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Current antiviral therapy fails to cure chronic hepatitis B virus
(HBV) infection because of persistent covalently closed circular
DNA (cccDNA). CRISPR/Cas9-mediated specific cleavage of
cccDNA is a potentially curative strategy for chronic hepatitis
B (CHB). However, the CRISPR/Cas system inevitably targets
integrated HBV DNA and induces double-strand breaks
(DSBs) of host genome, bearing the risk of genomic rearrange-
ment and damage. Herein, we examined the utility of recently
developed CRISPR/Cas-mediated “base editors” (BEs) in inac-
tivatingHBV gene expression without cleavage of DNA. Candi-
date target sites of the SpCas9-derived BE and its variants in
HBV genomes were screened for generating nonsense muta-
tions of viral genes with individual guide RNAs (gRNAs).
SpCas9-BE with certain gRNAs effectively base-edited poly-
merase and surface genes and reduced HBV gene expression
in cells harboring integrated HBV genomes, but induced very
few insertions or deletions (indels). Interestingly, some point
mutations introduced by base editing resulted in simultaneous
suppression of both polymerase and surface genes. Finally, the
episomal cccDNA was successfully edited by SpCas9-BE for
suppression of viral gene expression in an in vitro HBV infec-
tion system. In conclusion, Cas9-mediated base editing is a po-
tential strategy to cure CHB by permanent inactivation of inte-
grated HBV DNA and cccDNA without DSBs of the host
genome.

INTRODUCTION
Chronic hepatitis B virus (HBV) infection often leads to adverse clin-
ical outcomes, including cirrhosis and hepatocellular carcinoma
(HCC).1 Although current antiviral therapies have dramatically
improved the outcomes of individuals with chronic hepatitis B
(CHB), most patients experience rebound viremia after discontinua-
tion of nucleos(t)ide analogs (NAs).2 The major obstacle for eradi-
cating HBV infection by NAs is the persistent covalently closed circu-
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lar DNA (cccDNA), which is the episomal form of a virally replicative
template.3 Curative strategies for CHB need to either eliminate all of
the infected hepatocytes or purge all of the replication-competent
cccDNA.4,5 So far, curing HBV remains extremely challenging
because no drugs can specifically target and destroy cccDNA.

Integration of HBV DNA into host genomes is a common event
occurring upon HBV infection.6,7 Unlike retrovirus, HBV integration
is not a requisite for the viral life cycle because integrated HBV DNA
does not serve as a template for productive viral replication.8 Never-
theless, integrated HBVDNA has recently been proven to be a crucial
source for the continuous secretion of hepatitis B surface antigen
(HBsAg).9 An excessive amount of secreted HBsAg likely has the
immunosuppressive effect and acts as a “decoy” for antibody re-
sponses in order to allow HBV to escape from host immunological
control.10 Recently, there has been emerging enthusiasm for the func-
tional cure of HBV, which is defined as loss of HBsAg. However,
disruption of cccDNA alone may not necessarily result in HBsAg
loss. It is reasonably assumed that a functional HBV cure cannot be
achieved without targeting integrated HBV genomes.11

The recent advance of genome-editing tools has provided a novel
approach to treat viral infections by cutting and destroying viral ge-
nomes in a sequence-specific manner.12–15 Particularly, the CRISPR/
Cas RNA-guided DNA endonuclease has gained the widest interest
because it can be conveniently redirected to the desired DNA se-
quences by simply redesigning the sequences of guide RNAs
(gRNAs) that are perfectly matched with the protospacer sequences
uthor(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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of the target genomes. Cleavage of target genomes by Cas9/gRNA
causes double-strand breaks (DSBs) of DNA, which are often re-
paired by the non-homologous end joining (NHEJ) pathway.16,17

The NHEJ pathway frequently leads to nucleotide insertions or de-
letions (indels) and thus disrupts the open reading frames (ORFs) of
genes.

Previous studies, including ours, have examined the utility of
CRISPR/Cas9 in disruption of HBV genomes.18–22 Most studies
have taken advantage of the wild-type (WT) CRISPR/Cas9 system
and demonstrated its utility in specific cleavage of intrahepatic
HBV templates, including cccDNA and integrated HBV genomes,
for curing HBV infection.23,24 However, the CRISPR-meditated
cleavage of integrated HBV DNA also results in DSBs of the host
genome, which may cause large deletions and chromosomal rear-
rangements, leading to pathological consequences.25 Recently, a novel
CRISPR-derived base-editing strategy has been shown to generate
precise C-T/G-A conversion without DSBs at specific genome
loci.26 The initial “base editors” (BEs) utilized a catalytically impaired
Cas9 endonuclease (dCas9) tethered with APOBEC deaminase. To
enhance C-T/G-A conversion, the dCas9-deaminase construct was
fused with a uracil glycosylase inhibitor (UGI) that suppresses uracil
excision following deamination to prevent the reversion of the U:G
pair to a C:G pair. A widely used third-generation BE (BE3) was
thus designed with the combination of APOBEC1, Cas9-derived
nickase, and UGI.27 Since then, a growing number of modified BEs
have been developed to improve various aspects of BE tools.28 For
example, the fourth-generation BE4 increases the efficiency of C-T/
G-A conversion, while halving the frequency of undesired base
changes compared to BE3. BE4Gam is generated by fusing BE4 to
DSB-binding protein Gam from bacteriophage Mu to further reduce
indel formation.29 In addition, the efficacy of base editing can be
significantly improved by optimizing codon usage (BERA), and
further enhanced by including nuclear targeting motifs at the N ter-
minus of BE enzymes (FNLS-BEs).30 Theoretically, base editing the
target nucleotides without DSBs of DNA should reduce the risk of
genome rearrangement and carcinogenesis.26 Although interesting,
the effect of the Cas9-mediated BE on the episomal cccDNA remains
unclear.

In this study, we explored the utility and efficacy of the CRISPR/Cas9-
derived BEs in introducing nonsense mutations to cccDNAs and in-
tegrated HBV genomes. We screened the entire HBV genomes and
identified candidate sites that could effectively be base edited to create
premature stop codons of viral genes. We further proved the success-
ful base editing of integrated HBV DNAs and cccDNAs and the
reduced expression of both surface and polymerase genes, demon-
strating the potential for curing HBV by Cas9-BE.

RESULTS
Designing and Screening HBV-Specific gRNAs for Inducing

Nonsense Mutations by SpCas9 BEs

To construct the HBV-specific gRNAs that are suitable for an
SpCas9 base editor (SpCas9-BE), we first searched for the candidate
protospacer sequences across the four ORFs of the HBV genome by
using the website software BE-Designer.8 We identified 23 candidate
target sequences, including 3 in the core, 9 in polymerase, 9 in the
surface, and 2 in X ORFs (Figure 1A; Table 1). HBV-specific gRNAs
were then constructed and co-transfected with codon-optimized
FNLS-P2A-Puro (puromycin), hereafter named BE3 for the sake
of simplicity, into integrated HBV genome-containing HEK293T
cells (HBV-HEK293T cells), including HEK293T-core, HEK293T-
polymerase (pol), and HEK293T-surface cells. The efficiency of
C-T/G-A conversion in these gRNA targeting sites was evaluated
by Sanger sequencing (Figure 1B). The ratio of C-T/G-A conversion
at each target site was roughly categorized as approximately 0%, less
than 50%, approximately 50%, and greater than 50%. The informa-
tion and base-editing efficiency for each gRNA are summarized in
Table 1. The extent of sequence conservation for the protospacer
sequence and protospacer adjacent motif (PAM) of each gRNA is
summarized in Table S1. Overall, among all of the screened HBV-
specific gRNAs, we discovered 14 gRNAs targeting the polymerase
and surface ORFs with base-editing efficiency of approximately or
greater than 50%, whereas the gRNAs targeting the core and X
ORFs has less optimal base-editing efficiency (approximately 0%
or less than 50%).

We also performed the screening for candidate gRNAs using SpCas9-
BE variants, including VQR, VRER, and EQR, which recognize
altered PAMs NGAN, NGCG, and NGAG, respectively (Fig-
ure S1A).31 The results are summarized in Figure S1B and Table
S2, which show that the overall editing efficiency of SpCas9-BE vari-
ants was lower than that of the natural SpCas9-BE.

Inhibition of the Expression of HBsAg and Polymerase by

Introducing Nonsense Mutations into Integrated HBV Genomes

through Base Editing

As mentioned above, continuous expression of HBsAg from the inte-
grated HBV genomes prevents loss of HBsAg. We thus examined
whether the selected gRNAs combined with BE4Gam-P2A-Puro
were able to suppress the expression of viral genes from integrated
HBV genomes, particularly HBsAg, in HepG2.2.15, which harbors in-
tegrated replication-competent dimeric HBV genomes.32 BE4Gam-
P2A-Puro, hereafter named BE4, contains codon-optimized dCas9
nickase and nuclear targeting motifs and Gam at the N terminus,
and thus has higher base-editing efficacy and reduced undesired
base changes and indel formation compared to BE3.30 We chose a
number of gRNAs targeting surface ORFs with high base-editing ef-
ficiency, including gS3 (preS2), gS7 (S), and gS8 (S). Following lenti-
viral transduction of HepG2.2.15 cells with gRNAs and BE4 twice, the
supernatants and lysates of HepG2.2.15 cells were collected to
examine the expression of HBsAg by a semiquantitative ELISA and
immunoblotting, respectively. The genomic DNA (gDNA) was also
extracted for Sanger sequencing. The results show the ratios of suc-
cessful C-T/G-A conversion at target sites of gS3, gS7, and gS8 were
R50%, R50%, and approximately 50%, respectively (Figure 2).
Additionally, a significant decline of HBsAg secretion was observed
in the supernatants of HepG2.2.15 cells treated with gS7 and gS8,
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Figure 1. Screening gRNAs for SpCas9-Mediated Base Editing in HBV-HEK293T Cells

(A) Schematic illustration of the HBV genome with four ORFs, including core, polymerase, surface, and X, targeted by the gRNAs/SpCas9 base editors. The small rectangles

above or below the HBV genome indicate individual gRNA-targeted sites, with four forms representing the approximate percentages of C-T/G-A conversion, including black

(>50%), hatched (approximately 50%), light gray (<50%), and white (approximately 0%). (B) Sanger sequencing of three representative base-edited sites targeted by in-

dividual gRNAs, including gC1 (core), gP7 (polymerase), and gS3 (surface) in HBV-HEK293T cells. The upper panel shows the Sanger sequencing results of the control

gRNA-treated (unedited) samples and the indicated gRNA-treated (edited) samples. The number and the plus or minus signs at the top indicate the nucleotide position and

the DNA sense. The red arrows indicate the edited sites. The sequences at the bottom are the wild-type (top) and base-edited (bottom) protospacer sequences with PAM

(blue). The base-edited nucleotides are marked in red, and mutated amino acids are underlined. WT, wild-type.
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which target an S gene, whereas cells treated with gS3, which targets a
pre-S2 gene, did not show significant HBsAg reduction (Figure 2A).
The expression of HBsAg was also confirmed by immunoblotting
analysis, which shows a pattern of HBsAg reduction similar to the
ELISA results. Only HepG2.2.15 cells treated with gS7 and gS8, but
not those treated with gS3, exhibited significantly decreased expres-
sion of small surface protein (Figure 2B).

Furthermore, we examined the effect of base-editing inactivation on
HBV polymerase by utilizing gRNAs with high efficiency, that is,
gP7, gP8, and gP9, which target protospacer sequences that are
conserved in 88% of genotype D HBV strains. We generated lentivi-
ruses of gRNAs and BE4 and co-transduced HepG2.2.15 with them
twice during an interval of 14 days. gDNAwas subsequently extracted
from transduced cells and subjected to Sanger sequencing. The results
show that the C-T/G-A conversion rates at all three sites are approx-
imately 50% (Figure S2). The HBV DNA level of the supernatants in
HepG2.2.15 cells treated with gP7, gP8, and gP9 decreased by more
than 60%, indicating effective inactivation of HBV replication (Fig-
ure 2C). In addition, the effective base editing was further confirmed
by next-generation sequencing (NGS), which showed that the C-T/G-
A conversion rates at the target sites of gP7, gP8, gP9, gS3, gS7, and
482 Molecular Therapy: Nucleic Acids Vol. 20 June 2020
gS8 were around 35%–80% (Figure 2D). To evaluate the specificity
of Cas9-BE, we analyzed the off-target effects of base editing for
two of the most effective gRNAs (gP9 and gS8). We chose the top
three predicted off-target sites for each gRNA. The mutagenesis rates
of all of the off-target sites measured by NGS were very low (Fig-
ure S3). Finally, we analyzed the frequency of Cas9-BE-induced on-
target indels by NGS. Measurement of indels can be used to evaluate
the risk of DSB, which is often repaired by the NHEJ mechanism and
causes indels. Our results showed that base editing with all of the
above six gRNAs (gP7, gP8, gP9, gS3, gS7, and gS8) resulted in low
on-target indels (0.5%–5%). We further compared the frequencies
of indels caused by WT Cas9 and Cas9-BE at the target sites of
gP9, gS7, and gS8 and found that WT Cas9 indeed induced signifi-
cantly much higher levels of indels (>70%) than did Cas9-BE
(Figure 2E).

Dual Suppression of HBsAg and Polymerase by Base Editing-

Specific Loci of the HBV Genome

The HBV genome is compactly organized and arranged into four
ORFs with substantial overlapping regions. Therefore, we were
interested to determine whether the nucleotide change in the
ORF of polymerase would introduce a missense mutation and



Table1. Base-Editing Efficiency of SpCas9-BE with Individual gRNAs

Name Nucleotide Position ORF Site of ORF Strand Protospacer Editing %

gC1 164–186 C Q57 + TCAGGCAAGCAATTCTTTGC <50

gC2 165–187 C Q57 + CAGGCAAGCAATTCTTTGCT <50

gC3 166–188 C Q57 + AGGCAAGCAATTCTTTGCTG 0

gP1 630–608 P W74 � TTCCAATGAGGATTAAAGAC >50

gP2 929–951 P Q177 + TGGGAACAAGATCTACAGCA y50

gP3 930–952 P Q177 + GGGAACAAGATCTACAGCAT >50

gP4 931–953 P Q177 + GGAACAAGATCTACAGCATG >50

gP5 1048–1070 P Q217 + TCAATCCCAACAAGGACACC >50

gP6 1074–1096 P Q225 + GACGCCAACAAGGTAGGAGC y50

gP7 1078–1100 P W230 � TGCTCCAGCTCCTACCTTGT >50

gP8 1350–1328 P W313/314 � AGCCACCAGCAGGGAAATAC >50

gP9 1654–1632 P W414 � CGATAACCAGGACAAGTTGG >50

gS1 1075–1053 pre-S1 W41 � TCTGGCCAGGTGTCCTTGTT y50

gS2 1076–1054 pre-S1 W41 � GTCTGGCCAGGTGTCCTTGT <50

gS3 1285–1263 pre-S2 W111 � GAATTCCACTGCATGGCCTG >50

gS4 1305–1327 pre-S2 Q121 + CTGCAAGATCCCAGAGTGAG 0

gS5 1519–1541 S W193 + TACCGCAGAGTCTAGACTCG <50

gS6 1543–1521 S W198 � CACCACGAGTCTAGACTCTG <50

gS7 1909–1887 S W319 � AAAGCCCAGGATGATGGGAT >50

gS8 1910–1888 S W319 � GAAAGCCCAGGATGATGGGA >50

gS9 1955–1933 S W335 � GAGCCAGGAGAAACGGGCTG >50

gX1 2672–2694 X G8 + GCTGCCAACTGGATCCTGCG <50

gX2 2673–2695 X G8 + CTGCCAACTGGATCCTGCGC <50
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influence the expression of surface protein and vice versa. Actually,
the three gRNAs, gP7, gP8, and gP9, not only generated nonsense
mutations in the polymerase gene, but they also resulted in G50L
(pre-S1), G25/26N (pre-S2), and G71N (S) missense mutations in
the surface ORFs. We found that the HBsAg levels of the superna-
tants from HepG2.2.15 treated by gP8 and gP9 decreased signifi-
cantly using a semiquantitative HBsAg ELISA assay (Figure 3A).
The decline of HBsAg was even more profound in gP9-treated
cells. In contrast, there was no significant decrease of HBsAg level
in the supernatant of gP7-treated cells. Consistently, immunoblot-
ting analysis of cell lysates also showed a similar pattern of the
reduced surface antigen expression (Figure 3B). Likewise, the three
gRNAs, gS3, gS7, and gS8, not only caused nonsense mutations in
the surface gene, but also led to E292L (gS3) and G500S (gS7 and
S8) missense mutations in the polymerase gene. Interestingly, the
HBV DNA levels in the supernatants of HepG2.2.15 cells treated
with gS3, gS7, and gS8 also decreased significantly (Figure 3C).
Taken together, we demonstrate that the expression of both poly-
merase and surface genes can be significantly reduced by simulta-
neous introduction of a missense mutation into the polymerase
gene and a nonsense mutation into the surface gene, respectively,
or vice versa using gRNAs targeting the overlapping regions of
these two genes.
Validation of the Dual Suppression Phenomenon by Specific

Point Mutations of the HBV Genome

To further confirm the effective dual suppression of polymerase and
surface gene expression by the particular gRNAs, including gP9, gS7,
and gS8, we intentionally introduced these nonsense mutations into
HBV genomes by site-directed mutagenesis, including W156X in
the surface (W156X-S) andW414X in polymerase (W414X-P), which
correspond with the base-editing sites of gS7/gS8 (same base-editing
site) and gP9 (Figure 4A). Because the surface and polymerase genes
of the HBV genome are extensively overlapped, the W156X-S
nonsense mutation also introduces G500S in polymerase, and
W414X-P causes G71N in the S gene as well. By transfection of
Huh7 cells with the WT or mutant HBV-expression plasmid, we
observed that the W156X-S nonsense mutation led to dramatic
HBsAg reduction in the supernatant and cytoplasm to below the
detection limit, and the G71N missense mutation (W414X-P) also
caused a significant decrease of HBsAg (Figures 4B and 4C). In addi-
tion, for the mutations in the polymerase gene, both the W414X-P
nonsense mutation and the G500S missense mutation (W156X-S) re-
sulted in significant reduction of the viral DNA in the supernatant at
5 days post-transfection (Figure 4D). We further performed a South-
ern blot to measure the intracellular replicative intermediates of
transfected cells and found that the two mutant HBV genomes with
Molecular Therapy: Nucleic Acids Vol. 20 June 2020 483
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Figure 2. Effect of Base Editing-Introduced

Nonsense Mutation on Viral Gene Expression of

HepG2.2.15 Cells

(A) Secreted HBsAg levels, measured by the semi-

quantitative ELISA assay, in the supernatant of

HepG2.2.15 cells transduced with the control gRNA

(glacZ) or individual gRNAs gS3, gS7, and gS8 along with

the SpCas9 base editor (BE4Gam-P2A-Puro) at day 3

and day 5 post-transduction. The fold change of HBsAg is

calculated as the ratio between the indicated HBsAg

levels over that of control gRNA (glacZ). (B) Immunoblot-

ting analysis of intracellular HBV surface proteins ex-

tracted from the indicated cells of the same experiments

in (A). (C) The fold change of supernatant HBV DNA in

HepG2.2.15 cells transduced with the glacZ control or the

indicated gRNAs gP7, gP8, and gP9. (D) Individual per-

centages of C-T/G-A conversion at the target sites

measured by NGS. (E) Individual percentages of indels

compared between Cas9-BE and Cas9-WT at the gRNA-

targeting sites measured by NGS. The results of (A) and

(C)–(E) are combined from three independent experi-

ments and shown in bar graphs with mean plus standard

deviation (SD). *p < 0.05, **p < 0.01, ***p < 0.005 (Stu-

dent’s t test). n.s., not significant.
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polymerase mutationsW414X-P and G500S (W156X-S) caused a sig-
nificant reduction of relaxed circular DNA (RC-DNA) to beyond the
detection limit (Figure 4E). Taken together, our results confirm that
the nucleotide changes at these two particular loci of the HBV genome
can result in profound dual suppression of the polymerase and sur-
face gene expression.

Generation of Nonsense Mutations in HBV cccDNA

by SpCas9-BE

Since cccDNA is the replicative template of HBV, we further deter-
mined whether the SpCas9-BE could indeed generate nonsense mu-
tations in cccDNA, which is an extrachromosomal DNA. We first
showed that following HBV infection of HepG2-NTCP-C4 cells
484 Molecular Therapy: Nucleic Acids Vol. 20 June 2020
in vitro, HBV RC-DNA and cccDNA could be
detected by Southern blotting (Figure 5A).
The identity of cccDNA was further validated
by the appearance of 3.2-kb DNA after lineari-
zation of RC-DNA and cccDNA with EcoRI
digestion. Additionally, T5 exonuclease treat-
ment significantly enhanced the purity of
cccDNA isolation (Figure 5A). To prove C-T/
G-A conversion in cccDNA, we then conducted
an experiment by initially repeated transduc-
tion of HepG2-NTCP-C4 cells with gRNAs/
SpCas9-BE followed by HBV infection. Our
preliminary results showed that BE3 exhibited
higher base-editing efficacy on cccDNA than
did BE4 (data not shown), so we chose BE3
for further experiments. By an immunofluores-
cence assay (IFA), we showed that the efficiency
of HBV infection and delivery of Cas9 was
around 22.1% and 15.4%, respectively, and only 4.8% cells were dou-
ble positive. It is estimated that around 21.7% of HBV-infected cells
were positive for Cas9-FLAG (Figure S4). Then we isolated cccDNA
from HBV-infected HepG2-NTCP-C4 by T5 exonuclease treatment
and analyzed C-T/G-A conversion in cccDNA by Sanger sequencing
and NGS (Figures 5B and 5E). The results showed that gP9 and gS8
target sites were effectively edited by SpCas9-BEs at the efficiency
close to 50% estimated by Sanger sequencing (Figure 5B). Consis-
tently, the results of NGS analysis showed 25%–35% of base editing
(Figure 5E). In addition, BE3 also induced far fewer undesired on-
target indels (<0.5%) (Figure 5F). Finally, we demonstrate that the
secreted HBsAg levels were significantly decreased in HBV-infected
cells treated with gP9 and gS8, and viral DNAs were also significantly
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Figure 3. Dual Suppression of HBsAg and Polymerase by SpCas9 Base

Editors

(A) The secreted HBsAg levels in the supernatant of HepG2.2.15 cells transduced

with SpCas9-BE and individual gRNAs gP7, gP8, gP9, or control glacZ at day 3 and

day 5 post-transduction, as the same cells in Figure 2C. (B) Immunoblotting analysis

of intracellular HBV surface proteins extracted from the same cells in Figure 2C. (C)

The fold change of supernatant HBV DNA in HepG2.2.15 cells treated with the

glacZ control or the indicated gRNAs gS3, gS7, and gS8, as the indicated cells of

the same experiments in Figure 2A. The results of (A) and (C) are combined from

three independent experiments and shown in bar graphs with mean plus standard

deviation (SD). *p < 0.05, **p < 0.01, ***p < 0.005 (Student’s t test). n.s., not sig-

nificant.
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reduced in cells treated by all these three gRNAs (Figures 5C and 5D).
Collectively, our results prove that cccDNA could be base edited to
reduce the expression of viral proteins.
DISCUSSION
In this study, we demonstrate that CRISPR/Cas9-mediated BEs could
successfully introduce nonsense mutations to specific loci of HBV ge-
nomes. The BEs derived from SpCas9 variants VQR, VRER, and EQR
were also able to generate nonsense mutations in HBV genomes,
further expanding the candidate protospacer sequences. With appro-
priate gRNAs and BEs, both integrated HBV genomes and cccDNAs
could be base edited with high efficacy. More importantly, generation
of premature stop codons in the viral surface and polymerase genes of
integrated HBV genomes and cccDNAs led to significant reduction of
HBsAg secretion and viral replication, a critical step toward HBV
cure.

Although Cas9-mediated BEs have been shown to effectively edit a
variety of host genomes, their efficacy in episomal forms of viral
DNA remains questionable. The core component of the base-editing
enzyme is APOBEC, which has been shown to mutate cccDNA.33
However, little is known about the effects of the subsequent DNA
repair mechanisms and the uracil DNA glycosylase inhibitor on the
episomal cccDNA. By using the in vitro HBV infection system, we
proved the nucleotide C to T conversion of cccDNA, which was
accompanied by the significant reduction of HBsAg secretion and
HBV replication. This is a proof of concept that Cas9-mediated BEs
can be utilized to target and silence cccDNA.

Integration ofHBVgenomes intohost chromosomesoccurs in the early
stage of HBV infection.7 Although the integrated HBV genome is not a
source for productive HBV infection, it often causes continuous secre-
tion of HBsAg, which has long been suggested to suppress the antiviral
immunity and allows for establishment of persistent HBV infection. As
a result, targeting integrated HBV genomes or silencing surface gene
expression toprevent persistentHBsAg secretion is considered a critical
step toward the functional cure of HBV.11,34 Nevertheless, prior at-
tempts to cleave integratedHBVgenomes byWTSpCas9 endonuclease
may result inhost genome largedeletions andcomplex rearrangements,
which can cause pathologic consequences.25 In contrast, Cas9-medi-
ated BEs change the target base in genomic DNA without making
DSBs of DNA, and they may reduce the risk of genomic damage.
Recently, inactivation of HBV genes by siRNA-based strategies has
gained wide interest for silencing the expression of HBsAg, but the ef-
fect is transient unless restoration of antiviral immunity can be
achieved.9 Unlike siRNA-based strategies, Cas9-mediated BEs can
silence HBV gene expression permanently by introducing nonsense
mutations to viral genes. As we show herein, Cas9-mediated BEs effec-
tively generated premature stop codons of the surface gene in both in-
tegrated HBV genomes and cccDNAs and reduced HBsAg secretion.
Therefore, Cas9-mediated BEs are advantageous for its transient
expression to achieve long-term suppression of HBsAg expression,
demonstrating its potential for functional HBV cure.

Interestingly, we discovered several HBV genome loci that cause
simultaneous nonsense mutation and missense mutation of polymer-
ase and surface genes, respectively, or vice versa, leading to their dual
suppression. For example, W414X in the polymerase gene causes
G71N in the surface gene, and W156X in the surface gene results in
G500S in the polymerase gene. Significant reduction of both polymer-
ase and surface gene expression could be observed when these specific
loci of the HBV genome were base edited. G71N (W414X-P) and
W156X-S are located in the inner face and the proposed amphipathic
helix of surface protein, which are important for S dimer forma-
tion.35,36 The amino acid change of these residues causes the reduc-
tion of intracellular and secreted HBsAg, indicating that it may render
HBsAg unstable and susceptible to protein degradation. W414X-P
and G500S (W156X-S) are located at the palm and finger domains
of the polymerase gene, which are critical for viral replication. We
further validated the critical role of these residues by generation of
W414X in polymerase and W156X in surface genes, respectively, by
site-directed mutagenesis. Notably, these two sites and cognate proto-
spacer sequences are highly conserved in 88% and 77% of HBV
strains of genotype D (Table S1), so they may serve as ideal targets
for a base-editing strategy to treat HBV of genotype D.
Molecular Therapy: Nucleic Acids Vol. 20 June 2020 485
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Figure 4. Validation of the Effect of Base-Edited

Missense Mutations on the Expression of HBV

Surface and Polymerase Proteins

(A) Schematic illustration for the genome organization and

protein domains of the HBV surface (S) and polymerase

(P) genes, including the overlapping regions of the two

genes. The reverse transcriptase domain in P corre-

sponds to part of the S domain in S. The W156X site in S

corresponds to G500S in P; the W414X site in P corre-

sponds to G71N in S. (B) The fold change of secreted

HBsAg levels in the supernatant of Huh7 cells transfected

by 1.3� HBV-WT (WT), 1.3� HBV-W156X in S (W156X-

S), or 1.3� HBV-W414X in P (W414X-P) at day 3 and day

5. The dotted line indicates the detection limit of the

HBsAg ELISA assay. (C) Immunoblotting analysis of

intracellular HBV surface proteins extracted from the

indicated cells of the same experiments in (B). (D) Fold

change of supernatant HBV DNA in Huh7 cells trans-

fected by the 1.3� HBV-WT (WT), 1.3� HBV-W156X in S

(W156X-S), or 1.3 HBV-W414X in P (W414X-P) at day 5.

(E) Southern blot analysis of intracellular HBV replicative

intermediates in Huh7 cells transfected by WT, W156X-S,

or W414X-P 1.3� HBV plasmid, and extracted for

genomic DNA by the modified Hirt DNA procedure. The

results in (B) and (D) are combined from three independent

experiments and shown in bar graphs with means plus

standard error (SE). ***p < 0.005 (Student’s t test). WT,

wild-type.
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Despite the promising potential of the Cas9-mediated BE as an HBV
cure, there remain several daunting challenges, including off-target
effects and the difficulty for in vivo delivery of Cas9, the same as those
faced by WT Cas9 endonuclease.24 Moreover, mutagenesis with pre-
mature stop codons will generate truncated viral proteins and may
carry potentially pathogenic or carcinogenic effects, which should
be cautiously evaluated. Although we showed that the off-target mu-
tations caused by base editing were quite low, this risk still cannot be
ignored.37 In addition, in vivo delivery is particularly challenging for
Cas9 BEs because they are larger than WT Cas9 for the appended
486 Molecular Therapy: Nucleic Acids Vol. 20 June 2020
base-editing domains. Nevertheless, several
strategies have been adopted to minimize the
off-target effects of Cas9-mediated genome edit-
ing.38,39 Recently, the intein-mediated split-
Cas9 systems have also been developed to
reduce the insert size to fit the cargo capacity
of the AAV system.40,41 Alternatively, the
advance of non-viral delivery systems may
improve their in vivo delivery efficiency.42,43

Future study in a disease-relevant animal model
is required to prove the in vivo efficacy of Cas9
BEs for inactivation of HBV.

In conclusion, Cas9-mediated BEs provide an
opportunity for permanent inactivation of
both cccDNA and integrated HBV DNA
without DSBs of DNA. Combined with NAs,
which effectively inhibit ongoing viral replication, Cas9-mediated
BEs may eventually achieve the ultimate cure of HBV by suppressing
both HBV replication and HBsAg production.

MATERIALS AND METHODS
Plasmids

The human codon-optimized base editing vectors pLenti-FNLS-P2A-
Puro (BE3) and pLenti-BE4Gam-P2A-Puro (BE4), as well as U6-
gRNA, were obtained from Addgene (Cambridge, MA, USA). The
variant VQR (D1135V, R1335Q, and T1337R), VRER (D1135V,
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Figure 5. Base Editing of HBV cccDNA

(A) Southern blot analysis of intracellular HBV replicative

intermediates of BE/gRNA-transduced HepG2-NTCP-

C4 cells infected by 5� 105 genome equivalents (GEs) of

HBV at 9 days post-infection. Lane 1,mock infection; lane

2, HBV infection without enzymatic treatment; lane 3,

HBV infection with EcoRI treatment; lane 4, HBV infection

with T5 exonuclease treatment. RC, HBV RC-DNA; DSL,

double-stranded linear DNA; CCC, cccDNA. (B) Sanger

sequencing of the base-edited sites in cccDNA targeted

by individual gRNAs gP9 and gS8. The labels are the

same as those in Figure 1B. (C) The fold change of

secreted HBsAg levels, measured by the quantitative

HBsAg assay, in the supernatant of HepG2-NTCP-C4

cells at day 6 and day 8 after HBV infection. (D) Fold

change of supernatant HBV DNA in HepG2-NTCP-C4

cells transduced by individual gRNAs gP9 and gS8 in

comparison to those transduced by the control glacZ.

HepG2-NTCP-C4 cells were initially transduced by indi-

vidual gRNAs, control glacZ, gP9, or gS8, along with

SpCas9-BE and subsequently infected by HBV. (E) Indi-

vidual percentages of C-to-T conversion at the target

sites of cccDNA measured by NGS. (F) Individual per-

centages of indels at the gRNA-targeting sites of cccDNA

measured by NGS. The results of (C) and (D)–(F) are

combined from three independent experiments and

shown in bar graphs with means plus standard error (SE).

**p < 0.01, ***p < 0.005 (Student’s t test). n.s., not sig-

nificant.
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G1218R, R1335E, and T1337R), EQR (D1135E, R1335Q, and
T1337R) were generated by site-directed mutagenesis of the pLenti-
BE4Gam-P2A-Puro backbone based on a previous report.31 The
pLenti-U6-gRNA-BSD was generated through Gibson assembly, by
combing the U6-BsmBI-sgRNA scaffold and the blasticidin-resistant
gene, which was derived from the pLVX.AcGFP.N1 (catalog no.
632154, Clontech) backbone. The resultant gRNAs were subsequently
cloned into the plasmid pLenti-U6-gRNA-BSD. The non-vector help-
Molecular T
er plasmids for lentiviral production, p8.91 and
pMD.G, were obtained from the RNAi Core of
Academia Sinica, Taiwan. BE-Designer-
CRISPR RGEN tools were used to identify the
20-bp protospacer sequences of gRNAs target-
ing the HBV core, polymerase, surface, and X
(http://www.rgenome.net/be-designer/). 1.3�
HBV-WT was derived from the pCMV-HBV
backbone using Gibson assembly. 1.3� HBV-
W156X-S and 1.3� HBV-W414X-P were
generated by site-directed mutagenesis of the
1.3� HBV-WT backbone.

Cell Lines and Culture

HEK293T-C, -Pol, and -S cells were generated
by transduction of HEK293T cells with lentivi-
ral vector containing the harboring part or the
entire ORFs of core, polymerase, and surface
genes, respectively, from genotype D HBV. HEK293T, HEK293T-
C, HEK293T-Pol, HEK293T-S, HepG2.2.15, and HepAD38 cells
were all maintained in Dulbecco’s modified Eagle’s medium
(DMEM, Gibco) supplemented with 10% fetal bovine serum (FBS),
100 U/mL penicillin, and 100 mg/mL streptomycin (Gibco) at 37�C
and 5% CO2. Additionally, 1.5 mg/mL puromycin was added to
HEK293T-C, -Pol, and -S. cells, 400 mg/mL G418 was added to
HepG2.2.15 cells, and 400 mg/mL G418 and tetracycline were added
herapy: Nucleic Acids Vol. 20 June 2020 487
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to HepAD38 cells. HepG2-NTCP-C4 cells were maintained in
DMEM/F12, GlutaMAX (Gibco) containing 10% FBS, 100 U/mL
penicillin, and 100 mg/mL streptomycin (Gibco), 5 mg/mL human in-
sulin (ProSpec), 10 mM HEPES (N-2-hydroxyethylpiperazine-N0-2-
ethanesulfonic acid) (Gibco), and 1 mg/mL G418.

Transfection of Cell Lines

DNA transfection was performed using Lipofectamine 3000 accord-
ing to the manufacturer’s protocol with some modifications. For
transfection-based editing experiments, HEK293T, HEK293T-C,
HEK293T-P, and HEK293T-S cells were seeded to 70%–80% conflu-
ence and cotransfected by the expression vectors containing the BE
(pLenti-FNLS-P2A-Puro; BE3) and the sgRNA at the ratio of 4:1.
For the experiments comparing the viral expression of 1.3� HBV-
WT and the derived HBV with site-directed mutagenesis, Huh7 cells
were transfected by the indicated plasmids, 1.3� HBV-WT, W414X-
P, or W156X-S, and were then harvested at 3 days or 5 days post-
transfection. Subsequently, genomic DNAs were extracted by a blood
and tissue kit (QIAGEN) and subjected to Sanger sequencing, or
Hirt’s DNA was extracted for a Southern blotting assay.

Lentiviral Production and Transduction

For the production of lentivirus of BEs pLenti-FNLS-P2A-Puro (BE3)
and pLenti-BE4Gam-P2A-Puro (BE4), HEK293T cells were seeded in
10-cm dishes containing 5 mg/mL poly-D-lysine (Sigma, St. Louis,
MO, USA). Cells were seeded 1 day before transfection, and, the
next day, cells at 95% confluence were transfected with a prepared
mix in Opti-MEM (Gibco) containing 6 mg of lentiviral backbone,
4 mg of p8.91, and 2 mg of pMD.G. The media were replaced with
Opti-MEM containing 5% FBS, and the culture media were collected
after 48 and 72 h. The supernatant was filtered with a 0.4-mm filter
(Millipore, Billerica, MA, USA) and subsequently ultracentrifuged
with a 20% sucrose cushion in the bottom of the tube and incubated
at 26,000 rpm (4�C) for 2 h. The precipitated viral pellet was resus-
pended in Opti-MEM overnight and then stored at �80�C. For the
production of the lentivirus of sgRNAs, HEK293T cells were seeded
in a six-well plate containing 5 mg/mL poly-D-lysine (Sigma, St. Louis,
MO, USA) 1 day before transfection. On the next day, cells at 95%
confluence were transfected with a prepared mix in Opti-MEM con-
taining 1.5 mg of lentiviral backbone, 1 mg of p8.91, and 0.5 mg of
pMD.G. The procedures for collection, purification, and storage of
lentiviruses are the same as those described above.

Transduction with BE Lentiviruses

For transduction of HepG2.2.15 and HepG2-NTCP-C4 cells, 5 � 105

individual cells were seeded in a 12-well plate. After 24 h, cells were
transduced with viral supernatants in the presence of Polybrene
(8 mg/mL), and the plates were centrifuged for 1 h at 1,250 � g, 32�C.
Three days after transduction, cells were treated with puromycin
(2.5 mg/mL) and blasticidin S (5 mg/mL) for 7 days of selection. The
transduced cells were trypsinized and reseeded at the same number,
and subsequently transduced by the same lentivirus again as the above
procedures. For the transducedHepG2.2.15 cells, the supernatantswere
collected at 3 and 5 days after transducing twice with pLenti-BE4Gam-
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P2A-Puro (BE4), and the cell lysateswere collected at 5 days post-trans-
duction. For the HepG2-NTCP-C4 transduction, cells were transduced
twice with pLenti-FNLS-P2A-Puro (BE3) and gRNAs.

Preparation and Infection of HBV

Infectious HBV was produced from HepAD38 cells as previously
described.44 The supernatant was harvested and concentrated by
20% sucrose cushion. For the HBV infection experiment, HepG2-
NTCP-C4 cells were seeded in a 12-well plate and transduced by
pLenti-FNLS-P2A-Puro (BE3) and gRNA lentiviruses. After repeated
lentiviral transduction for two times, HBV was infected at 5,000
genome equivalents (GE)/cell. All infections were performed as pre-
viously described.45,46 In addition, HBV was infected into HepG2-
NTCP-C4 cells in a 12-well plate at 50,000 GE/cell for cccDNA detec-
tion by Southern blot. Briefly, cells were mixed with HBV in the pres-
ence of 8% PEG8000 and 5% DMSO at 37�C for 16 h in suspension.
To suppress the formation of newly synthesized RC-DNA, infected
HepG2-NTCP-C4 cells were treated with 20 mM 3TC (lamivudine)
from 3 days after infection.

Sanger and MiSeq Sequencing of Base-Edited Genomic DNA

and cccDNA

Genomic DNAs of harvested cells were extracted using a DNase
blood and tissue kit (QIAGEN) according to the manufacturer’s in-
structions. The genomic regions of interest were amplified by PCR
with the site-specific primers (Table S3) and PfuUltra II fusion HS
DNA polymerase (Agilent Technologies) according to the manufac-
turer’s protocol. The PCR products were purified by the Illustra
GFX PCR DNA and gel band purification kits (GE Healthcare),
and were subjected to Sanger sequencing.

To remove linear and RC-form HBV DNAs for Sanger and MiSeq
sequencing of cccDNA, genomic DNAs were extracted and digested
with T5 exonuclease (New England Biolabs) in the reaction mixture
of 50 mL containing 500 ng of DNA, 5 mL of ,10� reaction buffer
and 1 mL of T5 Exo at 37�C for 1 h, and afterward 11 mM EDTA
was added to stop reaction.

Immunoblotting Assay

Cells were washed with phosphate-buffered saline (PBS) and lysed
with radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-
HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40 [NP-
40], 0.5% sodium deoxycholate, 0.1% SDS, protease inhibitor cocktail
[Roche]). Whole-cell extracts were subjected to 12% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by
western blot analysis using primary antibodies (anti-b-actin [Merck],
anti-HBs [Ad/Ay] antibody [ab9193; Abcam, Cambridge, MA, USA])
and secondary antibody and detected by ImmobilonWestern Chemi-
luminescent HRP (horseradish peroxidase) substrate (Millipore, Bill-
erica, MA, USA).

ELISA of HBsAg

Elecsys HBsAg II (Roche Diagnostics) was used for HBsAg qualitative
determination in the culture supernatant of G2.2.15. Samples with a
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signal/cutoff ratio (S/CO) of R1 are considered positive, and the
values are considered as a semiquantitative level of HBsAg. The quan-
titative levels of HBsAg in the culture supernatant of HepG2-NTCP-
C4 were measured using an Architect HBsAg kit (Abbott Labora-
tories). The calibration range recommended by the manufacturer
was from 0 to 250 IU/mL. The positivity criterion of HBsAg was
R0.05 IU/mL.

Quantitative Real-Time PCR

The viral DNAs were purified from the supernatant of G2.2.15 using a
DNase blood and tissue kit (QIAGEN) according to the manufac-
turer’s instructions. The PCR reaction was performed in a total volume
of 10 mL, which contains 4 mL of DNA template, 0.25 mM for each
primer, a 0.1 mMprobe, and 5 mL of TaqManmastermix. The program
was 2 min at 50�C, 10 min at 95�C, and 40 cycles of 95�C for 15 s and
60�C for 1 min. The probe and primer sequences are listed in Table S3.

HBV DNA Extraction and Southern Blotting

HBV DNA was extracted by the modified Hirt method as previously
described.18 Infected HepG2-NTCP-C4 was lysed in Hirt’s buffer
(0.7% SDS, 10 mM Tris-HCl [pH 8.0], and 10 mM EDTA [pH
8.0]). The lysates were treated with 5 M NaCl and incubated at 4�C
overnight and then centrifuged at 10,000 rpm for 30 min at 4�C.
For extraction of DNA, the supernatant was treated by saturated
phenol twice and phenol/chloroform (1:1) once. DNA was precipi-
tated with 2� vol of 100% ethanol at room temperature overnight
and subsequently precipitated at 10,000 rpm centrifugation at 4�C
for 30min. 30 mg of Hirt DNAwas analyzed by themodified Southern
blot method as previously described.18

DNA Library Preparation and MiSeq Sequencing

A Thermo Scientific Phusion high-fidelity DNA polymerases kit was
used according to the manufacturer’s recommendations (Illumina)
for DNA library preparation. Adaptor-ligated DNA was indexed
and enriched through limited-cycle PCR. The DNA library was quan-
tified with NanoDrop and through real-time PCR. The DNA library
was loaded on an Illumina MiSeq instrument according to the man-
ufacturer’s instructions and sequenced with 600 cycles by the Medical
Microbiota Center of the First Core Laboratory, National Taiwan
University College of Medicine.

The quality of raw reads was evaluated by FastQC. Base editing effi-
ciency and indel rates of each sample were calculated using a Python
script. Briefly, the sequence of gRNA target regions in each read was
identified by splitting the reads by 10-bp flanking sequences with
exact matches on both sides of the target regions. Indels were calcu-
lated as the number of reads with target regions that contain inser-
tions or deletions divided by the total read number. Base editing effi-
ciency was measured by counting the number of A, T, C, and G bases
at each position on the target sequences and then the numbers were
divided by the number of total reads. The ratios of induced premature
stop codons in each sample were determined by dividing the number
of reads containing induced premature stop codons with the number
of total reads.
Statistical Analysis

An unpaired, two-sided Student’s t test was used to compare the dif-
ference between two independent groups. Data associated with this
study are present in the text or in Supplemental Materials and
Methods.
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