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Abstract

Background: The process of identifying all coding regions in a genome is crucial for any study at the level of
molecular biology, ranging from single-gene cloning to genome-wide measurements using RNA-seq or mass
spectrometry. While satisfactory annotation has been made feasible for well-studied model organisms through
great efforts of big consortia, for most systems this kind of data is either absent or not adequately precise.

Results: Combining in-depth transcriptome sequencing and high resolution mass spectrometry, we here use
proteotranscriptomics to improve gene annotation of protein-coding genes in the Bombyx mori cell line BmN4
which is an increasingly used tool for the analysis of piRNA biogenesis and function. Using this approach we
provide the exact coding sequence and evidence for more than 6200 genes on the protein level. Furthermore
using spatial proteomics, we establish the subcellular localization of thousands of these proteins. We show that our
approach outperforms current Bombyx mori annotation attempts in terms of accuracy and coverage.

Conclusions: We show that proteotranscriptomics is an efficient, cost-effective and accurate approach to improve
previous annotations or generate new gene models. As this technique is based on de-novo transcriptome
assembly, it provides the possibility to study any species also in the absence of genome sequence information for
which proteogenomics would be impossible.
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Background
Bombyx mori was the first lepidopteran species whose
draft genome was published in 2004 [1, 2]. In 2008, a
more accurate genome assembly was generated by com-
bining the raw data of these initial efforts within an inter-
national collaboration [3], and the results are available at
SilkDB (www.silkdb.org) and KAIKObase (sgp.dna.affrc.
go.jp/index.html). However, for a large number of modern
applications such as transcriptomic, epigenomic and
proteomic studies, reverse genetic screens and genome
editing tools such as TALEN and CRISPR/Cas9 the

provided genome information is insufficient as this assem-
bly contains numerous non-sequenced chromosome re-
gions. Recently, parallel to our efforts to reannotate
Bombyx mori using proteotranscriptomics, two new initia-
tives provided improved genome assemblies. These new
assemblies have been made available as SilkBase [4] and
SilkDB 3.0 [5] and include more genomic regions and
gene predictions for 16,880 and 16,069 gene models, re-
ceptively. However, the provided gene models are still
based on automated gene prediction using limited full-
length cDNA libraries, poly-A RNA-seq data and previous
B. mori NCBI annotations. These predictions are made
with a mixture of data from various commercial and non-
commercial strains of Bombyx mori, thus may not repre-
sent the genomic sequence of a single strain or its derived
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cell line due to intraspecies genetic variation. Further-
more, only very few predicted Bombyx mori genes have
evidence at the protein level (roughly 150 genes in Uni-
Prot UP000005204). Hence, an improved strain-specific
gene annotation would likely improve global analyses.
Bombyx mori is similar to humans in terms of sensitiv-

ities to pathogens and comparable effects of drugs. The
advantages for research are the low cost of maintenance,
little ethical constraints and no biohazard risks. Hence,
it has been long recognized as an excellent system for
drug screening and safety assessment [5, 6]. Further-
more, the BmN4 cell line of Bombyx mori [7] has been
intensely used in studying many different biological as-
pects in the laboratory, including virus infection [8, 9]
and germline piRNA biology [10]. Despite the wide-
spread usage of this ovary-derived cell line, its exact gen-
omic sequence and a tested gene structure model is still
missing. Natural sequence variations will interfere with
primer design for gene amplification, the design of CRIS
PR guides and limit matching of short sequencing reads
in transcriptomics as well as peptide coverage in prote-
omic experiments.
By proteotranscriptomics, combining in-depth tran-

scriptome sequencing and high-resolution mass spectrom-
etry, we establish protein evidence for 6273 genes. Using

spatial proteomics, we additionally experimentally classify
the localization of several thousand proteins using the re-
cently published LOPIT-DC workflow [11], which utilizes
differential ultracentrifugation following removal of
unlysed cells to achieve enrichment of cellular compart-
ments in different fractions. With this strategy, not only
accurate gene models for the protein-coding genes, but
also their subcellular localization is made available. Over-
all, we here provide a proof of concept for the generation
of species-, strain- and cell line-specific gene annotation
for protein-coding genes based on experimental evidence
without the need of a sequenced genome.

Results
Transcriptome assembly from RNA-seq data
We generated 167.8 million paired reads (86.2 million
reads from poly-A enriched and 81.6 million from rRNA
depleted total RNA samples) by Illumina paired-end se-
quencing of RNA prepared from the BmN4 cell line of
Bombyx mori. To prove our concept of being able to
produce a proper annotation without a genome and due
to the unclear genetic background of the cell line, we ap-
plied a genome-free de-novo approach using the Trinity
suite [12] (Fig. 1a). After quality filtering, adapter trim-
ming and erroneous k-mer removal almost 165M paired

Fig. 1 Genome-free transcriptome assembly approach and assessment of annotation quality. a. Overview of the proteotranscriptomics annotation
approach. b. Pie-chart of BUSCO analysis based on the BUSCO arthropoda gene set. c. Barplot summarizing the results of a full-length transcript
comparison between the genome-free Trinity assembly to currently available annotations from UniProt, NCBI, SilkBase and SilkDB 3.0
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reads and 158,589,380 bases were assembled into 186,
401 ‘Trinity transcripts’ constituting 120,287 distinct
‘Trinity genes’. The assembled raw transcriptome repre-
sents 98.32% of the input reads, which shows that the as-
sembly is highly representative (Additional file 1: Table
S1). The traditional N50 statistics describe the minimal
transcript length of transcripts that are assembled from
at least 50% of the reads. We found the N50 length for
our assembly to be 1553 bases. A better representation
excludes lowly expressed transcripts as they might ex-
hibit bigger biases. Hence, we investigated the N50
values across different expression level bins (ExN50)
(Additional file 1: Fig. S1). We found that the ExN50
peaks between the 80 and 90 expression percentiles.
Thus a better representation is the E90N50 statistic,
which represents the minimal transcript length of tran-
scripts in the 90th expression percentile that are assem-
bled from at least 50% of the reads mapping to these
transcripts. The E90N50 transcript contig length is 2270
bases (Additional file 1: Table S2). We used TransRate
[13] to validate the quality of the raw assembly (Add-
itional file 1: Table S3). TransRate assesses the accuracy
and completeness of a transcriptome assembly using
only the input reads. It proceeds by mapping the reads
to the assembled contigs, analyzing the alignments, cal-
culating metrics for each individual contig, integrating
these contig-level metrics to provide a contig score, and
then combining the accuracy of the assembly with the
score of each contig to produce an overall assembly
score. The crude overall and optimal Transrate assembly
score is 0.31 and 0.41, respectively, of which both are in
the 70th percentile range of Transrate assembly scores
of 155 published de-novo assembled transcriptomes [13]
(Additional file 1: Fig. S2). The expression-level-
weighted assembly score, which weights each constituent
contig score by the relative abundance level of each con-
tig raises to 0.54 validating the high quality of the assem-
bly and indicating that most of the low TransRate scores
stem from contigs that are of relatively low abundance.
To extract all potential protein-coding transcripts

from the assembled contigs, we applied TransDecoder
[14] and kept transcripts that comprise an open reading
frame of at least 20 amino acids. This filtering resulted
in a list of 317,031 potential protein-coding open reading
frames based on 95,817 individual genes. These potential
protein-coding sequences are the basis of our further
analysis. Using BUSCO [15], we detected that our as-
sembled protein coding transcripts cover 94.8% of the
arthropod BUSCO gene set (Fig. 1b and Additional file
1: Table S4). Currently, three main initiatives have pro-
vided Bombyx mori genome assembly and annotation.
For precision estimation, we compared our data to the
currently available annotations of the different Bombyx
mori varieties from UniProt UP000005204 with 14,776

gene models [16], NCBI Annotation Release 101 with
14,998 gene models, SilkBase 2017 with 16,880 gene
models [4] and SilkDB 3.0 with 16,069 gene models [17].
In general, correspondence between current annotations
and de-novo predicted proteins is high, with the majority
of transcripts sharing protein full sequence coverage
(90–100%) to the respective UniProt, NCBI, SilkBase
and SilkDB 3.0 proteins (Fig. 1c). When analyzing the
genetic sequence variation between the BmN4 cell line
and the transcripts from the NCBI and SilkBase annota-
tion by mapping the RNA-seq data to the respective
CDS sequences of predicted gene models, we found on
average an exchange of 1 in 129 bases for NCBI annota-
tions (i.e. 126,300 changes in 16,393,027 bases) and 1 in
105 bases for SilkBase annotations (i.e. 187,534 changes
in 19,826,985 bases). The results of both comparisons
are highly consistent. Approximately 75% of the detected
changes are silent (synonymous) mutations while around
25% have missense (non-synonymous) and 0.4% non-
sense effects (Additional file 1: Table S5). These results
unveil an unexpected quite large variation between Bom-
byx mori strains and emphasize the importance of apply-
ing a genome-free approach to provide exact CDS
sequences especially for molecular biology applications.
Functional annotation of TransDecoder predicted pro-

tein sequences was performed using Trinotate [18] in-
cluding blastp searches against all model species
Swissprot databases, HMMER to identify protein do-
mains, signalP to predict signal peptides, tmHMM to
predict transmembrane regions and RNAMMER to
identify rRNA transcripts. Furthermore, we used deeploc
to predict protein localizations from the respective pro-
tein sequences. All functional annotations are included
in the annotation file (Additional file 2: Table S10).

High resolution mass spectrometry data provides peptide
evidence for protein coding transcripts
In order to provide evidence for the protein coding cap-
ability of our predicted protein coding open reading
frames (ORF), we performed mass spectrometry mea-
surements of protein extracts from the BmN4 cell line.
Using LOPIT-DC [11] as a strategy to fractionate our
sample, we aimed to increase protein detection depth,
while also gaining cellular localization information for
the detected protein sequences. Our full Bombyx mori
proteome data set with 10 fractions contained 3,685,257
MS/MS spectra. Using the predicted open reading
frames of the Trinity transcriptome assembly as search
space for the mass spectrometry data, we noted a higher
rate of identified MS/MS spectra compared to using the
four currently available protein annotations from Uni-
Prot, NCBI, SilkBase and SilkDB 3.0 (two-sided paired
Wilcoxon signed rank test, p = 3.7*10− 8,p = 4*10− 8, p =
3.7*10− 8 and p = 3.71*10− 8, respectively (Fig. 2a).
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Applying stringent filtering criteria to have at least 2
identified peptides (at least one of them being unique),
we identified a total of 6273 protein groups (fasta files of
the CDS and protein sequences of these proteins are
provided Material S1 and S2, respectively). This was 16,
18, 14 and 24% higher than for the currently available
UniProt (5254 identified protein groups), NCBI (5125
identified protein groups), SilkBase (5396 identified pro-
tein groups) and SilkDB 3.0 annotations (4794 identified
protein groups) (Fig. 2b), emphasizing the power of
strain specific gene sequences to increase proteome
coverage and also validating the high quality of our
genome-free de-novo transcriptome assembly. In order
to investigate whether peptide identification could be
hindered by provided protein annotations that include
strain specific differences in protein sequences, we

extracted peptide identification for relevant proteins
from both Trinity and the most similar SilkBase annota-
tions and chose as representatives those pairs that have
an overlap of more than 80% in sequence but are not
100% identical in their protein sequence. We extracted
all missense mutations that were identified for these an-
notation pairs and calculated for the respective locations
the proportion of peptides that were not identified in the
SilkBase search, although they could be identified in our
de-novo Trinity annotation. We found that 88% of pep-
tides assigned to predicted missense mutations (2325
out of 2653 peptides in 1988 protein groups affected) in-
deed hamper peptide identification when using the Silk-
Base annotation as search base.
Detected protein groups show improved quality sta-

tistics when compared to the raw in silico predicted

Fig. 2 High resolution mass spectrometry provides evidence for superior genome-free annotation. a. Violin plots show distribution of identified
MS/MS spectra (in percent) for each database used. With identical raw proteomic data the genome-free Trinity annotation shows significantly
higher identified tandem MS spectra percentages than the four currently available annotations from UniProt, NCBI, SilkBase and SilkDB 3.0. Grey
lines connect percentages stemming from the same MS run. **** indicates two-sided paired Wilcoxon signed rank test p-values below 0.0001. b.
Barplot showing number of protein groups identified after different filtering steps with UniProt, NCBI, SilkBase, SilkDB 3.0 and genome-free Trinity
annotation. The Trinity annotation shows higher numbers of identified protein groups for identification and quantification (including replicates).
b. Barplot of the ratio of transcripts with a hit percentage coverage of more than 80% when compared to current Bombyx mori annotations. Grey
bars include all Trinity annotated transcripts and red bars represent transcripts that have peptide evidences detected by MS. d. Scaled density
plot showing distribution of transcript assembly scores of all Trinity annotated transcripts (gray) and transcripts with peptide evidences detected
by MS (red). Dashed vertical lines indicate the median assembly score of each subset
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potential protein coding transcripts, e.g. better overall
correspondence with current UniProt, NCBI, SilkBase
and SilkDB 3.0 annotations (Fig. 2c, Additional file 1:
Fig. S3A), higher assembly scores (Fig. 2d) and longer
transcript lengths (Additional file 1: Fig. S3B). We
further observed that assembled contigs with high
TransRate scores are indeed enriched with identifica-
tion by mass spectrometry emphasizing the validity of
the scoring approach used by TransRate, which is
based on the raw read alignment features only (Add-
itional file 1: Fig. S3C).
Although the correspondence between our annotation

and the annotation provided by NCBI and SilkBase is
overall high (Fig. 2c), there are still almost 20% of pre-
dicted coding sequences that correspond with less than
80% hit percentage coverage to the current annotations.
We noted that some of the current SilkBase annotated
transcripts are split into several (mostly two) separated
genes in our annotation. This observation can have two
main explanations: either the current gene annotations
are interdependent (SilkBase includes NCBI annotations
in the prediction process) and thus an erroneous annota-
tion from earlier predictions could have been transferred
to the newest SilkBase annotation, or, the separation of
the non-corresponding annotations in our genome-free
approach is wrong. To decide between these two possi-
bilities, we checked the RNA-seq read coverage across
the gap between two separated proteins in our annota-
tions that were suggested by SilkBase to be a single pro-
tein (941 pairs in total corresponding to 631 SilkBase
genes). For this we investigated the RNA-seq reads
coverage for each of the relevant pairs of our Trinity
predicted proteins and the respective genomic gap be-
tween these using the SilkBase genome assembly. Over-
all we observe that 76% of the Trinity annotated splits
(629 out of 826 protein pairs) are well supported by
clear gaps in the RNA-seq raw data alignment at the
split site (Fig. S4 A and B). Only 5.5% of all Trinity pre-
dicted proteins (348 unique proteins in 195 protein pairs
out of 6273 detected proteins) do not show an evident
gap in read coverage and hence likely have been falsely
split in the annotation process (Additional file 1: Table
S6). Our set of identified ORFs also includes 188 predic-
tions that have a less than 85% hit coverage with a Silk-
Base annotation entry. The length differences are shown
in Additional file 1: Fig. S5A. In order to investigate if
the shorter ORFs are supported by read mapping data,
we calculated the difference between the read mapping
frequency in the ORF region with the coverage at the
edges of the transcripts. 124 (66% of the short ORFs)
identified proteins show an evident absence of reads at
the edges of the transcripts, while the remaining 64
might have been falsely split as we could observe
mapped reads adjacent to the edges (Additional file 1:

Fig. S4C). Based on these observations, we conclude that
our method has a precision rate of at least 93.4% (5861
out of 6273) for assigning individual genes. The respect-
ive categorizations into “high correspondence”, “evi-
dently split”, “probable false split”, “evidently shorter
than SilkBase” and “probably falsely shorter than Silk-
Base” have been included in the annotation table for
clarity (Additional file 2: Table S10). Furthermore, we
found mass spectrometry evidence for 164 predicted
proteins that have been missed in any of the current an-
notations (marked with “newly annotated” in the annota-
tion Additional file 2: Table S10, peptide evidence
information for all novel proteins are provided in Add-
itional file 4: Table S12). Another group of genes (513
genes (8% of all ORFs detected by MS); marked with
“longer than SilkBase”) are longer than annotated in the
current SilkBase annotation, however differences are
mostly neglectable (Additional file 1: Fig. S5B). We pro-
vide a website (http://butterlab.org/bombyxviewer)
which incorporates data regarding all ORFs with mass
spectrometric evidence including transcript and protein
sequences and a genome viewer based on the SilkBase
genome showing gene structure and individual RNA-seq
read mapping. Peptide evidence information and anno-
tated MS-MS spectra of newly identified proteins are
therewith also provided for download.

Subcellular localization of proteins determined by LOPIT-DC
To assign the Bombyx mori proteins to sub-cellular com-
partments, we performed label-free quantitative spatial
proteomics adapting the recently released LOPIT-DC
protocol [11]. Using differential centrifugation steps, we
generated 10 subcellular fractions in independent quadru-
plicates. Fractionation replicates correlate very well (aver-
age Pearson correlation coefficient > 0.97) (Fig. 3a) and
cluster together in the first two PCA dimensions (Fig. 3b).
Within the gradient, fraction series [1–9] are similar to
each other, while fraction 10 is most different from all
others. This is consistent with fraction 10 constituting an
acetone precipitation of all proteins that were not sepa-
rated in the previous fractionation steps. Analyzing signifi-
cant changes in pairwise comparisons of all fractions,
efficient separation can be recapitulated, i.e. an increasing
diversity of proteins can be observed throughout subse-
quent fractionation steps (Fig. 3c). LFQ data and differen-
tial expression statistics across fractionation samples can
be found in Additional file 3: Table S11.
We applied an unsupervised clustering approach to

detect unique fractionation profiles. Self-organizing map
(SOM) clustering of the normalized protein intensities
of all proteins showing significant changes in at least
one of the pairwise fractionation comparisons and ap-
propriate clustering assessment and filtering (see
Methods and Additional file 1: Fig. S6) revealed 8 main
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Fig. 3 (See legend on next page.)
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clusters encompassing 3942 protein groups as depicted
in Fig. 4a. The mean expression profiles across fraction-
ation of the different clusters are depicted in Fig. 4b
(and in Additional file 1: Fig. S7 for individual genes). In
order to characterize the different clusters in terms of
their potential subcellular localization or function, en-
richment of specific categories as determined by signalP
(prediction of signal peptides), tmHMM (prediction of
transmembrane regions) and the Gene Ontology
cellular-component (GO_cc) annotation were calculated
(Fig. 4c, Additional file 1: Table S7). Clusters 1–4 repre-
sent proteins that show relatively high intensities in the
early fractionation steps with diminished intensities in
later steps. Generally, membrane associated proteins
(framed with black box in Fig. 4c) are highly enriched in
clusters 2 and 3. To get a more specific insight into the
subcellular localization, we subsequently checked for en-
richment of the GO_cc terms ‘lysosome’, ‘peroxisome’,
‘golgi apparatus’, ‘nucleus’, ‘chromatin’, ‘endoplasmic
reticulum’ (ER), ‘mitochondrion’ and ‘ribosomes’, which
were inferred by orthology to well-annotated model or-
ganisms in each cluster (framed with red box in Fig. 4c).
The most prominent enrichment was observed for clus-
ter 1, which exhibits high levels in the first three

fractions and low levels in later fractions. This cluster is
highly enriched with mitochondrial genes (Fisher’s exact
test, P = 10− 197, fold-enrichment = 35.56). Cluster 2
shows reduced intensity after fractionation step 4 and is
enriched with peroxisome, ER and lysosome annotated
proteins (Fisher’s exact test, P = 10− 16, P = 10− 6 and
10− 5, fold-enrichment = 24.14, 3.2 and 4, respectively).
Cluster 3 has lower intensity starting at fractionation
step 5 and represents mainly endosplasmatic reticulum
(ER) proteins (Fisher’s exact test, P = 10− 7, fold-
enrichment = 3.37). The profile of cluster 4 shows reduc-
tion of protein intensities after fractionation step 8 and
contains proteins from Golgi apparatus (Fisher’s exact
test, P = 10− 5, fold-enrichment = 2.9). The second high-
est enrichment could be observed for cluster 5, where
measured protein intensities peak in fraction 7–9 and
which is highly enriched with ribosomal 40s and 60s
proteins (Fisher’s exact test, P = 10− 25, fold-
enrichment = 11.76). Cluster 6 encompasses proteins
with low abundance in the initial fractionation steps,
which increase until step 9 and decline to minimal levels
in fraction 10. This cluster exhibits a mixed enrichment
profile of nuclear and chromatin associated proteins, but
also with ribosomal proteins (Fisher’s exact test, P =

(See figure on previous page.)
Fig. 3 Spatial proteomics unveils subcellular localization of Bombyx mori proteins. a. Heatmap of all pairwise comparisons (pearsons correlations)
shows high concordance between replicates and relatedness of adjacent fractions. b. Principal component plot based on the 1000 most dynamic
protein groups demonstrates differences of fractions and similarity of replicates. Replicates (same color) cluster together and (except for fraction 1
and 2) farther away from the other fractions. c. Summary heatmap of number of proteins with significantly different protein intensities
across fractions

Fig. 4 Unsupervised clustering of fractionation mass spectrometry data. a. Principal component plot of components 1 and 2 calculated from
standardized average protein intensities. Standardized protein intensities across fractionation samples were clustered using SOM (self-organizing
maps). Proteins in PCA space are colored according to their assignment to one of eight distinct clusters (see color code in b). 795 proteins could
not be associated with any of the clusters (gray colored dots). b. Line plots of the median standardized protein intensities across fractionation
steps of the different clusters assigned by SOM (see a). c. Heatmap summarizing enrichment analyses of cellular localization annotations in the
respective clusters. Color darkness corresponds to levels of enrichment (−log10 of adjusted P-values). Rectangles and circles indicate highest
enrichment for the corresponding localization and gene clusters, respectively. General and more specific localization categories are framed in
black and red, respectively
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10− 14, P = 10− 3 and P = 10− 13, fold-enrichment = 2.62,
2.97 and 6.92, respectively). Cluster 7 is the only cluster,
that show exclusively high enrichment with nucleus as-
sociated proteins (Fisher’s exact test, P = 10− 19, fold-
enrichment = 3.18). Cluster 8, which shows abrupt pro-
tein intensity increase in the last two fractions couldn’t
be associated with any of the known localizations and
hence was not further analyzed. Overall the cellular
localization profiles of the different clusters correspond
very well (average Spearman’s correlation coefficient =
0.88) with those established in the LOPIT-DC method
paper [11] where the assignment was established using
experimentally validated marker genes (Additional file 1:
Fig. S8). Further, orthologous proteins of established
Drosophila melanogaster cellular compartment marker
genes show highly coherent profiles to the ones estab-
lished by our unsupervised approach (Additional file 1:
Fig. S9). This shows that the fractionation strategy is ro-
bust and widely applicable. Comparing the fractionation
profile of each protein to each of the clusters enables
localization prediction also for proteins that could not
be annotated properly by previous in silico analysis. The
resulting clusters allow to assign proteins especially to
the following 6 compartments (in descending order of
certainty): Mitochondria (cluster 1), Ribosome (cluster
5), Nucleus (cluster 7), Peroxisome (cluster 2), Endoplas-
mic reticulum (cluster 3) and Golgi apparatus (cluster
4). For each individual MS detected protein, we calcu-
lated the correlations between its expression profile
across fractionations and the predicted median profile of
the above depicted localization. These correlation values
are provided as confidence score for the localization
probability of each protein. The information for each de-
tected protein, including all relevant information such as
transcripts type, length, score, annotations and
localization categorization weights are provided in Add-
itional file 2: Table S10). All CDS and protein sequences
of the assembled and identified proteins are provided in
Additional files 5 and 6.

Discussion
We here show that by combining comprehensive RNA-
seq data and high-resolution mass spectrometry data, we
achieve a comparable and even slightly better annotation
of protein-coding genes in Bombyx mori than previous
efforts based on genome or transcriptome guided de-
novo strategies. Even in the comparison of our genome-
free to our own genome-guided assembly using the same
raw RNA-seq and mass spectrometry data a slightly bet-
ter performance can be observed in the genome-free ap-
proach (see Additional file 1: Table S9). This fact
emphasizes the importance of using genome-free ap-
proaches in conditions were provided genomes are

suspected to stem from different genetic backgrounds as
the measured system.
Our extensive comparison between our genome-free

proteotranscriptomics annotation and the provided an-
notations from UniProt, NCBI, SilkBase and SilkDB 3.0
showed that UniProt and SilkDB 3.0 currently provides
the annotation with the weakest performance in BmN4
cells. Gene annotations provided by NCBI and SilkBase
are more comprehensive, however still do not report the
full protein-coding potential demonstrated by the ele-
vated percentage of identified MS-MS spectra in our
tailor-made assembly (Fig. 2a) and the identification of
164 new proteins in this study. As BmN4 cells were de-
rived from the ovary of a female animal, we were curious
to know if any of the newly identified proteins might be
located on the female-determining Bombyx mori
chromosome W [19]. Mapping the CDS sequences of
the respective proteins to the sequences of the W
chromosome did not result in any localization, while
they did map rather evenly dispersed to all other chro-
mosomes (see Additional file 1: Table S10). In fact, none
of the identified proteins mapped to chromosome W se-
quences recapitulating the current knowledge that this
chromosome is depleted of protein coding genes [20].
Although the correspondence between our annotation
and NCBI and SilkBase is overall high, there are still
20% of coding sequences with less than 80% hit length,
mostly attributed to split genes in our assembly. Per-
forming a detailed investigation of the gap region, we
could provide evidence that in 80% of cases the split ver-
sion in our assembly is supported, improving gene
models for 451 genes.
Many studies have shown that small proteins (≤100

amino acid residues) can be involved in important bio-
logical processes, including cell signaling, metabolism,
and growth [21]. However, they are underrepresented in
many genome annotations as they are notoriously hard
to predict because of their small ORF size [21]. To valid-
ate these small peptides, we kept all ORF with at least 20
amino acids. Indeed, we detected 308 small proteins (5%
of all protein groups identified) with at least two pep-
tides (one of them unique) and many of them reaching
relatively high expression levels, however the overall ex-
pression levels are lower than for longer proteins (Add-
itional file 1: Fig. S10).
Additionally, we used the recently published LOPIT-

DC approach [11] to provide experimental data for
localization of our detected proteins. The high corres-
pondence to the LOPIT-DC results, despite changing
from TMT to LFQ and using cell lines from different
species (human osteosarcoma U2OS vs. B. mori BmN4),
indicate a universal applicability of the fractionation
protocol and the resulting data. The resulting clusters
allow assigning proteins especially to the following
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compartments: Mitochondria, Ribosome, Nucleus, Per-
oxisome, Endoplasmic reticulum and Golgi apparatus.
The current fractionation approach allowed us to de-

tect peptide evidence for more than 6200 proteins. If
more comprehensive databases are of interest, these
limits may be overcome by using more diverse condi-
tions or several different tissues for extraction of tran-
scriptomic and proteomic data. While we here provide
annotation for Bombyx mori, this approach is readily ap-
plicable to any species, including more complex organ-
isms such as vertebrates and plants. While possible
parameters might need to be adapted such as even dee-
per RNA-seq data, the high fraction of non-coding gen-
ome regions or highly repetitive structure that make
genome assembly challenging can be disregarded.
Our developed proteotranscriptomics approach im-

proves current gene annotations and provides the exact
gene sequences for other applications such as gene am-
plifications via cDNA or planning CRISPR guides
around the translation start site.
Importantly, the proposed annotation approach readily

works without any genome reference and hence provides
a precise, time- and cost-efficient method to construct an-
notations for protein-coding genes in any species where
properly sequenced genomes are still out of reach.

Conclusions
Combining in-depth transcriptome sequencing and high
resolution mass spectrometry, we here use proteotran-
scriptomics to improve gene annotation of protein-
coding genes in the Bombyx mori cell line BmN4 which
is an increasingly used tool for the analysis of piRNA
biogenesis and function. Using this approach we provide
the exact coding sequence and evidence for more than
6200 genes on the protein level. We show that proteo-
transcriptomics is an efficient, cost-effective and accur-
ate approach to improve previous annotations or
generate new gene models. As this technique is based on
de-novo transcriptome assembly, it provides the possibil-
ity to study any species also in the absence of genome
sequence information.

Methods
Experimental design
To build a genome-free proteotranscriptomics-based
gene annotation we combined two types of data. First,
RNA-seq data of polyadenylated mRNA entities combin-
ing poly-A enriched and rRNA depleted samples from
Bombyx mori BmN4 cell line was used to predict poten-
tial protein-coding genes. Secondly, MS/MS spectra data
was used to find evidence for the predicted protein-
coding genes. Profiling subcellular localization of pro-
teins in Bombyx mori cells was performed using the
LOPIT-DC strategy [11]. The procedures were

performed with four biological replicates based on the
high level of reproducibility between replicates (average
Pearson correlation coefficient > 0.97). Results are repre-
sented as averages of the biological replicates. We used
Trinity for genome-free de novo RNA assembly and the
MaxQuant data analysis platform [22] for quantitative
proteomics analysis.

Cell propagation and RNA extraction
The Bombyx mori larval ovary-derived cell line BmN4
(RRID:CVCL_Z634) [7] was kindly provided by the Ket-
ting group (Institute of Molecular Biology, Mainz,
Germany)). Cells were cultured in Insect media IPL-40
(Pan Biotech) with 10% heat-inactivated FBS (Sigma)
and 1x Penn-Strep (Sigma) at 27 °C.
For RNA-sequencing total RNA was extracted from 10

million cells using the RNAeasy Mini Kit (Qiagen) ac-
cording to standard protocol. RNA integrity was tested
by agarose gel electrophoresis and Bioanalyzer (RNA
Nano Assay). RNA was quantified using Qubit.

RNA-seq measurements
RNA-sequencing libraries were prepared from total RNA
using two different RNA enrichment protocols: 1. poly(A)
purification using Illumina TruSeq stranded mRNA LT
Sample Prep Kit following Illumina’s standard protocol
(Part # 15031047 Rev., E). [polyA-enriched] 2. depletion of
ribosomal RNA using Illumina TruSeq stranded Total
RNA LT Sample Prep Kit following Illumina’s standard
protocol (Part # 15031048 Rev. E) [ribo-minus].
The libraries were prepared with a starting amount of

1000 ng and amplified in 10 PCR cycles and profiled
using a DNA 1000 Chip on a 2100 Bioanalyzer (Agilent
technologies) and quantified using the Qubit dsDNA HS
Assay Kit, in a Qubit 2.0 Fluorometer (Life technolo-
gies). The two libraries were pooled together in equimo-
lar ratio and sequenced on 1 NextSeq 500 Midoutput
FC, PE for 2 × 79 cycles plus 7 cycles for the index read.
The measurements of polyA-enriched and ribo-minus
RNA resulted in 86,178,436 and 81,597,503 paired-end
reads of length 80 bp, respectively. We assayed myco-
plasma contamination by aligning all raw RNASeq for-
ward reads to the genomes of A.laidlawii, M.arginini,
M.fermentans, M.hominis, M.hyorinis and M.orale. The
maximum percentage of uniquely mapped reads is below
0.00026% and therefore a contamination can be ex-
cluded (see Table S8).

Transcriptome assembly
The two RNA-seq datasets (polyA-enriched and ribo-
minus RNA) were used in combination to assemble the
transcriptome. First, both raw fastq files were cleaned
from erroneous k-mers using Rcorrector [23] and the
specialized scripts from TranscriptomeAssemblyTools
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(FilterUncorrectablePEfastq.py). Secondly, adapter se-
quences were removed using TrimGalore (a wrapper
around Cutadapt [24] and FastQC [25]) and reads were
filtered to include only pairs consisting of proper pairs
of minimum length of 36 nts each. These clean-up steps
removed only 2% of the paired reads. The fastq files
were then combined. For the genome-guided assembly
raw RNA-seq data was mapped to the Bombyx mori gen-
ome provided by SilkBase (http://silkbase.ab.a.u-tokyo.
ac.jp/cgi-bin/index.cgi) using STAR (version 2.5.4b) [26].
The raw RNA-seq or mapped data was used for a
genome-free de novo or genome-guided assembly ap-
proach using the Trinity suite (Trinity version 2.4.0) [12]
with the following parameter setting: [for genome-free:
--seqType fq --SS_lib_type RF --min_kmer_cov 1], [for
genome-guided: Trinity –genome_guided_bam –gen-
ome_guided_max_intron 30,000 --genome_guided_min_
coverage 2]. The resulting Trinity fasta files were then
further processed with TransDecoder version 5.4.0 [14]
to predict potential protein coding transcripts using a
length threshold of 20 amino acids. The resulting pep-
tide fasta files were used as search space in subsequent
steps for mass spectrometry data analysis.

Quality check of transcriptome assembly
The quality of the assembled transcriptome was assessed
using several different state of the art approaches. These
included general metrics of number of assembled tran-
scripts, mean, median and Ex90N50 transcript lengths.
The alignment rate of the raw reads to the assembly was
calculated using Bowtie2 (version 2.3.4.3) [27] and dedi-
cated scripts provided by Trinity (Trinity version 2.4.0)
[12]. BUSCO (version 2.0) [15] with the arthropodae
BUSCO database was used to assess the completeness of
the assembly. Transrate scores and additional quality
metrics were established using TransRate (version 1.0.3)
[13]. Coherence with current annotations was measured
using a combination of blastp (BLAST+ version 2.8.1)
[28] and Trinity tools (Trinity version 2.4.0) [12]. For
RNA-seq coverage validations the combined cleaned
RNA-seq data was mapped to the SilkBase genome as-
sembly using STAR (version 2.5.4b) [26]. Coverage per
base was calculated using bedtools (version 2.26.0) [29]
using the -pc option to also account for intronic align-
ment. Then using customized R (version 3.5.3) [30]
scripts the average coverage per transcript or gap region
was extracted (Fig. S4).

Annotation of identified transcripts
Functional and domain annotations were produced
using Trinotate (version 3.1.1) [18] combining the fol-
lowing applications: HMMER (version 3.2.1) [31] to
identify protein domains, signalP (version 5.0) [32] to
predict signal peptides, TMHMM (version 2.0c) [33] to

predict transmembrane regions, RNAMMER (version1.2)
[34] to identify rRNA transcripts in addition to infer Gene
Ontology and KEGG terms from orthologies established
by BLAST+ (version 2.8.1) [28] with a swissprot database
of all major model species. Further, localization predic-
tions from protein sequences of the assembly were calcu-
lated using deeploc (version 1.0) [35].

Detection of variation level between NCBI and SilkBase
protein coding sequences and BmN4 RNASeq data
In order to characterize the level of variation between
the Bombyx mori coding sequences in the NCBI annota-
tion and the BmN4 specific transcriptome, we first
mapped the RNA-seq data also used for transcriptome
assembly to NCBI coding sequences using STAR aligner
(version 2.5.4b) [26]. We then used GenomeAnalysisTK
(version 3.8–0-ge9d806836) [36] to extract sequence
variation information into a vcf file. SnpEff (version 4.4)
[37] was used to annotate all sequence changes regard-
ing their type (single nucleotide polymorphism (snp), de-
letion, insertion), their impact (low, moderate, high
severeness) and their functional class (missense, non-
sense, silent mutation). Results of this analysis are sum-
marized in Table S5.

Subcellular fractionation
Subcelluar fractionation of Bombyx mori cells was per-
formed in quadruplicates and based on the LOPIT-DC
strategy [11] with some modifications. Per replicate 70
million BmN4 cells were collected and suspended in 4
ml lysis buffer (0.25M sucrose, 10 mM HEPES pH 7.5, 2
mM EDTA, 2 mM Magnesium acetate, Roche complete
protease inhibitors). Cells were dounced in a 7 ml glass
douncer with 50 strokes using a type B pestle. Samples
were fractionated using centrifugation speed and times
as indicated in the table below following the LOPIT-DC
strategy [11]. For centrifugation steps a Heraeus Fresco
21 centrifuge (Thermo) or a Optima Max-XP benchtop
centrifuge (Beckmann) with a TLA 100.3 rotor were
used. Supernatant of the 9th fractionation step was pre-
cipitated using ice cold acetone and the pellet was resus-
pended in 50 mM HEPES/KOH pH 7.9 (represents
fraction 10).

Mass spectrometric sample preparation and
measurement
50 μg protein from each fraction were loaded on a 4–
12% NOVEX Bis-Tris PAGE gel (Thermo) and separated
for 7 min at 180 V in 1x MES buffer (Thermo). Proteins
were fixated and stained with Coomassie. After destain-
ing with water, in-gel digest preparation and MS stage
tip purification were performed as previously described
[38], [39]. Peptides were analyzed by nanoflow liquid
chromatography on an EASY-nLC 1000 system
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(Thermo) coupled to a Q Exactive Plus mass spectrom-
eter (Thermo). Peptides were separated on a C18-
reversed-phase column packed with Reprosil aq1.9 (Dr.
Maisch GmbH), directly mounted on the electrospray
ion source of the mass spectrometer. We used a ca. 200
min gradient from 2 to 60% acetonitrile in 0.1% formic
acid at a flow of 225 nL/min. The Q Exactive Plus was
operated with a Top10 MS/MS spectra acquisition
method per MS full scan.

Protein identification and label free quantification of
protein intensities
MaxQuant (version 1.5.2.8) [22] was used for raw file peak
extraction and protein identification against the following
databases individually: UniProt UP000005204 (14,776 en-
tries) [16], NCBI Bombyx mori Annotation Release 101
(14,998 entries), SilkBase 2017 (16,880 entries) [4], SilkDb
3.0 (16,069 entries) [17] or our Trinity-based ORF library
(317,031 entries). Protein quantification was performed
with MaxQuant using the label free quantification (LFQ)
algorithm [40]. The following parameters were applied:
trypsin as cleaving enzyme; minimum peptide length of
seven amino acids; maximal two missed cleavages; carba-
midomethylation of cysteine as a fixed modification; N-
terminal protein acetylation and oxidation of methionine
as variable modifications. Peptide mass tolerance was set
to 20 ppm and 7 ppm was used as MS/MS tolerance. Fur-
ther settings were: “label-free quantification” with
“FastLFQ” disabled, “match between runs” with time win-
dow 0.7min for matching and 20min for alignment; pep-
tide and protein false discovery rates (FDR) were set to
0.01; common contaminants (standard MaxQuant con-
taminant list including trypsin, keratin etc.) were excluded.
Detailed settings are available in the respective parameter
files (uploaded to ProteomeXchange (www.ProteomEx-
change.org) via the PRIDE [41] partner repository with
the dataset identifier PXD014626). MaxQuant LFQ data
was further processed using in-house developed tools
based on R (version 3.5.3) [30]. This included filtering out
marked contaminants, reverse entries and proteins only
identified by site. Protein groups with no unique and less
than two peptides were removed. Protein group averages
were calculated from proteotypic peptides. Prior to imput-
ation of missing LFQ values with a beta distribution ran-
ging from 0.1 to 0.2 percentile within each sample, the
values were log2 transformed. For protein groups consist-
ing of more than one Trinity annotation, we chose the
longest as representative of the group for further analysis.

LFQ data analysis and unsupervised clustering
For overall statistical quality calculations, we calculated
proportions of assembly scores, transcript lengths and
correspondences with UniProt, NCBI, SilkBase and
SilkDB 3.0 Bombyx mori annotations. For clustering

purposes, we focused only on protein groups that have
four measured LFQ levels in at least one of the fractions
and showed significant enrichment in at least one of the
pairwise fraction comparisons ending up in 5058 out of
5610 protein groups (90%). The mean LFQ data of the
four biological replicates data was standardized protein-
group-wise by adding the mean of all average fraction
intensities and dividing by the standard deviation be-
tween all average fraction intensities of the respective
protein group. An unsupervised machine learning ap-
proach was used to cluster all standardized profiles. We
applied the kohonen R package [42] to build a self-
organizing-map (SOM), i.e. to build an artificial neural
network that is trained using unsupervised learning to
produce a two-dimensional, approximated grouping of
the input profiles. The standardized data was initially
assigned to a SOM matrix of 12 basic clusters. After
combining four clusters with high intra-cluster differ-
ences (mean differences above the 75%-ile intra-cluster
distances of all protein groups; see Additional file 1: Fig.
S6) into one cluster with uncategorized profiles, eight
distinct clusters representing similar profiles remained.
These clusters were ordered according to euclidean dis-
tances in the first two-component PCA space using the
TSP (travelling salesman problem) R package (version
1.1–7) [43]. Using localization data retrieved through
orthology and sequence screening approaches as de-
scribed earlier, we checked for enrichment of categories
relevant for cellular localization, namely TmHH (se-
quence based transmembrane region predictions), sig-
nalP (sequence based signal peptides identification),
Gene Ontology associations based on blast orthology as-
sociations for cellular component annotations lysosome,
peroxisome, golgi, nucleus, chromatin, endoplasmic
reticulum (ER), mitochondrion and ribosome (based on
40S and 60S ribosomal proteins) annotations. Enrich-
ment scores of each category and each fractionation pro-
file cluster were calculated using Fisher’s Exact test
(one-sided test, alternate-hypothesis: cluster genes con-
tain more genes belonging to the tested category than
non-cluster genes). Correlation of the identified cluster
profiles were compared to the profiles of the same cellu-
lar localization categories from the original LOPIT-DC
paper [11] by calculating the spearman correlation be-
tween the median standardized LFQ profiles of our data
and the standardized median TMT profiles of the TMT
data from human osteosarcoma U-2 OS cell line across
fractionations (normalized TMT data is provided in Sup-
plementary data 1 of previous publication [11]). Respect-
ive profiles and correlations are shown in Additional file
1: Fig. S8. Drosophila melanogaster cellular compart-
ment marker genes were downloaded from the pRoloc
bioconductor package [44] and blasted against our
denovo protein database using blastp (BLAST+ version
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2.8.1) [28] to find the respective orthologous genes.
Newly identified genes were mapped to SilkDB 3.0 gen-
ome assembly and sequences of the W chromosomes
using gmap version 2019-03-04 [45]. W chromosome se-
quences were downloaded from GenBank nucleotide
database accession numbers AB251908–AB251914.
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