is a random error vector and 
αi ,αii and αij are regression coefficients which the following equation can calculate:

A flowchart of the machine learning models for the discharge coefficients of the elliptical side weir can be 
depicted in Fig. 4. In all models, the input is normalized using the following formula:

where x is the value of variable and xmin and xmax are the minimum and maximum value of the variable, 
respectively.

Accuracy criteria of approaches. Five statistical indices evaluated the models: root mean square error 
(RMSE), mean average percentage error (MAPE), correlation coefficient (R), normalized root mean square error 
(NRMSE), and mean bias error (MBE). The relationships of each of the mentioned parameters are presented 
below:

At the above equations, Cdoi and Cdpi respectively are observed and predicted values of discharge coefficient 
of elliptical side orifice, Cdo is the mean value of observations, Cdp is the mean value of predictions, and N is 
the number of data.

Outlier detection with leverage approach. Through developing a mathematical model, it is necessary 
to detect outlier data obtained from the model. Several methods have been proposed to identify and detect out-
lier data. Among these, the leverage approach is one of the most well-established and widely used approaches. 

(22)So =
M
∑

k=1

pk , St =
M
∑

k=1

ykpk

(23)Y =
St

So
.

(24)y =
k

∑

i=1

αiXi +
k

∑

i=1

αiiX
2
i +

k−1
∑

i=1

k
∑

j=i+1

αijXiXj + ε

(25)α =
(

XTX
)−1

XTY

(26)xnor =
x − xmin

xmax − xmin

(27)R =
∑N

i=1(Cdoi − Cdo)
(

Cdpi − Cdp
)

√

∑N
i=1(Cdoi − Cdo)2

∑N
i=1(Cdpi − Cdp)2

(28)RMSE =

√

∑N
i=1(Cdoi − Cdpi)2

N

(29)MBE =
1

N

N
∑

i=1

(

Cdoi − Cdpi
)

(30)NRMSE =
RMSE

Cdo

(31)MAPE =
1

N

N
∑

i=1

∣

∣

∣

∣

Cdoi − Cdpi

Cdoi

∣

∣

∣

∣

× 100.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19784  | https://doi.org/10.1038/s41598-021-99166-3

www.nature.com/scientificreports/

In this method, the difference between the actual data and the data obtained from the model is defined as the 
residual. To calculate the leverage index ( hat ) the following matrix must be calculated:

(32)H = X
(

XTX
)

X−1.

Figure 4.  The flowchart of predicting discharge coefficient of elliptical side orifice by different machine learning 
(ML) models.
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In the above equation, X is an n× k matrix, where n is the number of samples and k is the number of model 
variables. The diagonal elements of the H matrix are known as the hat or leverage index. The standard residual 
percent ( R ) is plotted against the hat to indicate the domain of application of the model and the outlier data. The 
warning value of the leverage H∗ is calculated from the following equation:

The plot of R versus hat is known as the Williams diagram. If most of the data are in the range of −3 < R < 3 
and 0 < H < H∗ It indicates the appropriate application of the model in the mentioned range and, therefore, 
shows the developed model’s statistical  validity73,74.

Results and discussion
This section discusses and evaluates the results obtained from GPR, KELM, GRNN, and RSM models and 
regression-based models. There will also be a comprehensive comparison between the mentioned AI models and 
regression-based models. Error analysis was performed using CDF curves, relative error, and leverage approach. 
Finally, sensitivity analysis will be performed to determine the parameters affecting the elliptical side orifice 
discharge coefficient. All models are performed in the MATLAB 2020a software on a personal computer (Intel 
Core i7 2.6 GHz processor and 16 GB RAM).

Gaussian process regression (GPR) model. The GPR model was created using the dimensionless varia-
bles mentioned in the previous section as input and the discharge coefficient ( Cd ) parameter as output. The most 
important factor in the performance of the GPR model is the type of kernel and its parameters. In the present 
study, ten kernels and LBFGS-based quasi-Newton methods were used to optimize kernel parameters. Table 3 
shows the results obtained from different kernels with their optimal parameter. The results obtained by different 
kernels were compared using R and RMSE statistical parameters for the test data series. According to Table 3, the 
ARDsquaredexponential kernel with R = 0.9579, RMSE = 0.0081 and MAPE = 1.3243% had the best performance 
in estimating the orifice discharge coefficient. The ARDMatern 5/2 kernel with R = 0.9571, RMSE = 0.0087 and 
MAPE = 1.5782% was the second model with high accuracy. The weakest performance was provided by expo-
nential kernel with R = 0.9509, RMSE = 0.0087 and MAPE error percentage = 1.4063%. The results of the optimal 
GPR model for the training and test data series are presented in Fig. 5.

Kernel extreme learning machine (KELM). In the KELM model, the RBF kernel was considered as the 
model  kernel75,76. The RBF kernel has one parameter as σ , and the KELM model has one parameter as an adjust-
ment parameter ( C ). The grid serach method was used to obtain σ and C . The values of σ and C were changed 
from 0.01 to 3 and 1 to 1000, respectively. Finally, the optimal values of σ = 0.1 and C = 600 were obtained for 
the test data series. According to the optimal parameters of the kernel and KELM model, the best model was 
obtained with R = 0.9564, RMSE = 0.0082, and MAPE = 1.3499%. The results of the optimal KELM model are 
presented in Fig. 6 for the test and training datasets.

Generalized regression neural network (GRNN). The only parameter in the GRNN model is the 
Spread  parameter77. To obtain the optimal spread value, its values were changed between 0.01 and 10 with 0.01 
intervals. The results showed that the optimal value of this parameter is 0.05. R = 0.929, RMSE = 0.0106 and 
MAPE = 1.6971% were obtained for the optimal GRNN model. The results of the optimal GRNN model are 
presented in Fig. 7 for the test and training datasets.

Response surface methodology (RSM). The effect of independent variables on the side elliptical orifice 
discharge coefficient was evaluated using the RSM model. One of the advantages of the RSM is presenting a 
regression relationship between input and output variables. The RSM model is based on the number of inde-

(33)H∗ = 3(k + 1)/n.

Table 3.  Effect of GPR kernel type on model accuracy.

Kernel RMSE R MAPE MBE NRMSE

Exponential 0.00875 0.95098 1.40634  − 0.00062 1.69007

Squaredexponential 0.00845 0.95423 1.36432  − 0.00054 1.63369

Matern3/2 0.00857 0.95299 1.38097  − 0.00061 1.65591

Matern5/2 0.00853 0.95346 1.37472  − 0.00059 1.64759

Rational quadratic 0.00845 0.95423 1.36432  − 0.00054 1.63370

ARDexponential 0.00840 0.95474 1.38167  − 0.00031 1.62279

ARDsquaredexponential 0.00810 0.95797 1.32428  − 0.00029 1.56469

ARDmatern3/2 0.00821 0.95674 1.35327  − 0.00028 1.58723

ARDmatern5/2 0.00817 0.95723 1.34383  − 0.00028 1.57823

ARDrationalquadratic 0.00818 0.95715 1.34447  − 0.00028 1.57975



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19784  | https://doi.org/10.1038/s41598-021-99166-3

www.nature.com/scientificreports/

Figure 5.  Scatter plots of observed Cd against predicted Cd by GPR model for train and test data.

Figure 6.  Scatter plots of observed Cd against predicted Cd by KELM model for train and test data.

Figure 7.  Scatter plots of observed Cd against predicted Cd by GRNN model for train and test data.
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pendent variables, their squares, and their relationship (in pairs). The equation obtained from this model is as 
follows:

Table 4 shows the ANOVA analysis of variance for the equation and its coefficients. According to this table, all 
coefficients are significant (p value < 0.05). In the RSM model, R = 0.9456, RMSE = 0.0092 and MAPE = 1.4921% 
were obtained for the test dataset. Figure 8 shows the performance of the RSM model for training and test data.

Regression‑based equations. Vatankhah and  Rafeifar3 presented five regression-based models to calcu-
late the elliptical side orifice discharge coefficient.

(34)

Cd = 0.0717+ 0.1817W/b+ 0.1398B/a− 0.0077B/b+ 3.9383b/y1

− 0.2686Fr1− 0.0234W/b · B/a− 0.0074W/b · B/b− 0.6560W/b · b/y1
− 0.0087B/a · B/b− 1.3551B/a · b/y1− 0.0411B/b · Fr1

− 3.3842b/y1 · Fr1+ 0.0012(B/b)2 + 0.6557(Fr1)2.

(35)Equation 1 : Cd = 0.64− 0.1

(

W

b

)0.572(B

a

)1.27(B

b

)0.04( b

y1

)0.13

Fr10.85

Table 4.  ANOVA results for determining the effective variable interactions in the RSM model.

Variables Coefficient Sum of squares F-value p value

W/b 0.18167 0.06822 695.09123 0.00000

B/a 0.13982 0.09677 986.01148 0.00000

B/b 0.00772 0.00170 17.35857 0.00004

b/y1 3.93829 0.00163 16.65797 0.00005

Fr1  − 0.26858 0.03962 403.65941 0.00000

W/b× B/a  − 0.02340 0.00205 20.87685 0.00001

W/b× B/b  − 0.00743 0.00371 37.77965 0.00000

W/b× b/y1  − 0.65597 0.00503 51.25667 0.00000

B/a× B/b  − 0.00870 0.00078 7.95540 0.00502

B/a× b/y1  − 1.35512 0.00152 15.45248 0.00010

B/a× Fr1 0.26254 0.00127 12.95195 0.00036

B/b× b/y1 0.11749 0.00199 20.24286 0.00001

B/b× Fr1  − 0.04114 0.00197 20.08285 0.00001

b/y1× Fr1  − 3.38425 0.00159 16.21657 0.00007

(B/b)2 0.00118 0.00128 13.02753 0.00034

(Fr1)2 0.65565 0.00319 32.46088 0.00000

Figure 8.  Scatter plots of observed Cd against predicted Cd by MLRI model for train and test data.
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Table 5 shows the results obtained from these five regression-based models. According to Table 5, Eq. (1) 
in which all effective parameters are involved with R = 0.9277, RMSE = 0.0106 and MAPE = 1.6846% had the 
best performance. Equation 2 takes into account the parameters Fr1 , B/a and w/b as input with R = 0.9254, 
RMSE = 0.0107 and MAPE = 1.6993% is in the second rank. In equations, 3 to 5, which consider the parameters 
Fr1− w/b, Fr1− B/a and w/b− B/a as input, respectively, the accuracy of the equations is not acceptable, 
and the value of R is R ≤ 0.7 . The MAPE error in Eqs. (3) to (5) models is more than 3%. Figure 9 shows the 

(36)Equation 2 : Cd = 0.635− 0.085

(

W

b

)0.57(B

a

)1.33

Fr10.91

(37)Equation 3 : Cd = 0.536− 0.005

(

W

b

)2.11

Fr11.35

(38)Equation 4 : Cd = 0.578− 0.039

(

B

a

)1.47

Fr10.0.24

(39)Equation 5 : Cd = 0.549− 0.004

(

W

b

)0.969(B

a

)2.631

Table 5.  Results of regression-based equations.

Equations RMSE R MAPE MBE NRMSE

Equation 1 0.0106 0.9277 1.6846 0.0003 2.0464

Equation 2 0.0107 0.9254 1.6993 0.0007 2.0731

Equation 3 0.0234 0.5713 3.6714  − 0.0014 4.5212

Equation 4 0.0273 0.5149 4.3799 0.0113 5.2789

Equation 5 0.0202 0.7008 3.1016  − 0.0011 3.9039

Figure 9.  Scatter plots of regression-based equations.
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scatter plots of experimental data and regression-based equation. As shown in the figure, Eqs. (3) to (5) did not 
provide good results.

Comparison between models. GPR, KELM, GRNN, and RSM models were developed to predict the side 
elliptic orifice discharge coefficient in the previous section, and their optimal parameters were obtained. This sec-
tion will compare the machine learning models developed in the previous section and the top regression model. 
Table 6 shows the statistical parameters of the best results obtained from the machine learning models and the 
best regression model for the training and test datasets. According to Table 6, all machine learning models per-
formed better than the regression-based model. Comparison between machine learning models also shows that 
the GPR model, with R = 0.9556, RMSE = 0.0077 for training data, and R = 0.9580 and RMSE = 0.0081 for test 
data, had the highest accuracy in estimating the orifice discharge coefficient. The KELM model is in the second 
rank with a slight difference (R = 0.953 and RMSE = 0.0080 for training data and R = 0.9564 and RMSE = 0.0082 
for test data). The GRNN model had the lowest accuracy among machine learning models (R = 0.9202 and 
RMSE = 0.0104 for training data and R = 0.9291 and RMSE = 0.0106 for test data). The RSM model also had 
a good accuracy in estimating the elliptical side orifice (R = 0.9279 and RMSE = 0.0097 for training data and 
R = 0.9456 and RMSE = 0.0092 for test data) by presenting a regression relationship.

Figure 10 shows the error distribution in a violin graph for machine learning models and five regression 
equations studied in the present study. According to the figure, the lowest error range is related to the GPR model 
[− 3.78% to + 4.146%]. After the GPR model, the KELM model is in second place with an error range [− 3.981% 
to + 4.222%]. The GRNN model with the error range [− 5.99% to + 4.833%] has the highest error range among 
machine learning models. According to Fig. 10, regression-based models have more error ranges. The best regres-
sion model (Eq. 1) has an error range of [− 7.057% to + 3.835%]. Equations (3) to (5) have the largest error range.

Table 6.  Performance of AI models and best Vatankhah and  Rafeifar3 regression-based equation in predicting 
discharge coefficient.

Statistical criteria

Models

GPR GRNN K-ELM RSM Equation 1

Training stage

R 0.9556 0.9202 0.9530 0.9279 0.8962

RMSE 0.0077 0.0104 0.0079 0.0097 0.0116

MAPE 1.1781 1.5769 1.2128 1.4790 1.7496

MBE 0 0.0001 0 0 0.0005

NRMSE 1.4844 2.0043 1.5230 1.8742 2.2231

AVE rank 1 4 2 3 5

Testing stage

R 0.9580 0.9291 0.9564 0.9456 0.9277

RMSE 0.0081 0.0106 0.0082 0.0092 0.0106

MAPE 1.3243 1.6971 1.3499 1.4921 1.6846

MBE  − 0.0003  − 0.0004  − 0.0002  − 0.0001 0.0003

NRMSE 1.5647 2.0532 1.5929 1.7738 2.0464

AVE rank 1 4 2 3 5

Figure 10.  The error distribution of four developed AI models and regression-based equations.
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Figure 11 shows the cumulative frequency versus absolute error percentage. According to Fig. 11, the GPR 
model provides an error of less than 1.7% for 70% of the data. This number is 1.74% for the KELM model and 2.16 
and 2.03% for GRNN and RSM models. As a result, the GPR model is more accurate and reliable in estimating 
the elliptical side orifice discharge coefficient. In regression models, Eqs. (1) and (2) for 70% of the data represent 
an absolute error percentage of less than 2.2%. In Eqs. (3) to (5), the values of this number are equal to 4.76%, 
5.7%, and 3.65%, respectively. The mentioned results of the analysis of the cumulative frequency curve against 
the absolute percentage of error show the superiority of machine learning models over regression-based models.

Finally, to ensure the statistical validity of the developed models, the values of H matrix, leverage index 
(hat), standard residual percentage R and warning value of leverage H∗ was calculated according to the leverage 
approach, and the Williams diagram was plotted for all machine learning and regression-based models. Figure 12 
shows the Williams diagram for the GPR, GRNN, KELM, and RSM machine learning models. According to 
Fig. 12 in all models, the data obtained from the models are in the range of −3 < R < 3 and 0 < H < H∗ And 
are therefore statistically valid. Figure 13 shows the Williams diagram for regression-based models. As can be 
seen from Fig. 13, Eqs. (1), (2), and (5) are statistically valid and are in the range of −3 < R < 3 and 0 < H < H∗ 
But the Eqs. (3) and (4) are not in the range of confidence, and therefore their application is not recommended 
in estimating the discharge coefficient of elliptical side orifice.

Figure 11.  The cumulative frequency (%) of absolute relative error (%) for AI models and regression-based 
equations.

Figure 12.  Williams plot to identify the application domain of machine learning models.
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Sensitivity analysis. A sensitivity analysis was performed on the data using the GPR model (superior 
model) to determine the variables affecting the elliptical side orifice discharge coefficient. One of the reliable 
methods in sensitivity analysis is omitting each data variable and determining statistical parameters in the 
absence of this variable in  model78. Table 7 shows the sensitivity analysis results of the variables affecting the 
elliptical side orifice discharge coefficient. According to Table 7, omitting the parameter B/a (channel width to 
orifice length) had the greatest effect on reducing the model accuracy (R = 0.7932). Therefore B/a is the most 
effective parameter in determining the elliptical side orifice discharge coefficient. The Froude number ( Fr1 ) with 
R = 0.8968 is the second parameter affecting the discharge coefficient. The parameters w/b with R = 0.9052, b/y1 
with R = 0.9432 and B/b with R = 0.9576 are in the rank of 3 to 5 parameters affecting the discharge coefficient.

Conclusion
In the present study, four machine learning methods KELM, GPR, GRNN, and RSM, were used to estimate the 
elliptical side orifice discharge coefficient. The results were compared with the proposed regression-based equa-
tions. The data used to develop the models included 588 series of laboratory data. Five dimensionless parameters: 
orifice crest height to orifice height ratio ( W/b ), main channel width to orifice length ratio ( B/a ), main chan-
nel width to orifice height ratio ( B/b ), upstream orifice depth (y1) to orifice height ratio (y1/b) and upstream 
orifice Froude number (Fr1) as the model input and the discharge coefficient of side elliptical orifice ( Cd ) were 
considered as model output. The results obtained from the statistical parameters of the test dataset showed that 
all four machine learning models had performed well in estimating the elliptical side orifice discharge coefficient, 
and the R-value varies between 0.9580 for the GPR model (the strongest model) to 0.9291 for the GRNN model 
(the weakest model). Comparing machine learning models and regression-based models showed the superior-
ity of artificial intelligence models in estimating the orifice discharge coefficient. The highest accuracy belongs 
to GPR (RMSE = 0.0081, R = 0.958, MAPE = 1.3242) and KELM (RMSE = 0.0082, R = 0.9564, MAPE = 1.3499) 
models. The RSM model had good accuracy and provided a functional regression equation for calculating the 
discharge coefficient. Error analysis using cumulative error distribution curves and relative error distribution 
function also shows the superiority of the GPR model over other methods used in the present study. Using the 
RSM model, this study developed a new practical regression equation to predict the elliptic side orifice’s discharge 
coefficient. The leveraged approach was applied to detect outliers and the model applicability domain. Results 
showed that all proposed machine learning models are statistically valid. Also, the sensitivity analysis result of 

Figure 13.  Williams plot for identifying the application domain of regression-based models.

Table 7.  The statistical measures for sensitivity analysis situations.

Metrics All-W/b All-B/a All-B/b All-b/y1 All-Fr1 All

R 0.9052 0.7932 0.9576 0.9432 0.8968 0.9580

RMSE 0.0120 0.0174 0.0081 0.0094 0.0125 0.0081

MAPE 1.7022 2.4944 1.3336 1.4860 1.9147 1.3243

MBE − 0.0003 − 0.0012 − 0.0003 − 0.0007 − 0.0007 − 0.0003

NRMSE 2.3179 3.3595 1.5723 1.8159 2.4168 1.5647

AVE rank 3 1 5 4 2 –
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model input parameters showed that the ( B/a ) parameter has the most impact on model performance and the 
( B/b ) parameter has the least impact on model performance. The present study results can be used to refine the 
delivered flow measurement for optimal management of water consumption by the elliptical side orifice structure.

Limitations and future scope. The results of this research are valid for the range of data used, and it is 
most used in a variety of elliptical sharp-crested side orifices. Therefore, to calculate the discharge coefficient 
related to different types of circular sections, more effort is needed to collect data sets related to them. The 
future scope can be investigated by providing an individual model capable of estimating the discharge coefficient 
of both circular and elliptical orifice by combining corresponded experimental data sets. Also, developing an 
ensemble model for integrating the advantage of each developed standalone model could be effective in enhanc-
ing the accuracy of discharge coefficient computation.

Data availability
The used dataset and codes in this research are available upon reasonable request from the corresponding author.
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